EP0702156A1 - Système de pompage polyphasique à boucle de régulation - Google Patents

Système de pompage polyphasique à boucle de régulation Download PDF

Info

Publication number
EP0702156A1
EP0702156A1 EP95401796A EP95401796A EP0702156A1 EP 0702156 A1 EP0702156 A1 EP 0702156A1 EP 95401796 A EP95401796 A EP 95401796A EP 95401796 A EP95401796 A EP 95401796A EP 0702156 A1 EP0702156 A1 EP 0702156A1
Authority
EP
European Patent Office
Prior art keywords
pump
multiphase
pumping system
glr
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95401796A
Other languages
German (de)
English (en)
Other versions
EP0702156B1 (fr
Inventor
Régis Vilagines
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0702156A1 publication Critical patent/EP0702156A1/fr
Application granted granted Critical
Publication of EP0702156B1 publication Critical patent/EP0702156B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids

Definitions

  • the present invention relates to a multiphase pumping system with recycling loop.
  • the pumping system according to the invention is suitable for transporting, via pipes, a fluid comprising at least one liquid phase and at least one gaseous phase, the volumetric ratio of the gaseous phase to the liquid phase (generally designated by GLR), may have wide variations.
  • Such a pumping system finds applications in particular in the field of petroleum production where it is a question of transporting to a determined place of destination, petroleum effluents extracted from an underground deposit, and in particular for the exploitation of so-called offshore deposits.
  • Existing multiphase pumping systems include a multiphase pump such as that described in patent FR 2,665,224 filed by the applicant, capable of applying to a multiphase fluid, a high pressure as long as the volumetric ratio GLR does not exceed a maximum value determined.
  • a multiphase pump such as that described in patent FR 2,665,224 filed by the applicant, capable of applying to a multiphase fluid, a high pressure as long as the volumetric ratio GLR does not exceed a maximum value determined.
  • GLR ratio of the fluid to be transported is likely to exceed this maximum value, as occurs in petroleum exploitation when the fluid produced by a production well has pockets or plugs of gas
  • means of pump are associated with the pump. regulation. These regulating means are adapted to restrict the range of possible variation of the GLR ratio to make it compatible with that admitted by the pump.
  • a known regulating means described for example in French patent applications EN 91 / 16.230 and 92 / 05.617 comprises for example a buffer tank receiving the fluids produced by the deposit and provided with one or more perforated sampling tubes capable of automatically dosing the phase ratio admitted at the pump inlet.
  • the recycling loop pumping system makes it possible to communicate to multiphase effluents originating from a source and comprising at least one liquid phase and at least one gaseous phase and whose volumetric ratio GLR of gaseous phases to liquid phases is likely to vary, an increase in pressure sufficient to transport them to a specific place of destination.
  • the pumping system comprises a multiphase pump and a recycling loop and it is characterized in that it comprises in combination a bypass means for deriving directly via the recycling loop, part of the multiphase fluid available at the outlet of the pump towards the inlet thereof and means for controlling the multiphase fluid derived in the loop, so as to decrease the flow rate of the fluid transported by the pipe and to increase the possible operating speed of said pump.
  • the bypass means is a shaped element for distributing the liquid phases of the multiphase effluents which are applied to it more towards a first outlet than towards a second outlet (for example in the form of T or Y), this first outlet, which is richer in liquid phases, being connected to the recycling loop so as to reduce to a certain extent the GLR ratio of the multiphase fluid recycled at the inlet of the pump and facilitate its operation.
  • the control means may include, for example, a valve, a buffer tank or an element for using part of the energy of the multiphase effluents derived.
  • the pumping system can also include an assembly for controlling the control means, in order to apply regulation as a function of the pumping conditions.
  • the pumping system according to the invention by partial recycling of part of the multiphase effluents from a pump, allows the latter to better take care of effluents whose volumetric ratio GLR is relatively high.
  • GLR volumetric ratio
  • the pumping system comprises a multiphase pump 1 of a known type, such as the pump described in the aforementioned patent FR 2,665,224, associated with a drive motor 2.
  • the inlet of the pump 1 is connected by a pipe 3, to a source of multiphase fluids.
  • This source is for example an oil production well which produces liquid effluents: oil and water, and gaseous effluents.
  • the pump 1 is adapted to apply to the effluents a pressure increase ⁇ P sufficient to transport them to a place of destination as long as the volumetric ratio of gas to liquid or GLR is maintained within a certain defined range of variation.
  • a bypass element 5 is inserted, making it possible to divide the multiphase flow coming from the pump into two parts.
  • a T-shaped branching of a known type is used and we connect its bent branch 51 to a pipe 6 for routing to the place of destination.
  • the straight branch 52 of the T is connected at one end to the pipe 4.
  • a recycling circuit or loop 7 provided with a control valve 8 is connected at a first end, to the straight branch 52 of the T and, at its opposite end, to the inlet pipe of the pump via a mixing member 9 of a known type such as a mixer ejector which allows part of the energy of the recycled effluents to be used for favor their mixing with those from line 3, for example of the type described in patent CH 680463.
  • the control valve 8 is controlled by a processor 10 adapted to modify the recycled flow rate as a function of variations in pumping conditions.
  • the diagram in FIG. 3 corresponds to that of a POSEIDON type P 300 multiphase helical-axial pump, for example such as that described in the above-mentioned patent FR 2 665 224, in the absence of any recycling. It shows the range of possible variation of the pressure rise ⁇ P (in MPa) applied by the pump as a function of the flow rate D at suction for different rotation speeds.
  • the suction pressure is 1.5 MPa.
  • the volumetric ratio GLR of the sucked effluents is 8.
  • FIG. 4 shows that direct recycling of part of the effluent delivered by the pump allows, for an increase in pressure ⁇ P of 0.75 MPa, to increase its hourly flow rate to 400 m3 / h at a speed of rotation of 4500 rpm (point b1) and at the same time, to widen in notable proportions, the pressure increase ⁇ P that the pump is able to apply to the sucked effluents if we increase its speed training. It can be seen that this increase in pressure in the case under consideration can reach approximately 1.55 MPa at a rotation speed of 5200 rpm.
  • a divider branch 5 capable by construction of diverting towards the recycling circuit a multiphase fraction whose GLR ratio is lowered leads in the case illustrated by the diagram of Fig. 4 to lower the value of the GLR ratio to 6 effluent at suction.
  • a separator downstream of the pump to remove practically all of the gas from the recycled effluents, as described in the aforementioned patent FR 2,417,057.
  • the processor 10 is used to control the opening of the valve 8 as a function of the values of the coefficients a, b and of the total flow rate Q of the well for example.
  • this recycling loop makes it possible, as we have seen, to increase the range of variation of the ratio GLR of the effluents that a multiphase pump can accept, and also an extension of the possible variation margin of the pressure increase ⁇ P communicated by the pump. It can also be noted that the presence of this recycling loop and of the regulating valve 8 also contributes to giving great flexibility to the pumping system.
  • the reinjection under pressure of the recycled fluid helps to homogenize the effluents at the inlet of pump 1.
  • the recycling of a fraction of the effluents allows the pump to operate correctly even with sources of reduced flow, which is particularly advantageous in oil production when wells are nearing depletion.
  • the variation in the recycling rate obtained by controlling the valve 8 makes it possible to make the start-up and operation of the pump more gradual, in particular in the event of an unexpected shutdown of the well upstream or of valves downstream.
  • the presence of the loop widens the possibilities of intervention of the operators who, without recycling can only play on the drive speed of the pump.
  • the recycling loop only has one interposed regulating valve.
  • a buffer tank 11 FIG. 2
  • a diversion means is preferably used with a phase separating power, so as to reduce the volumetric ratio GLR of the recycled effluents. It would not go beyond the scope of the invention, however, to replace this particular bypass means with a non-selective branching. In this case, we take advantage of the greater operating flexibility offered by metering the recycled fraction. As shown in Fig 4 where a point of operation m1 is moved to m2 by recycling then to m3 by an increase in the drive speed of the pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne un système de pompage pour appliquer à des effluents polyphasiques une pression suffisante pour les transporter depuis une source telle qu'un puits de production pétrolière) jusqu'à un lieu de destination éloigné. Pour améliorer le fonctionnement de la pompe et rendre plus souple la gestion des transferts d'effluents, le système comporte une boucle (7) de recyclage d'une fraction des effluents polyphasiques sortant de la pompe (1) vers l'entrée de celle-ci, comportant de préférence un élément de dérivation (5) tel qu'un T, conformé pour diminuer le rapport volumétrique GLR des effluents recyclés. Dans la boucle est interposé un élément de régulation tel qu'une vanne pilotée (8) et éventuellement un ballon-tampon, et un élément (9) tel qu'un éjecteur mélangeur pour utiliser une partie de l'énergie des effluents dérivés. Application à des installations de pompage offshore par exemple. <IMAGE>

Description

  • La présente invention a pour objet un système de pompage polyphasique à boucle de recyclage.
  • Le système de pompage selon l'invention convient pour assurer le transport par des canalisations, d'un fluide comportant au moins une phase liquide et au moins une phase gazeuse, dont le rapport volumétrique de la phase gazeuse à la phase liquide (désigné généralement par GLR), peut présenter de larges variations.
  • Un tel système de pompage trouve des applications notamment dans le domaine de la production pétrolière où il s'agit de transporter jusqu'à un lieu de destination déterminé, des effluents pétroliers extraits d'un gisement souterrain, et en particulier pour l'exploitation de gisements dits offshore.
  • Les systèmes de pompage polyphasique existants comportent une pompe polyphasique telle par exemple que celle décrite dans le brevet FR 2.665.224 déposé par le demandeur, capable d'appliquer à un fluide polyphasique, une pression importante tant que le rapport volumétrique GLR ne dépasse pas une valeur maximale déterminée. Quand le rapport GLR du fluide à transporter est susceptible de dépasser cette valeur maximale, comme cela se produit dans l'exploitation pétrolière quand le fluide produit par un puits de production comporte des poches ou bouchons de gaz, on associe à la pompe des moyens de régulation. Ces moyens de régulation sont adaptés à restreindre la plage de variation possible du rapport GLR pour le rendre compatible avec celui admis par la pompe.
  • Un moyen de régulation connu décrit par exemple dans les demandes de brevet français EN 91/16.230 et 92/05.617 comporte par exemple un ballon tampon recevant les fluides produits par le gisement et pourvu d'un ou plusieurs tubes de prélèvement perforés capables automatiquement de doser le rapport des phases admis à l'entrée de la pompe.
  • Un tel agencement donne des résultats satisfaisants mais il a l'inconvénient d'être volumineux et relativement cher.
  • Par le brevet FR 2.417.057, on connaît un système de pompage à boucle de régulation. La sortie de la pompe est connectée à un dispositif de séparation de phase adapté à extraire du fluide polyphasique, une fraction constituée presque complètement de liquide. Cette fraction liquide est recyclée par une conduite de dérivation, vers l'entrée de la pompe où elle sert à faire baisser la valeur du rapport GLR quand il devient excessif.
  • Le système de pompage à boucle de recyclage selon l'invention permet de communiquer à des effluents polyphasiques issu d'une source et comportant au moins une phase liquide et au moins une phase gazeuse et dont le rapport volumétrique GLR des phases gazeuses aux phases liquides est susceptible de varier, une augmentation de pression suffisante pour leur acheminement vers un lieu de destination déterminé. Le système de pompage comporte une pompe polyphasique et une boucle de recyclage et il est caractérisé en ce qu'il comporte en combinaison un moyen de dérivation pour dériver directement via la boucle de recyclage, une partie du fluide polyphasique disponible à la sortie de la pompe vers l'entrée de celle-ci et des moyens de contrôle du fluide polyphasique dérivé dans la boucle, de façon à diminuer le débit du fluide transporté par la conduite et à augmenter la vitesse de fonctionnement possible de ladite pompe.
  • Suivant un mode de réalisation préféré, le moyen de dérivation est un élément conformé pour répartir les phases liquides des effluents polyphasiques qu'on lui applique plus vers une première sortie que vers une seconde sortie (par exemple en forme de T ou de Y), cette première sortie plus riche en phases liquides étant connectée à la boucle de recyclage de façon à diminuer dans une certaine mesure le rapport GLR du fluide polyphasique recyclé à l'entrée de la pompe et faciliter le fonctionnement de celle-ci.
  • Les moyens de contrôle peuvent comporter par exemple une vanne, un ballon-tampon ou un élément d'utilisation d'une partie de l'énergie des effluents polyphasiques dérivés.
  • Le système de pompage peut comporter aussi un ensemble de commande des moyens de contrôle, pour appliquer une régulation en fonction des conditions de pompage.
  • Le système de pompage selon l'invention, par un recyclage partiel d'une partie des effluents polyphasiques issus d'une pompe, permet à celle-ci de mieux prendre en charge des effluents dont le rapport volumétrique GLR est relativement élevé. Par les possibilités de régulation du recyclage, il offre une plus grande souplesse dans la conduite des manoeuvres effectuées en amont et en aval. En outre, sa mise en oeuvre ne nécessite aucun séparateur de phase relativement encombrant et coûteux.
  • D'autres caractéristiques et avantages du système selon l'invention apparaîtront mieux à la lecture de la description ci-après de modes de réalisation décrits à titre d'exemples non limitatifs, en se référant aux dessins annexés où :
    • la Fig.1 montre schématiquement un mode de réalisation du système de pompage;
    • la Fig 2 montre schématiquement une variante du mode de réalisation précédent;
    • la Fig.3 montre un premier diagramme de fonctionnement d'une pompe en l'absence de recyclage;
    • la Fig.4 montre sur un diagramme analogue, l'effet d'un recyclage polyphasique sur le fonctionnement de la pompe précédente; et
    • la Fig 5 montre un diagramme de fonctionnement d'une pompe où l'on recycle uniquement une phase liquide.
  • Le système de pompage selon l'invention comporte une pompe polyphasique 1 d'un type connu, telle que la pompe décrite dans le brevet FR 2.665.224 précité, associée à un moteur d'entraînement 2. L'entrée de la pompe 1 est connectée par une canalisation 3, à une source de fluides polyphasiques. Cette source est par exemple un puits de production pétrolière qui produit des effluents liquides : huile et eau, et des effluents gazeux. La pompe 1 est adaptée à appliquer aux effluents une augmentation de pression ΔP suffisante pour les acheminer vers un lieu de destination tant que le rapport volumétrique du gaz au liquide ou GLR est maintenu dans une certaine fourchette de variation définie. Sur la canalisation 4 de sortie de la pompe 1, on intercale un élément de dérivation 5 permettant de diviser en deux parties le flux polyphasique issu de la pompe 1. De préférence, on utilise un embranchement en forme de T d'un type connu et l'on connecte sa branche coudée 51 à une canalisation 6 d'acheminement vers le lieu de destination. La branche rectiligne 52 du T est connectée à une première extrémité à la canalisation 4. Un circuit ou boucle de recyclage 7 pourvu d'une vanne de contrôle 8, est connecté à une première extrémité, à la branche rectiligne 52 du T et, à son extrémité opposée, à la canalisation d'entrée de la pompe par l'intermédiaire d'un organe de mixage 9 d'un type connu tel qu'un éjecteur mélangeur qui permet d'utiliser une partie de l'énergie des effluents recyclés pour favoriser leur mélange avec ceux issus de la canalisation 3, du type par exemple de celui décrit dans le brevet CH 680463. La vanne de contrôle 8 est commandée par un processeur 10 adapté à modifier le débit recyclé en fonction des variations des conditions de pompage.
  • Il est connu des spécialistes, notamment par un article de G.E McCreery et al dans INT. J. MULTIPHASE FLOW vol. 16 No. 3 p. 429-445, qu'un diviseur en forme de T ou de Y divise inégalement un flux qui lui est appliqué et que le rapport GLR de la fraction dérivée par la branche rectiligne 52 est abaissé.
  • Dans ces conditions, l'utilisation d'un tel élément de fractionnement a pour effet d'abaisser le rapport GLR des effluents polyphasiques recyclés par le circuit 7 et par conséquent d'abaisser également le rapport GLR des effluents pénétrant dans la pompe 1. Il en résulte une amélioration du fonctionnement de la pompe particulièrement utile quand le rapport GLR des effluents débités par le puits est élevé. Comme, on peut le voir en comparant les diagrammes des Fig.3 et 4, un tel recyclage polyphasique améliore et régularise très sensiblement les conditions de pompage.
  • Le diagramme de la Fig.3 correspond à celui d'une pompe polyphasique hélico-axiale POSEIDON de type P 300 par exemple telle que celle décrite dans le brevet FR 2 665 224 précité, en l'absence de tout recyclage. Il montre le domaine de variation possible de l'élévation de pression ΔP (en MPa) appliquée par la pompe en fonction du débit D à l'aspiration pour différentes vitesses de rotation. La pression à l'aspiration est de 1,5 MPa. Le rapport volumétrique GLR des effluents aspirés est de 8. On voit que l'on obtient (au point a) une augmentation de pression ΔP de 0,8 MPa à la vitesse de 4500 t/mn environ pour un débit polyphasique de l'ordre de 310 m3/h, et que pour un tel débit, la marge d'augmentation de pression restante disponible serait pratiquement nulle.
  • Le diagramme de la Fig.4 montre que le recyclage direct d'une partie des effluents délivrés par la pompe permet, pour une augmentation de pression ΔP de 0,75 MPa, de pousser son débit horaire à 400 m3/h à une vitesse de rotation de 4500 t/m (point b1) et du même coup, d'élargir dans de notables proportions, l'augmentation de pression ΔP que la pompe est en mesure d'appliquer aux effluents aspirés si l'on augmente sa vitesse d'entrainement. On voit que cette augmentation de pression dans le cas considéré peut atteindre 1,55 MPa environ à une vitesse de rotation de 5200 t/m. L'utilisation d'un embranchement diviseur 5 capable par construction de détourner vers le circuit de recyclage une fraction polyphasique dont le rapport GLR est abaissé conduit dans le cas illustré par le diagramme de la Fig.4 à abaisser à 6 la valeur du rapport GLR des effluents à l'aspiration.
  • Avec la pompe indiquée ci-dessus dans un cas où la pression d'aspiration était de 1,5 MPa et le rapport GLRo des effluents issus de la source était de 8, on a déterminé la valeur GLR que prenait ce même rapport à l'entrée de la pompe en tenant compte d'un recyclage qui varie selon la proportion de gaz dans les effluents recyclés. Avec 1 et g désignant respectivement la proportion de liquide recyclée et la proportion de gaz recyclés, on a pu établir le tableau comparatif suivant :
    l= 0,2 g = 0 GLR = 6,4
    g = 0,1 GLR = 7,11
    l= 0,3 g = 0 GLR = 5,6
    g= 0,15 GLR = 6,59
    l = 0,4 g = 0 GLR = 4,8
    g = 0,2 GLR = 6.
  • Dans les exemples ci-dessus, la valeur g = 0 correspond au cas où l'on dispose un séparateur en aval de la pompe pour ôter pratiquement tout le gaz des effluents recyclés, comme décrit dans le brevet FR 2.417.057 précité. On voit sur ces exemples qu'en effectuant un recyclage polyphasique direct et en utilisant simplement un élément de dérivation 5 du type T par exemple qui posséde des propriétés de séparation partielle sélective, on parvient à obtenir une diminution du rapport GLR un peu inférieure certes mais cependant du même ordre de grandeur à celui auquel on parvient par interposition d'un séparateur classique relativement encombrant et onéreux. Qui plus est, on voit en comparant les Fig 4 et 5, que le gain de pression rendu possible dans le cas d'un recyclage polyphasique et celui d'un recyclage purement liquide sont tout à fait équivalents.
  • Le processeur 10 est utilisé pour contrôler l'ouverture de la vanne 8 en fonction des valeurs des coefficients a, b et du débit total Q du puits par exemple.
  • On observe dans la pratique que l'augmentation de pression ΔP que la pompe est capable d'appliquer du fait du déplacement de son point de fonctionnement, modifie peu la pression des effluents dans le circuit d'acheminement 6 en aval de la pompe. Il en résulte un abaissement corrélatif de la pression d'aspiration Pa, ce qui a pour effet en général d'augmenter le débit de la source.
  • L'installation de cette boucle de recyclage rend possible, on l'a vu, une augmentation de la fourchette de variation du rapport GLR des effluents qu'une pompe polyphasique peut accepter, et aussi une extension de la marge de variation possible de l'augmentation de pression ΔP communiquée par la pompe. On peut noter aussi que la présence de cette boucle de recyclage et de la vanne de régulation 8 contribue également à donner une grande souplesse au système de pompage. La réinjection sous pression du fluide recyclé contribue à homogénéiser les effluents à l'entrée de la pompe 1. Le recyclage d'une fraction des effluents permet à la pompe de fonctionner correctement même avec des sources de débit réduit, ce qui est particulièrement avantageux en production pétrolière quand les puits sont en voie d'épuisement. La variation du taux de recyclage obtenu par commande de la vanne 8 permet de rendre plus progressif le démarrage et le fonctionnement de la pompe notamment en cas de fermeture inopinée du puits à l'amont ou de vannes en aval. La présence de la boucle élargit les possibilités d'intervention des opérateurs qui, sans recyclage ne peuvent jouer que sur la vitesse d'entrainement de la pompe.
  • Dans le mode de réalisation qui a été décrit, la boucle de recyclage ne comporte qu'une vanne de régulation intercalée. On ne sortirait toutefois pas de l'invention en y intercalant également un ballon-tampon 11 (Fig 2) pour augmenter les possibilités de régulation du recyclage effectué. On peut également interposer un dispositif tel qu'un éjecteur annulaire capable de réutiliser une partie de l'énergie du fluide recyclé pour l'injecter en amont de la pompe.
  • Pour dériver les effluents polyphasiques, on utilise de préférence un moyen de dérivation avec un pouvoir séparateur des phases, de façon à diminuer le rapport volumétrique GLR des effluents recyclés. On ne sortirait pas du cadre de l'invention toutefois en remplaçant ce moyen de dérivation particulier par un embranchement non sélectif. Dans ce cas, on profite de la plus grande souplesse de fonctionnement qu'offre un dosage de la fraction recyclée. Comme le montre la Fig 4 où un point de fonctionnement m₁ est déplacé en m₂ par recyclage puis en m₃ par une augmentation de la vitesse d'entrainement de la pompe.

Claims (7)

1) Système de pompage à boucle de recyclage pour communiquer à un fluide polyphasique issu d'une source et comportant au moins une phase liquide et au moins une phase gazeuse, et dont le rapport volumétrique GLR des phases gazeuses aux phases liquides est susceptible de varier, une augmentation de pression suffisante pour son acheminement par une conduite vers un lieu de destination déterminé, comportant une pompe polyphasique (1) et une boucle de recyclage (7) d'une partie du fluide polyphasique disponible à la sortie de la pompe vers l'entrée de celle-ci, caractérisé en ce qu'il comporte en combinaison un moyen de dérivation (5) comprenant un élément conformé pour répartir la phase liquide du fluide polyphasique qu'on lui applique plus vers une première sortie que vers une seconde sortie, la première sortie de cet élément étant connectée à la boucle de recyclage de façon à diminuer le rapport GLR du fluide polyphasique recyclé à l'entrée de la pompe, et des moyens de contrôle du fluide polyphasique dérivé dans la boucle.
2) Système de pompage selon la revendication 1, caractérisé en ce que les moyens de contrôle comportent une vanne (8).
3) Système de pompage selon la revendication 1, caractérisé en ce que les moyens de contrôle comportent un ballon-tampon (11) intercalé dans la boucle de recyclage.
4) Système de pompage selon l'une des revendications 1 à 3, caractérisé en ce que les moyens de contrôle comportent un dispositif (9) d'utilisation d'une partie de l'énergie du fluide polyphasique dérivé.
5) Système de pompage selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte un ensemble de commande (10) des moyens de contrôle, pour appliquer au fluide polyphasique recyclé une régulation en fonction des conditions de pompage du fluide issu de la source.
6) Système de pompage selon l'une des revendications précédentes, caractérisé en ce que l'élément de dérivation (5) est un embranchement en forme de T.
7) Système de pompage selon l'une des revendications précédentes, caractérisé en ce que l'élément de dérivation (5) est un embranchement en forme de Y.
EP95401796A 1994-09-14 1995-07-28 Système de pompage polyphasique à boucle de régulation Expired - Lifetime EP0702156B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9411048A FR2724424B1 (fr) 1994-09-14 1994-09-14 Systeme de pompage polyphasique a boucle de regulation
FR9411048 1994-09-14

Publications (2)

Publication Number Publication Date
EP0702156A1 true EP0702156A1 (fr) 1996-03-20
EP0702156B1 EP0702156B1 (fr) 1999-10-06

Family

ID=9466986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95401796A Expired - Lifetime EP0702156B1 (fr) 1994-09-14 1995-07-28 Système de pompage polyphasique à boucle de régulation

Country Status (5)

Country Link
EP (1) EP0702156B1 (fr)
CA (1) CA2158247C (fr)
DK (1) DK0702156T3 (fr)
FR (1) FR2724424B1 (fr)
NO (1) NO307226B1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046513A1 (fr) * 1998-03-13 1999-09-16 Unitec Institute Of Technology Ameliorations apportees a un systeme de pompage et techniques afferentes
WO2001006128A1 (fr) * 1999-07-21 2001-01-25 Unitec Institute Of Technology Moyens de pompage d'un ecoulement en phases multiples et procedes correspondants
AU769473B2 (en) * 1998-03-13 2004-01-29 Unitec Institute Of Technology Improved pumping apparatus and methods
WO2005045189A1 (fr) * 2003-10-27 2005-05-19 Joh. Heinr. Bornemann Gmbh Procede pour refouler des melanges a phases multiples et installation de pompage
WO2011115951A3 (fr) * 2010-03-15 2012-03-01 General Electric Company Pompe et procédé
WO2017029318A1 (fr) * 2015-08-20 2017-02-23 Fmc Kongsberg Subsea As Unité d'extraction de liquide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO337108B1 (no) * 2012-08-14 2016-01-25 Aker Subsea As Flerfase trykkforsterkningspumpe
NO340112B1 (no) * 2012-08-17 2017-03-13 Fmc Kongsberg Subsea As Fremgangsmåte for avkjøling prosessfluid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2417057A1 (fr) 1978-02-14 1979-09-07 Inst Francais Du Petrole Methode et dispositif pour transporter par canalisation un fluide compose essentiellement d'une masse gazeuse
GB2215408A (en) * 1988-02-29 1989-09-20 Shell Int Research Method and system for controlling the gas-liquid ratio in a pump
GB2239676A (en) * 1989-11-10 1991-07-10 Bhr Group Ltd Pumping gas/liquid mixtures
FR2665224A1 (fr) 1990-07-27 1992-01-31 Inst Francais Du Petrole Dispositif de pompage ou de compression polyphasique et son utilisation.
CH680463A5 (en) 1989-08-15 1992-08-31 Sulzer Ag Multiphase delivery pump for liq. and gas mixts. - including petroleum has mixing arrangement on suction side and maintains efficiency if phases separate and when gas phase predominates
FR2685737A1 (fr) * 1991-12-27 1993-07-02 Inst Francais Du Petrole Procede et dispositif permettant d'optimiser le transfert par pompage d'effluents polyphasiques.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2417057A1 (fr) 1978-02-14 1979-09-07 Inst Francais Du Petrole Methode et dispositif pour transporter par canalisation un fluide compose essentiellement d'une masse gazeuse
GB2215408A (en) * 1988-02-29 1989-09-20 Shell Int Research Method and system for controlling the gas-liquid ratio in a pump
CH680463A5 (en) 1989-08-15 1992-08-31 Sulzer Ag Multiphase delivery pump for liq. and gas mixts. - including petroleum has mixing arrangement on suction side and maintains efficiency if phases separate and when gas phase predominates
GB2239676A (en) * 1989-11-10 1991-07-10 Bhr Group Ltd Pumping gas/liquid mixtures
FR2665224A1 (fr) 1990-07-27 1992-01-31 Inst Francais Du Petrole Dispositif de pompage ou de compression polyphasique et son utilisation.
FR2685737A1 (fr) * 1991-12-27 1993-07-02 Inst Francais Du Petrole Procede et dispositif permettant d'optimiser le transfert par pompage d'effluents polyphasiques.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G.E. MCCREERY ET AL., INT. J. MULTIPHASE FLOW, vol. 16, no. 3, pages 429 - 445

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046513A1 (fr) * 1998-03-13 1999-09-16 Unitec Institute Of Technology Ameliorations apportees a un systeme de pompage et techniques afferentes
AU769473B2 (en) * 1998-03-13 2004-01-29 Unitec Institute Of Technology Improved pumping apparatus and methods
WO2001006128A1 (fr) * 1999-07-21 2001-01-25 Unitec Institute Of Technology Moyens de pompage d'un ecoulement en phases multiples et procedes correspondants
AU771823B2 (en) * 1999-07-21 2004-04-01 Unitec Institute Of Technology Multi-phase flow pumping means and related methods
US7094016B1 (en) 1999-07-21 2006-08-22 Unitec Institute Of Technology Multi-phase flow pumping means and related methods
WO2005045189A1 (fr) * 2003-10-27 2005-05-19 Joh. Heinr. Bornemann Gmbh Procede pour refouler des melanges a phases multiples et installation de pompage
US7810572B2 (en) 2003-10-27 2010-10-12 Joh. Heinr. Bornemann Gmbh Method for delivering a multi phase mixture and pump installation
WO2011115951A3 (fr) * 2010-03-15 2012-03-01 General Electric Company Pompe et procédé
WO2017029318A1 (fr) * 2015-08-20 2017-02-23 Fmc Kongsberg Subsea As Unité d'extraction de liquide

Also Published As

Publication number Publication date
NO953595L (no) 1996-03-15
EP0702156B1 (fr) 1999-10-06
CA2158247C (fr) 2006-05-30
FR2724424B1 (fr) 1996-12-13
FR2724424A1 (fr) 1996-03-15
NO307226B1 (no) 2000-02-28
NO953595D0 (no) 1995-09-12
DK0702156T3 (da) 1999-12-27
CA2158247A1 (fr) 1996-03-15

Similar Documents

Publication Publication Date Title
CA2204664C (fr) Systeme de pompage polyphasique et centrifuge
EP2564045B1 (fr) Système d&#39;alimentation en carburant de turbomachine
US6007306A (en) Multiphase pumping system with feedback loop
EP0702156A1 (fr) Système de pompage polyphasique à boucle de régulation
FR2533629A1 (fr) Appareil et procede pour la purge d&#39;un moteur de turbocompresseur avec un systeme d&#39;echappement divise
CA2947120C (fr) Circuit d&#39;alimentation en fluide de geometries variables de turbomachine sans pompe volumetrique
EP2683458A1 (fr) Séparateur à écoulement cyclonique
FR2605393A1 (fr) Separateur de courants pour conduite d&#39;aspiration et circuit de refrigeration a compresseurs multiples
EP0236166B1 (fr) Procédé et installation pour faire circuler des fluides par pompage
FR2622645A1 (fr) Procede pour remettre en marche l&#39;ecoulement central d&#39;huiles tres visqueuses dans une conduite apres une periode d&#39;arret
EP0246943B1 (fr) Procédé et installation pour faire circuler des fluides par pompage
EP0420751A1 (fr) Procédé de pompage de mélange liquide gaz dans un puits d&#39;extraction pétrolier et dispositif de mise en oeuvre du procédé
FR2801076A1 (fr) Ensemble forme d&#39;un injecteur de carburant et d&#39;un module d&#39;injection d&#39;eau dans un cylindre de moteur a combustion interne
US20050011646A1 (en) Method and apparatus for collecting and then disposing sand contained in production fluid
EP0989306B1 (fr) Système de compression-pompage comportant une section de compression en fonctionnement alterné et son procédé
FR2873172A1 (fr) Dispositif de dosage pour introduire un additif dans un courant de liquide
EP0098674B1 (fr) Procédé d&#39;homogénéisation de mélanges liquides
FR2911794A1 (fr) Procede et dispositit de separation des phases d&#39;un fluide multiphasique.
FR2526084A1 (fr) Perfectionnements aux systemes d&#39;alimentation de liquide, notamment de carburant pour moteurs d&#39;aeronautique
EP1574717B1 (fr) Pompe
EP3670867A1 (fr) Dispositif amélioré de régulation de débit d&#39;alimentation
JP3253503B2 (ja) 空気注入式の汚水圧送管路
JP3253504B2 (ja) 空気注入式の汚水圧送管路
FR2529622A1 (fr) Turbine-pompe multi-etages de haute chute
EP1007838A1 (fr) Dispositif d&#39;aspiration a base de pompe a jet pour reservoir de carburant de vehicules automobiles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DK GB IT NL

17P Request for examination filed

Effective date: 19960920

17Q First examination report despatched

Effective date: 19970730

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DK GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991006

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070724

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070724

Year of fee payment: 13

Ref country code: IT

Payment date: 20070726

Year of fee payment: 13

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100721

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110728