EP0420751A1 - Procédé de pompage de mélange liquide gaz dans un puits d'extraction pétrolier et dispositif de mise en oeuvre du procédé - Google Patents

Procédé de pompage de mélange liquide gaz dans un puits d'extraction pétrolier et dispositif de mise en oeuvre du procédé Download PDF

Info

Publication number
EP0420751A1
EP0420751A1 EP90402660A EP90402660A EP0420751A1 EP 0420751 A1 EP0420751 A1 EP 0420751A1 EP 90402660 A EP90402660 A EP 90402660A EP 90402660 A EP90402660 A EP 90402660A EP 0420751 A1 EP0420751 A1 EP 0420751A1
Authority
EP
European Patent Office
Prior art keywords
gas
module
separator
centrifugal
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90402660A
Other languages
German (de)
English (en)
Other versions
EP0420751B1 (fr
Inventor
Daniel Sango
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Nationale Elf Aquitaine Production SA
Original Assignee
Societe National Elf Aquitaine
Societe Nationale Elf Aquitaine Production SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe National Elf Aquitaine, Societe Nationale Elf Aquitaine Production SA filed Critical Societe National Elf Aquitaine
Publication of EP0420751A1 publication Critical patent/EP0420751A1/fr
Application granted granted Critical
Publication of EP0420751B1 publication Critical patent/EP0420751B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/38Arrangements for separating materials produced by the well in the well
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/901Drilled well-type pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/902Rotary pump turbine publications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/903Well bit drive turbine

Definitions

  • the present invention relates to a method of pumping a liquid gas mixture in an oil extraction well and the device for implementing the method.
  • the production of hydrocarbons in an oil well is done, either as part of a naturally eruptive well, naturally, or artificially, and in this case the well must be activated.
  • the bottom pressure is sufficient to allow the fluid to rise to the surface.
  • the pressure is insufficient to allow extraction and this requires an assistance mode to ensure the ascent of the fluid to the surface. The well is then activated.
  • the eruptive wells after a certain period of operation, are no longer eruptive and they must also be activated.
  • the classic assembly consists of a centrifugal pump multicellular, an electric motor and a protector located between the motor and the pump and whose role is to seal around the motor shaft so that external fluids do not enter the motor .
  • Such a system allows, when the flow rates are relatively low, less than 300 to 400 m3 per day, to obtain a partial elimination of the gas which will allow the normal operation of the pump. This is possible provided that the percentage of free gas in the initial mixture is less than about 40% by volume. In this case, the separator reduces the percentage of free gas to around 10%.
  • a first aim of the invention is therefore to propose a method of pumping a two-phase liquid gas mixture allowing the exploitation of wells with a percentage of free gas in the initial mixture greater than about 40% by volume.
  • the process for pumping a two-phase liquid gas mixture into an extraction well is characterized in that it consists: - to lower the percentage of free gas below 40% by using at least one first centrifugal separator module; - cooling the drive motor by an annular flow of the mixture from the first separator module around the motor, a mixture whose proportion of gas has been reduced to increase its heat capacity and its speed of passage around the motor; - to lower the percentage of gas by volume to around 10% by using at least one second centrifugal separator module; - to pump the fluid thus obtained by a centrifugal pump driven by the motor.
  • a second object of the invention is to propose a device allowing the implementation of the method and capable of solving both the problem of pumping mixtures whose gas quantities can range up to 99% by volume and the problem of cooling of the drive motor of the device.
  • the device comprises: - A first module, gas separator in a mixture, centrifugal, with axial flow, arranged in a cylindrical envelope and whose separated gases are evacuated outside the envelope; a cooling module comprising an external envelope in leaktight connection with the envelope of the first separator module and comprising inside a second coaxial cylindrical envelope containing a electric motor surrounded on both sides in the longitudinal direction of protectors ensuring sealing upstream and downstream at the motor drive axes; means at the inlet of the cooling module, to divert the axial flow of the first separator module outside the second envelope and means at the outlet of the cooling module for bringing the flow in the axis of a centrifugal pump module connected to a train of fluid evacuation tube at the outlet of the cooling module, said centrifugal pump module and the separator module being driven by the motor shaft.
  • Another object is to adapt the system according to the characteristics of the well by the use, either of a modular system, or of a fixed system with variable drive control.
  • the device comprises at least a second centrifugal separator module between the cooling module and the centrifugal pump module.
  • this object is achieved by the fact that the first module comprises at least two centrifugal separators mounted in series so that the axial output flow of one constitutes the input flow of the second and of the coupling means in rotation of the first and second separator.
  • the coupling means consist of an electromagnetic clutch.
  • the device comprises at each end a centering device relative to the extraction well.
  • FIG. 1A represents the upstream part of the pumping device allowing the implementation of the method according to the invention.
  • This device comprises a centralizing element (1) which may or may not be sealed, the central tube (100) of which directs the mixture of gas and fluid to a first centrifugal separator (3) whose outlet (30) for discharging the gases discharges the gases in the annular space between the external cylindrical envelope (32) of the separator and the tube (11) constituting the wall of the extraction well.
  • the fluid gas mixture the percentage of which has been lowered by the first separator, is discharged through an axial orifice (31) in the direction of a second separator (4) with a view to a further reduction in the percentage.
  • This separator (4) evacuates the gas through an orifice (40) in the annular space and the gas fluid mixture through an axial orifice (41) in the direction of a cooling module (10) constituted by a deviating element (6) the axial flow of the separator (4) through lateral orifices (60) towards an annular space formed between an external tube (10 A) and the successive external tubes (80,90,120) respectively of the protective modules (8), motor (9) and protector (12) mounted inside and coaxially with the tube (10 A) thus forming the cooling module (10).
  • the protective modules (8, 12) make it possible to ensure sealing at the level of the motor output shafts (9) upstream and downstream. In this way the motor element (9) is protected from contact with the fluids circulating in the device.
  • the fluid flowing in the annular space formed between the tube (10) and the external envelopes (80,90,120) respectively forming the first protector, the motor and the second protector ensure cooling all the more efficient of the engine, that the percentage of gas in the mixture has been brought to the lowest possible level below 40%.
  • a diverter module (13) allows, thanks to the orifices (130) to bring the flow axially in the separating element (14) which follows the cooling module.
  • This separator (14) analogous to the other separators evacuates the gas through the orifice (140) towards the annular space between the outside of the envelope (142) of the separator device and the tubes (11) constituting the wall from the extraction well.
  • This separator (14) evacuates the axial flow of the mixture to a centrifugal pump (16) through the axial orifice (141).
  • the outlet of the centrifugal pump (16) is connected to a set of tubes (18) which makes it possible to raise the liquid practically separated from its gas to the surface.
  • the motor (9) drives by drive shafts which extend inside the device, both towards the separators located upstream and downstream and towards the centrifugal pump.
  • the two-phase mixture (2) enters the system and part of the gas is separated and discharged through the annular space at the level of the first centrifugal separator (3) with axial flow.
  • the remaining mixture enters the second separator (4) where the same operation is carried out.
  • the percentage of free gas at suction (2) being 99%
  • the percentage at the outlet of the first separator (3) can be reduced to around 60%.
  • second separator will bring the percentage of gas to around 30%.
  • the fluid is thus sufficiently degassed to have sufficient heat capacity to ensure effective cooling of the engine.
  • the fluid leaving the second separator (4) passes into the engine cooling module and then enters the third separator (14) to complete its journey in the centrifugal pump and then be evacuated to the surface inside the train tube (18).
  • the gas on its side joins the surface through the annular space formed between the tube train (18) and the tubes (11) constituting the wall of the extraction well.
  • the third separator will bring the percentage of gas from 30% at the inlet to a percentage compatible with the proper functioning of the pump (16) generally less than 8%.
  • the third separator (14) is optional and depends on the percentage of gas contained in the initial two-phase liquid.
  • the two separators (3,4) will be used, but the last separator (14) may possibly be dispensed with.
  • only one separator (3) will be used upstream of the motor and a second separator (14) downstream of the motor.
  • the drive shafts of the first and second separators (3,4) are mechanically connected in rotation by a sleeve (33).
  • these shafts can be mechanically connected by an electromagnetic clutch controlled from the surface to implement, as required, one or two separator modules upstream of the engine.
  • FIG. 2 shows a sealed centering element (1) used upstream of the device.
  • This centering element consists of anchoring corners (101) connected, on the one hand to the external tube (11) of the extraction well by seals (103), and on the other hand to the internal tube ( 100) for suction of the two-phase liquid (2) by seals (102), so as to channel the two-phase mixture towards the inside of the tube (100).
  • the leaktight centering device (17) located downstream of the pumping device will only comprise spacers for holding the tubes (18) to allow the flow of gas outside the tube (18).
  • a non-watertight centralizer (1) can be used.
  • the output centering device (17) it is possible, if necessary, to use a waterproof centering device.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Centrifugal Separators (AREA)
  • Gas Separation By Absorption (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

La présente invention concerne un procédé de pompage de mélange diphasique de liquide gaz dans un puits d'extraction (11) dont le pourcentage de gaz initial est supérieur à environ 40% en volume caractérisé en ce qu'il consiste:
- à abaisser le pourcentage de gaz libre en dessous de 40% par l'utilisation d'au moins un premier module séparateur centrifuge (3,4) ;
- à refroidir le moteur d'entraînement par un écoulement annulaire du mélange issu du premier module séparateur (3,4) autour du moteur (9), mélange dont la proportion de gaz a été ramenée en dessous de 40% pour augmenter sa capacité calorifique et sa vitesse de passage autour du moteur ;
- à abaisser en dessous d'environ 10% le pourcentage de gaz en volume par l'utilisation d'au moins un deuxième module séparateur centrifuge (14) ;
- à pomper le fluide ainsi obtenu par une pompe centrifuge (16) entraînée par le moteur (9).

Description

  • La présente invention concerne un procédé de pompage de mélange liquide gaz dans un puits d'extraction pétrolier et le dispositif de mise en oeuvre du procédé.
  • La production d'hydrocarbures dans un puits pétrolier se fait, soit dans le cadre d'un puits naturellement éruptif, de manière naturelle, soit de manière artificielle, et dans ce cas le puits doit être activé. Dans le premier cas, la pression de fond est suffisante pour permettre au fluide de remonter en surface. Dans le second cas la pression est insuffisante pour permettre l'extraction et cela nécessite un mode d'assistance pour assurer la remontée du fluide en surface. Le puits est alors activé.
  • Par ailleurs les puits éruptifs, au bout d'un certain temps d'exploitation, ne sont plus éruptifs et il faut également les activer.
  • Par conséquent, pour effectuer l'exploitation des fluides constitués par les hydrocarbures, on utilise différentes techniques d'activation, telles que :
    - gaz lift (injection de gaz au fond);
    - pompage alternatif;
    - pompage centrifuge;
    - pompage à effet de jet etc.
  • Chacun de ces différents moyens d'activation sera utilisé en fonction des caractéristiques du puits et de la plage d'application du moyen. Ainsi on utilisera le gaz lift lorsque le fluide est déjà gazé ou inversement on n'utilisera pas le pompage si les quantités de gaz sont importantes.
  • Le pompage centrifuge électrique immergé est un des moyens classiques et largement répandu. L'assemblage classique se compose d'une pompe centrifuge multicellulaire, d'un moteur électrique et d'un protecteur situé entre le moteur et la pompe et dont le rôle est d'assurer l'étanchéité autour de l'arbre moteur de manière à ce que les fluides extérieurs ne pénètrent pas dans le moteur.
  • Toutefois, ce type de matériel comporte des limitations dues notamment à la proportion de gaz contenu dans le mélange à extraire du puits. Ainsi, lorsque la proportion dans le mélange produit atteint des valeurs de 10% en volume par rapport à l'effluent total, la pompe centrifuge ne peut plus fonctionner. Les pourcentages mentionnés dans le texte sont les pourcentages en volume aux conditions de fond de pression et de température. Cet inconvénient limite considérablement les utilisations du pompage centrifuge selon les caractéristiques du puits et pour faire face à ce problème, il a été conçu et utilisé un séparateur centrifuge qui, placé en amont de la pompe entre celle-ci et le moteur, permet de réaliser une séparation partielle du gaz.
  • Un tel système permet, lorsque les débits sont relativement faibles, inférieurs à 300 à 400 m3 par jour, d'obtenir une élimination partielle du gaz qui permettra le fonctionnement normal de la pompe. Ceci est possible à condition que le pourcentage de gaz libre dans le mélange initial soit inférieur à environ 40% en volume. Dans ce cas le séparateur ramène le pourcentage de gaz libre aux environs de 10%.
  • Dans le cas des mélanges supérieurs à environ 40%, outre le fait que le dispositif ci-dessus n'est plus opérant, la capacité calorifique des mélanges est insuffisante et le refroidissement du moteur électrique ne peut plus être assuré de façon satisfaisante.
  • Un premier but de l'invention est donc de proposer un procédé de pompage de mélange diphasique liquide gaz permettant d'effectuer l'exploitation de puits dont le pourcentage de gaz libre dans le mélange initial est supérieur à environ 40% en volume.
  • Ce but est atteint par le fait que le procédé de pompage de mélange diphasique liquide gaz dans un puits d'extraction dont le pourcentage de gaz initial est supérieur à environ 40% en volume, est caractérisé en ce qu'il consiste :
    - à abaisser le pourcentage de gaz libre en dessous de 40% par l'utilisation d'au moins un premier module séparateur centrifuge;
    - à refroidir le moteur d'entraînement par un écoulement annulaire du mélange issu du premier module séparateur autour du moteur, mélange dont la proportion de gaz a été diminuée pour augmenter sa capacité calorifique et sa vitesse de passage autour du moteur ;
    - à abaisser en dessous d' environ 10% le pourcentage de gaz en volume par l'utilisation d'au moins un deuxième module séparateur centrifuge;
    - à pomper le fluide ainsi obtenu par une pompe centrifuge entraînée par le moteur.
  • Un deuxième but de l'invention est de proposer un dispositif permettant la mise en oeuvre du procédé et capable de résoudre à la fois le problème de pompage des mélanges dont les quantités de gaz peuvent aller jusqu'à 99% en volume et le problème de refroidissement du moteur d'entraînement du dispositif.
  • Ce but est atteint par le fait que le dispositif comporte :
    - un premier module, séparateur de gaz dans un mélange, centrifuge, à débit axial, disposé dans une enveloppe cylindrique et dont les gaz séparés sont évacués à l'extérieur de l'enveloppe ;
    - un module de refroidissement comportant une enveloppe externe en liaison étanche avec l'enveloppe du premier module séparateur et comportant à l'intérieur une deuxième enveloppe cylindrique coaxiale contenant un moteur électrique entouré de part et d'autre dans le sens longitudinal de protecteurs assurant l'étanchéité vers l'amont et l'aval au niveau des axes d'entraînement du moteur ;
    - des moyens à l'entrée du module de refroidissement, de dévier le débit axial du premier module séparateur à l'extérieur de la deuxième enveloppe et
    - des moyens à la sortie du module de refroidissement pour ramener le débit dans l'axe d'un module de pompe centrifuge relié à un train de tube d'évacuation du fluide en sortie du module de refroidissement, ledit module de pompe centrifuge et le module séparateur étant entraînés par l'axe du moteur.
  • Un autre but est d'adapter le système en fonction des caractéristiques du puits par l'utilisation, soit d'un système modulaire, soit d'un système fixe à commande d'entraînement variable.
  • Ce but est atteint par le fait que le dispositif comporte au moins un deuxième module séparateur centrifuge entre le module de refroidissement et le module de pompe centrifuge.
  • Selon une autre caractéristique, ce but est atteint par le fait que le premier module comporte au moins deux séparateurs centrifuges montés en série de façon que le débit axial de sortie de l'un constitue le débit d'entrée du second et des moyens de couplage en rotation du premier et second séparateur.
  • Selon une autre caractéristique, les moyens de couplage sont constitués d'un embrayage électromagnétique.
  • Selon une autre caractéristique, le dispositif comporte à chaque extrémité un dispositif centreur par rapport au puits d'extraction.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description ci-après faite en référence aux dessins annexés dans lesquels :
    • - les figures 1A et 1B représentent la constitution du dispositif permettant la mise en oeuvre du procédé de l'invention ;
    • - la figure 2 représente une vue d'un dispositif de centrage utilisé dans l'invention.
  • La figure 1A représente la partie amont du dispositif de pompage permettant la mise en oeuvre du procédé selon l'invention. Ce dispositif comprend un élément centreur (1) étanche ou non dont le tube central (100) conduit le mélange de gaz et de fluide à un premier séparateur centrifuge (3) dont la sortie (30) d'évacuation des gaz évacue les gaz dans l'espace annulaire compris entre l'enveloppe cylindrique externe (32) du séparateur et le tube (11) constituant la paroi du puits d'extraction. Le mélange fluide gaz dont le pourcentage a été abaissé par le premier séparateur est évacué par un orifice axial (31) en direction d'un deuxième séparateur (4) en vue d'un nouvel abaissement du pourcentage.
  • Ce séparateur (4) évacue le gaz par un orifice (40) dans l'espace annulaire et le mélange fluide gaz par un orifice axial (41) en direction d'un module de refroidissement (10) constitué par un élément (6) déviant le débit axial du séparateur (4) par des orifices latéraux (60) vers un espace annulaire formé entre un tube externe (10 A) et les tubes externes successifs (80,90,120) respectivement des modules protecteurs (8), moteur (9) et protecteur (12) montés à l'intérieur et coaxialement au tube (10 A) formant ainsi le module de refroidissement (10).
  • Les modules protecteurs (8,12) permettent d'assurer l'étanchéité au niveau des arbres de sortie du moteur (9) vers l'amont et vers l'aval. De cette façon l'élément moteur (9) est protégé du contact avec les fluides qui circulent dans le dispositif. Par contre le fluide s'écoulant dans l'espace annulaire formé entre le tube (10) et les enveloppes externes (80,90,120) formant respectivement le premier protecteur, le moteur et le second protecteur permettent d'assurer un refroidissement d'autant plus efficace du moteur, que le pourcentage de gaz du mélange a été ramené à un niveau le plus faible possible en dessous de 40%. A l'extrémité aval du module de refroidissement, un module déviateur (13) permet, grâce aux orifices (130) d'amener le débit axialement dans l'élément séparateur (14) qui suit le module de refroidissement.
  • Ce séparateur (14) de constitution analogue aux autres séparateurs évacue le gaz par l'orifice (140) vers l'espace annulaire compris entre l'extérieur de l'enveloppe (142) du dispositif séparateur et les tubes (11) constituant la paroi du puits d'extraction. Ce séparateur (14) évacue le débit axial du mélange vers une pompe centrifuge (16) par l'orifice axial (141). La sortie de la pompe centrifuge (16) est reliée à un ensemble de tubes (18) qui permet de remonter le liquide pratiquement séparé de son gaz vers la surface.
  • En sortie du dispositif on peut également utiliser un dispositif centreur (17).
  • Le moteur (9) entraîne par des arbres d'entraî­nement qui se prolongent à l'intérieur du dispositif, à la fois vers les séparateurs situés en amont et en aval et vers la pompe centrifuge.
  • En fonctionnement, le mélange diphasique (2) pénètre dans le système et une partie du gaz est séparée et évacuée par l'espace annulaire au niveau du premier séparateur centrifuge (3) à débit axial.
  • Le mélange restant pénètre dans le deuxième séparateur (4) où s'effectue la même opération. Pour un débit de l'ordre de 200 m3 par jour, avec un séparateur ayant un diamètre de 125 mm entraîné à 3000 tours/minute, le pourcentage de gaz libre à l'aspiration (2) étant de 99%, on pourra ramener le pourcentage à la sortie du premier séparateur (3) à environ 60%. deuxième séparateur amènera le pourcentage de gaz à environ 30%.
  • Le fluide est ainsi suffisamment dégazé pour avoir une capacité calorifique suffisante pour assurer un refroidissement efficace du moteur. Le fluide en sortie du second séparateur (4) passe dans le module de refroidissement du moteur et pénètre ensuite dans le troisième séparateur (14) pour terminer son parcours dans la pompe centrifuge et être ensuite évacué jusqu'en surface à l'intérieur du train de tube (18). Le gaz de son côté rejoint la surface par l'espace annulaire formé entre le train de tube (18) et les tubes (11) constituant la paroi du puits d'extraction. Le troisième séparateur amènera le pourcentage de gaz de 30% à l'entrée à un pourcentage compatible avec le bon fonctionnement de la pompe (16) généralement inférieur à 8%.
  • Il est bien évident que le troisième séparateur (14) est optionnel et dépend du pourcentage de gaz contenu dans le liquide diphasique initial. Ainsi, dans le cas d'un mélange diphasique initial dont le pourcentage de gaz est légèrement supérieur à 70%, on utilisera les deux séparateurs (3,4) mais on pourra éventuellement se passer du dernier séparateur (14). Par contre, dans le cas d'un mélange diphasique compris entre 70 et 40%, on utilisera qu'un seul séparateur (3) en amont du moteur et un deuxième séparateur (14) en aval du moteur.
  • Dans la variante représentée, les arbres d'entraînement des premier et second séparateurs (3,4) sont reliés mécaniquement en rotation par un manchon (33).
  • Dans une variante de réalisation de l'invention, on pourra relier mécaniquement ces arbres par un embrayage électromagnétique commandé de la surface pour mettre en oeuvre, selon les besoins, un ou deux modules séparateurs en amont du moteur.
  • La figure 2 représente un élément de centrage (1) étanche utilisé en amont du dispositif. Cet élément de centrage est constitué de coins d'ancrage (101) reliés, d'une part au tube externe (11) du puits d'extraction par des joints d'étanchéité (103), et d'autre part au tube interne (100) d'aspiration du liquide diphasique (2) par des garnitures d'étanchéité (102), de façon à canaliser le mélange diphasique vers l'intérieur du tube (100).
  • Le dispositif de centrage (17) non étanche situé en aval du dispositif de pompage comportera uniquement des entretoises de maintien des tubes (18) pour permettre l'écoulement du gaz à l'extérieur du tube (18).
  • Il est bien évident que selon le cas on peut utiliser un centreur (1) non étanche. De même pour le centreur de sortie (17) on pourra éventuellement utiliser un centreur étanche.

Claims (6)

1. Procédé de pompage de mélange diphasique liquide gaz dans un puits d'extraction (11) dont le pourcentage de gaz initial est supérieur à environ 40% en volume caractérisé en ce qu'il consiste :
- à abaisser le pourcentage de gaz libre en dessous de 40% par l'utilisation d'au moins un premier module séparateur centrifuge (3,4) ;
- à refroidir le moteur d'entraînement par un écoulement annulaire du mélange issu du premier module séparateur (3,4) autour du moteur (9), mélange dont la proportion de gaz a été ramenée en dessous de 40% pour augmenter sa capacité calorifique et sa vitesse de passage autour du moteur ;
- à abaisser en dessous d'environ 10% le pourcentage de gaz en volume par l'utilisation d'au moins un deuxième module séparateur centrifuge (14) ;
- à pomper le fluide ainsi obtenu par une pompe centrifuge (16) entraînée par le moteur (9).
2. Dispositif de mise en oeuvre du procédé selon la revendication (1) caractérisé en ce qu'il comporte :
- un premier module, séparateur (3) de gaz dans un mélange, centrifuge, à débit axial disposé dans une enveloppe cylindrique (32) dont les gaz séparés sont évacués à l'extérieur de l'enveloppe et un module de refroidissement (6,10,13) comportant une enveloppe externe (10) en liaison étanche avec l'enveloppe du premier module séparateur et comportant à l'intérieur une deuxième enveloppe cylindrique coaxiale (80,90,120) contenant un moteur électrique (9) entouré de part et d'autre dans le sens longitudinal de protecteurs (8,12) assurant l'étanchéité vers l'amont et l'aval au niveau des axes d'entraînement du moteur ;
- des moyens (6) de dévier le débit axial à l'extérieur de la deuxième enveloppe (80,90,120) à l'entrée du module de refroidissement (10) ; et
- des moyens (13) en sortie du module de refroidissement (10) pour ramener le débit dans l'axe d'un module de pompage centrifuge (16) relié à un train de tube d'évacuation du fluide (18), lesdits modules de pompage et séparateur (3) étant entraînés par l'axe du moteur (9).
3. Dispositif selon la revendication 2, caractérisé en ce qu'il comporte au moins un deuxième module séparateur centrifuge (14) entre le module de refroidissement (10) et le module de pompe centrifuge (16).
4. Dispositif selon les revendications 2 ou 3, caractérisé en ce que le premier module comporte au moins deux séparateurs centrifuges (3,4) montés en série de façon que le débit axial de sortie de l'un constitue le débit d'entrée du second et des moyens (33) de couplage en rotation des arbres d'entraînement de l'un et de l'autre.
5. Dispositif selon la revendication 4, caractérisé en ce que les moyens de couplage sont constitués d'un embrayage électromagnétique commandé depuis la surface.
6. Dispositif selon une des revendications précédentes, caractérisé en ce qu'il comporte à chaque extrémité un dispositif centreur (1,17) par rapport au puits d'extraction (11).
EP90402660A 1989-09-29 1990-09-27 Procédé de pompage de mélange liquide gaz dans un puits d'extraction pétrolier et dispositif de mise en oeuvre du procédé Expired - Lifetime EP0420751B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8912759 1989-09-29
FR8912759A FR2652610B1 (fr) 1989-09-29 1989-09-29 Procede de pompage de melange liquide gaz dans un puits d'extraction petrolier et dispositif de mise en óoeuvre du procede.

Publications (2)

Publication Number Publication Date
EP0420751A1 true EP0420751A1 (fr) 1991-04-03
EP0420751B1 EP0420751B1 (fr) 1993-07-21

Family

ID=9385947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90402660A Expired - Lifetime EP0420751B1 (fr) 1989-09-29 1990-09-27 Procédé de pompage de mélange liquide gaz dans un puits d'extraction pétrolier et dispositif de mise en oeuvre du procédé

Country Status (7)

Country Link
US (1) US5173022A (fr)
EP (1) EP0420751B1 (fr)
BR (1) BR9004880A (fr)
DE (1) DE69002296T2 (fr)
FR (1) FR2652610B1 (fr)
NO (1) NO300515B1 (fr)
OA (1) OA09264A (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041065A1 (fr) * 1995-06-07 1996-12-19 Centre For Engineering Research Inc. Procede de cyclonage de fond de puits

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456837A (en) * 1994-04-13 1995-10-10 Centre For Frontier Engineering Research Institute Multiple cyclone apparatus for downhole cyclone oil/water separation
US6082452A (en) * 1996-09-27 2000-07-04 Baker Hughes, Ltd. Oil separation and pumping systems
WO1998059153A1 (fr) * 1997-06-24 1998-12-30 Baker Hughes Incorporated Ensemble separateur cyclonique
US6202744B1 (en) 1997-11-07 2001-03-20 Baker Hughes Incorporated Oil separation and pumping system and apparatus
US6138757A (en) * 1998-02-24 2000-10-31 Bj Services Company U.S.A. Apparatus and method for downhole fluid phase separation
US6257333B1 (en) * 1999-12-02 2001-07-10 Camco International, Inc. Reverse flow gas separator for progressing cavity submergible pumping systems
US7150600B1 (en) 2002-10-31 2006-12-19 Wood Group Esp, Inc. Downhole turbomachines for handling two-phase flow
US7462225B1 (en) 2004-09-15 2008-12-09 Wood Group Esp, Inc. Gas separator agitator assembly
US7188669B2 (en) * 2004-10-14 2007-03-13 Baker Hughes Incorporated Motor cooler for submersible pump
US20060245957A1 (en) * 2005-04-14 2006-11-02 Wood Group Esp, Inc. Encapsulated bottom intake pumping system
US7461692B1 (en) 2005-12-15 2008-12-09 Wood Group Esp, Inc. Multi-stage gas separator
US8727016B2 (en) 2010-12-07 2014-05-20 Saudi Arabian Oil Company Apparatus and methods for enhanced well control in slim completions
US8613311B2 (en) 2011-02-20 2013-12-24 Saudi Arabian Oil Company Apparatus and methods for well completion design to avoid erosion and high friction loss for power cable deployed electric submersible pump systems
US9261096B2 (en) 2011-07-29 2016-02-16 Regal Beloit America, Inc. Pump motor combination
US11028683B1 (en) * 2020-12-03 2021-06-08 Stoneview Solutions LLC Downhole pump gas eliminating seating nipple system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1655817A (en) * 1927-05-31 1928-01-10 Hallan N Marsh Tandem gas anchor
US2311963A (en) * 1939-07-11 1943-02-23 Union Oil Co Gas anchor
US3282031A (en) * 1963-06-21 1966-11-01 Shell Oil Co Centrifugal gas anchor
US4074763A (en) * 1976-12-17 1978-02-21 Chevron Research Company Bottom-hole gas-liquid separator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1179802A (en) * 1911-06-26 1916-04-18 American Well Works Centrifugal pump.
US1700928A (en) * 1922-08-25 1929-02-05 Charles E Fawkes Apparatus for centrifugal separation
US1974183A (en) * 1929-12-23 1934-09-18 Norris E Gunderson Pump
US3398687A (en) * 1963-04-06 1968-08-27 Yoshikawa Yutaka Pump device
US3680976A (en) * 1970-12-14 1972-08-01 Ingersoll Rand Co Centrifugal pump having leakage collection and draining means
US3887342A (en) * 1972-11-10 1975-06-03 Fmc Corp Liquid-gas separator unit
US4325678A (en) * 1979-12-12 1982-04-20 Hitachi, Ltd. Hydraulic pressure producing system for a hydraulic press
US4481020A (en) * 1982-06-10 1984-11-06 Trw Inc. Liquid-gas separator apparatus
US4632184A (en) * 1985-10-21 1986-12-30 Otis Engineering Corporation Submersible pump safety systems
US4981175A (en) * 1990-01-09 1991-01-01 Conoco Inc Recirculating gas separator for electric submersible pumps

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1655817A (en) * 1927-05-31 1928-01-10 Hallan N Marsh Tandem gas anchor
US2311963A (en) * 1939-07-11 1943-02-23 Union Oil Co Gas anchor
US3282031A (en) * 1963-06-21 1966-11-01 Shell Oil Co Centrifugal gas anchor
US4074763A (en) * 1976-12-17 1978-02-21 Chevron Research Company Bottom-hole gas-liquid separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041065A1 (fr) * 1995-06-07 1996-12-19 Centre For Engineering Research Inc. Procede de cyclonage de fond de puits

Also Published As

Publication number Publication date
NO904242D0 (no) 1990-09-28
DE69002296T2 (de) 1994-02-17
EP0420751B1 (fr) 1993-07-21
FR2652610A1 (fr) 1991-04-05
FR2652610B1 (fr) 1992-01-03
OA09264A (fr) 1992-08-31
DE69002296D1 (de) 1993-08-26
BR9004880A (pt) 1991-09-10
NO904242L (no) 1991-04-02
US5173022A (en) 1992-12-22
NO300515B1 (no) 1997-06-09

Similar Documents

Publication Publication Date Title
EP0420751B1 (fr) Procédé de pompage de mélange liquide gaz dans un puits d'extraction pétrolier et dispositif de mise en oeuvre du procédé
CA2204664C (fr) Systeme de pompage polyphasique et centrifuge
FR2774136A1 (fr) Dispositif de compression-pompage monoarbre associe a un separateur
FR2751373A1 (fr) Perfectionnement aux appareils de circulation de fluide
FR2497319A1 (fr) Soupape de derivation avec alarme
FR2505680A1 (fr) Appareil et procede pour la concentration des boues
FR2919206A1 (fr) Separateur a ecoulement cyclonique
EP0457879B1 (fr) Dispositif et procede de nettoyage d'un puits souterrain
CA2258350A1 (fr) Dispositif de compression de gaz humide comportant un etage de compression/separation integrees
CA2251611C (fr) Installation de pompage d'un effluent biphasique liquide/gaz
EP0989306B1 (fr) Système de compression-pompage comportant une section de compression en fonctionnement alterné et son procédé
EP0065922A1 (fr) Pompe primaire d'un réacteur nucléaire à eau sous pression comportant un dispositif d'étanchéité de son arbre d'entrainement
EP0097548B1 (fr) Groupe motopompe pour puits de forage et procédé de protection s'y rapportant
EP0694676A1 (fr) Installation pour puits pétrolier
FR2482154A1 (fr) Recuperateur de petrole a grand debit pour la depollution sur eaux agitees
EP0326493B1 (fr) Dispositif de purge d'un sas de tête de puits d'accès à un gisement d'hydrocarbures ou à une réserve de gaz souterraine
FR2621083A1 (fr) Pompe immergee de prelevement de liquide dans une conduite, notamment une conduite de rejet en eau profonde d'eaux de refroidissement de centrale nucleaire
FR2601084A1 (fr) Pompe centrifuge pour le refoulement de fluides contenant des gaz
FR2656035A1 (fr) Dispositif de pompage d'un liquide et en particulier d'un liquide a forte viscosite.
EP1500419B1 (fr) Obturateur automatique pour cuve séparatrice de liquides légers tels qu'hydrocarbures
FR2584179A1 (fr) Dispositif d'arret d'une detonation pour systeme de chargement d'explosifs en vrac par pompage
FR2964885A1 (fr) Dispositif perfectionne de filtration d'hydrocarbure
EP1797365B1 (fr) Installation et methode d'entrainement d'un racleur de conduite sous-marine
FR2748532A1 (fr) Systeme de pompage polyphasique et centrifuge
FR2634831A1 (fr) Pompe centrifuge a transfert de fluide tres pur, notamment cryogene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 19920930

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELF AQUITAINE PRODUCTION

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 69002296

Country of ref document: DE

Date of ref document: 19930826

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931022

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000829

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000830

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000831

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000928

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010927

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050927