EP0695384B2 - Verfahren zur ummantelung von garnen und fasern in textilen gegenständen - Google Patents
Verfahren zur ummantelung von garnen und fasern in textilen gegenständen Download PDFInfo
- Publication number
- EP0695384B2 EP0695384B2 EP94912475A EP94912475A EP0695384B2 EP 0695384 B2 EP0695384 B2 EP 0695384B2 EP 94912475 A EP94912475 A EP 94912475A EP 94912475 A EP94912475 A EP 94912475A EP 0695384 B2 EP0695384 B2 EP 0695384B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating
- textile
- treatment agent
- set forth
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M14/00—Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
- D06M14/18—Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/02—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
- D06M10/025—Corona discharge or low temperature plasma
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/04—Physical treatment combined with treatment with chemical compounds or elements
- D06M10/08—Organic compounds
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/04—Physical treatment combined with treatment with chemical compounds or elements
- D06M10/08—Organic compounds
- D06M10/10—Macromolecular compounds
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M23/00—Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M23/00—Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
- D06M23/005—Applying monomolecular films on textile products like fibres, threads or fabrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/18—Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/20—Treatment influencing the crease behaviour, the wrinkle resistance, the crease recovery or the ironing ease
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/25—Resistance to light or sun, i.e. protection of the textile itself as well as UV shielding materials or treatment compositions therefor; Anti-yellowing treatments
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/35—Abrasion, pilling or fibrillation resistance
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/40—Reduced friction resistance, lubricant properties; Sizing compositions
Definitions
- the present invention relates to the coating of the surfaces of textile structures, in particular threads, and fibrils in textile articles.
- the common technique of surface treatment in the field of textile production is that the filaments or filaments are coated prior to further processing or superficially modified by a chemical or physical process. To a limited extent, these methods are also applicable to textile intermediate or end products.
- the chemical treatment and the coating the usual methods are the application of the coating material or the chemical reagent by brushing, spraying, etc. on the textile material or immersing the textile material in a liquid treatment medium.
- EP 496 117 A describes a process for producing a sewing yarn provided with an equipment, in particular containing synthetic fibers.
- an equipment is applied directly after spinning on the sewing thread.
- the equipment itself or monomers or oligomers are applied to the yarn which are radically / ionically oligomerizable / polymerizable and thereby form the equipment.
- the radical and / or ion-generating treatment may in this case be formed by a low-temperature plasma treatment.
- this process is very time consuming and affects the properties of the yarn in the subsequent production of the textile structure.
- EP 492 649 A 3 describes a process for altering the properties of a textile substrate, wherein an initiator which decomposes into radical and / or ions by physical treatment is applied to the substrate. Simultaneously or subsequently, the physical treatment is carried out and brings the resulting radicals with the textile substrate or a substance applied thereto to the reaction.
- This method has the disadvantage that a chemical initiator is required, which on the one hand requires a greater amount of chemical aids and, on the other hand, is not harmless from the point of view of environmental compatibility.
- chemical initiators are usually relatively aggressive substances whose disposal is possible only with considerable effort.
- the invention is based on the surprising finding that the coating processes known from the gas phase for coating solid objects made of plastic or metal can be applied to threads or filaments and fibers in a textile structure, and lead to products having properties which have not hitherto or only with disproportionately high effort were available.
- the treatment medium is produced in the process by chemical (CVD) (Rompp Chemie Lexikon, 9th edition (1990), volume 2) or physical (PVD) processes (Rompp Chemie Lexikon, 9th edition (1992), volume 5).
- CVD chemical
- PVD physical
- Preliminary tests for modifying the chemical or physical properties of textile materials by a PVD process, the low-temperature plasma process are known (Y. Rogister, J. Knott, L. Ruys, M.
- each individual thread or fiber is reliably superficially applied in its entirety and that the individual fibers are also coated during the treatment of threads or multifilament yarns.
- Coatings produced by the method according to the invention adhere substantially more firmly than conventional layers and can be produced as a non-porous covering of the textile material. This makes it possible to use filaments of materials whose mechanical properties, while desirable, are superficially undesirable reactions with the environment. Examples which may be mentioned are moisture-sensitive or allergenic materials.
- metal layers are applied to obtain an electrical conductivity or to influence the visual impression.
- Polymerization may be performed directly on the surface of each fibril of the substrate when the treatment is carried out with a gaseous monomer. It is also possible to carry out in preparation of the coating, first with the same method, an intensive cleaning or preparation of the surfaces, such as. As the dry removal of a lubricant, which over the known methods already significantly better adhesion or treatment intensity can be increased again. Depending on the process conditions, continuous or discontinuous layers can be produced.
- the process according to the invention requires no solvents or other liquid carriers and that no drying operations have to be carried out, as a result of which the energy consumption is substantially reduced. Because of the high quality of the conversion, it is also possible to reduce the total amount of the coating or reaction material, since the treatment from the gas phase ensures an extremely uniform action on the surfaces to be treated.
- the treatment of sensitive materials with highly reactive substances for chemical modification of the surface which in the known methods usually high temperatures or were not possible at all, can be carried out according to the inventive method, since the thermal load of the object to be treated by adjusting suitable process parameters reduced or can be avoided.
- the ions of the plasma have about room temperature in a low pressure plasma treatment.
- the present method is also very suitable for impregnating volume-containing or three-dimensionally shaped textile body such.
- the impregnation or the layer structure also takes place in the volume and coated in the interior of the construction all fibers.
- a preferred embodiment of the inventive method is to bring a textile body in a conventional chamber for the PVD coating by the low-temperature plasma method.
- the textile body In order to achieve a uniform access of the treatment gas, the textile body is held by a support frame or a clamping frame so that the surfaces are as freely accessible.
- the process parameters according to the planned coating are set, ie vacuum, gas input and temperature.
- To be evaporated treatment agents are introduced as usual in this process as a solid or as a powder or granules in the treatment chamber.
- Suitable gases of the treatment atmosphere are noble gases, for example argon, but also nitrogen and oxygen. The selection depends on the properties of the particular substrate to be coated and the coating material.
- a particularly strong bond between the layer and the substrate occurs when chemical bonds between the substrate and the layer are formed in the course of the deposition, eg. B. by grafting.
- Very stable layers are obtained when crosslinking the polymerization, in particular resulting in three-dimensionally crosslinked structures.
- a cleaning process is observed prior to deposition, which can be forced or promoted by appropriate process parameters, creating a thorough cleaning of the surfaces to be treated of the textile body and thus a high quality of the coating is achieved.
- An advantage of a coating by surface polymerization according to the present invention is that the activated monomer in spite of their excitation, for. As ionization, only slightly elevated temperature and thus polymerization can also be carried out on temperature-sensitive materials such as thermoplastics. It is also possible to use conventional, chemical type non-polymerizable substances, such as. For example, alkanes, as under the action of a glow discharge, such molecules pass under breaking bonds or cleavage of fragments into reactive forms.
- textile bodies made of polyethylene filaments were coated with PTFE, whereby the high tensile strength of the polyethylene could be combined with the anti-adhesive effect of the PTFE.
- Carbon fibers can be protected by a suitable coating against the oxygen in the air.
- the deposited layers can be performed cleaning, washing and even boiling and (steam) sterilization resistant.
- the textile material can be placed on rollers in the treatment chamber and rolled over in this during the treatment time, or the textile material can be pulled through from air to air through the chamber, to which the chamber must have input and output locks.
- a textile body can be holistically equipped with new surface-related properties.
- the surface treatment is carried out intensively and because of the treatment from the gas phase very evenly in already interwoven or meshed material, and the applied layers can be kept very thin because of the high quality, eg. B. thinner than 1% of the fiber diameter or only a few hundred atomic or molecular layers thick, so that a significant volume increase can be avoided by the coating.
- the following surface properties can be adjusted by choosing the appropriate treatment (s): antibacterial finish, wash and cook resistant; fungicidal properties; wettability; UV-IR absorption; Radiation, in particular IR, UV, light reflection; lubricity; Wrinkle properties; flammability; Anti Pilling; electric conductivity; etc.
- the layers adhere very well to the surfaces of the textile material and are well formed even in the finest interstices.
- a pervasive treatment of voluminous textile structures is also possible, such as spacer fabrics, knitted fabrics, nonwovens and felts.
- the fiber sheath provided by the invention can be implemented as a process step in existing equipment and coating processes.
- the invention applies a technology in the textile sector which hitherto has been used only in other technical fields, e.g. has been used in surface hardening metalworking and in PCBs for CFC-free, reliable cleaning even in the finest boreholes.
- This technology is made available for area and spatial textiles.
- the molecules of the monomer are excited and fragmented to a considerable extent by collision with the energetic particles, the electrons present in the gas discharge, i. smashed into pieces of molecule. This allows the monomers and fragments in the gas space to react with each other on all surfaces. These reactions are the very basis of plasma polymerization.
- the plasma that stimulates these processes is an ionized gas consisting of ions, electrons, light quanta, atoms, and molecules. Due to the possibility of low-temperature coating, it is possible to coat in a vacuum at room temperature. This may even coat thermoplastics (e.g., polyethylene or polypropylene). The resulting layers are highly cross-linked three-dimensionally and have excellent adhesion to the substrate.
- Both processes, the removal and application can be done by the appropriate control of the parameters in one operation, i. occur at a reactor charge. This can ensure that a coating matrix is applied only to an absolutely clean substrate.
- Another aspect of the up-and-down plasma technology is the hundred percent sterilizing effect of the plasma (destructive effect on organisms). Also by the packaging of e.g. Dressing material can reliably kill off all bacteria.
- the coating process of plasma technology is a very economical and environmentally friendly technology.
- the electrical energy consumption is very low.
- the layers which can be applied plasma-assisted, have completely new properties due to the high degree of crosslinking, which differ fundamentally from those of a polymer prepared conventionally from monomers.
- the polymer is always a thermoset, is very temperature resistant and even in a small layer thickness free from pinholds (smallest uncovered areas) and is almost vulnerable to any solvent.
- the high-energy particles excited in the plasma therefore trigger intense and profound effects on the monomer (gas).
- the cold plasma provides high energies in chemically very effective form at room temperature. Similar reactions are e.g. not realizable in the hot flame. Virtually all organic compounds can be made to coat.
- each fibril of a thread is encased in the special plasma within the textile surface.
- the discharge thus also reaches very complicated shaped parts, undercuts and also detects the unexposed contact areas of the fibers.
- the volume properties of the coated textile are not affected or visibly affected.
- the textile is in a vacuum vessel during treatment.
- the resulting excess or waste gases are sucked off by a vacuum pump and can be easily collected or recycled as a cycle back to the reaction.
- a vacuum pump In principle, in the plasma process an uncontrolled distribution of substances of concern is not to be expected.
- the reactor for coating the textile substrate can either be formed as a bell reactor, in which the monomer is supplied from above.
- the substrate is in the vicinity of the cathode or in the cathode drop region, because there the degree of ionization of the coating monomer is high.
- the flow form results in a radial overflow of the substrate.
- the plasma polymerization can be divided into five steps, which are partially parallel.
- the initiation monomers in the gas phase are activated or radicalized by electron impact.
- monomers adsorbed on the substrate surface are excited by electron, ion or photon bombardment to react with other monomers.
- a second step, adsorption describes the adsorption of monomers and radical species on the substrate surface.
- Chain growth is described in a third step. This reaction can occur between radicals and monomers in the gas phase, adsorbed radicals and gaseous monomers, as well as adsorbed radicals and adsorbed monomers.
- the fourth step, the termination, leads to the formation of polymeric entities.
- polymers By reacting longer chain radicals in the gas phase, polymers can be formed in the gas phase.
- the reaction of radicals from the gas phase with adsorbed radicals or adsorbed radicals with one another produces polymers that are adsorbed on the substrate.
- a fifth step, the re-initiation describes, on the one hand, the repeated fragmentation of the already formed polymer in the gas phase by the action of the plasma and, on the other hand, the process of three-dimensional crosslinking of the polymer on the substrate surface by the action of ions, electrons and photons.
- the plasma polymerization is carried out in a pressure range between 0.01 mbar and 10 mbar. At low pressures, the achievable deposition rates are too low, while at higher pressures no transparent continuous layers can be produced with the desired properties.
- Each coating monomer has its own polymerization kinetics because of its chemical composition and structure as well as the required process parameters.
- the rate of polymerization and thus the rate of growth of layers of different monomers differ significantly.
- the coating rates are generally higher, since larger low molecular weight fragmentation products can form and attach.
- several monomers can be applied to the textile substrate simultaneously or in succession by plasma technology.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
- Die vorliegende Erfindung bezieht sich auf die Beschichtung der Oberflächen von textilen Gebilden, insbesondere Fäden, und Fibrillen in textilen Gegenständen.
- Die allgemein übliche Technik der Oberflächenbehandlung im Bereich der Herstellung von Textilien besteht darin, dass die Filamente oder Fäden vor der weiteren Verarbeitung beschichtet oder durch ein chemisches oder physikalisches Verfahren oberflächlich modifiziert werden. In begrenztem Umfang sind diese Verfahren auch auf textile Zwischen- oder Endprodukte anwendbar. Bei der chemischen Behandlung und der Beschichtung sind die üblichen Verfahren das Aufbringen des Beschichtungsmaterials bzw. des chemischen Reagenz durch Aufstreichen, Aufsprühen usw. auf das textile Material oder das Eintauchen des textilen Materials in ein flüssiges Behandlungsmedium.
- Probleme ergaben sich bei diesen bekannten Verfahren immer dann, wenn sich eine Behandlung der Fäden vor der Verarbeitung verbot, z. B. wenn die behandelten Fäden nicht mehr problemlos versponnen oder verstrickt werden konnten und daher ein textiler Gegenstand, sei es ein Halbfabrikat oder ein Endprodukt, behandelt werden musste. Insbesondere konnte nicht sichergestellt werden, dass bei den genannten Behandlungsmethoden auch die einzelnen Fäden lückenlos und zuverlässig beschichtet bzw. behandelt wurden. Problempunkte stellten dabei z.B. die Ueberkreuzungspunkte der Fäden in Web- oder Maschenware dar. Aehnliche Probleme stellten sich bei erhöhten Ansprüchen an die Behandlung der Filamente in Multifilamentgarnen bzw. -zwirnen.
- Mit der zunehmenden Bedeutung ökologischer Gesichtspunkte trat auch der Nachteil der bekannten Verfahren in den Vordergrund, dass verbrauchte Behandlungsmedien wegen der darin enthaltenen Lösungsmittel oder anderen Komponenten als Sonderabfall zu entsorgen waren.
- In der EP 496 117 A ist ein Verfahren zur Herstellung eines mit einer Ausrüstung versehenen, insbesondere synthesefaserhaltigen Nähgarnes beschrieben. Hier wird direkt nach dem Spinnen auf das Nähgarn eine Ausrüstung aufgebracht. Hierbei wird die Ausrüstung selbst oder werden Monomere bzw. Oligomere auf das Garn aufgebracht die radikalisch/ionisch oligomerisierbar/polymerisierbar sind und dabei die Ausrüstung bilden. Die Radikale und/oder Ionen erzeugende Behandlung kann hierbei durch eine Niedertemperatur-Plasmabehandlung gebildet sein. Dieses Verfahren ist jedoch sehr zeitaufwendig und beeinflußt die Eigenschaften des Garnes bei der nachfolgenden Herstellung des textilen Gebildes.
- Die EP 492 649 A 3 beschreibt ein Verfahren zur Veränderung der Eigenschaften eines textilen Substrats, wobei auf das Substrat ein Initiator aufgebracht wird, der durch physikalische Behandlung in radikale und/oder Ionen zerfällt. Gleichzeitig oder anschließend führt man die physikalische Behandlung durch und bringt die hierbei entstehenden Radikale mit dem textilen Substrat oder einer hierauf aufgetragenen Substanz zur Reaktion. Dieses Verfahren hat den Nachteil, daß ein chemischer Initiator erforderlich ist, der zum einen einen größeren Aufwand an chemischen Hilfsmitteln erfordert und zum anderen unter dem Gesichtspunkt der Umweltverträglichkeit nicht unbedenklich ist. Denn chemische Initiatoren sind in der Regel relativ aggressive Substanzen, deren Entsorgung nur mit erheblichem Aufwand möglich ist.
- Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren zur Behandlung der Oberfläche von Fäden oder textilen Gebilden anzugeben, das eine qualitativ verbesserte Oberflächenbehandlung der Komponenten erlaubt, mittels dessen die Haftung des Behandlungsmittels auf der Oberfläche gesteigert wird und das relativ umweltfreundlich ist.
- Ein solches Verfahren ist im Anspruch 1 angegeben. Bevorzugte Ausführungen und Anwendungen sowie Frodukte sind Gegenstand der weiteren Ansprüche. Unter textilem Gebilde ist dabei alles zu verstehen, was aus textilem Material, insbesondere aus Filamenten oder Fasern oder Bändchen, durch eines der in der Textilindustrie üblichen Verfahren, insbesondere Weben, Stricken und Wirken, hergestellt ist, also alles vom Faden bis zum textilen Endprodukt wie auch beispielsweise Vliese. Nicht als textiles Gebilde gelten jedoch die Fasern oder Filamente selbst. Fäden oder Garne sind allgemein linienförmige textile Gebilde, insbesondere alle aus Fasern oder Filamenten hergestellten. Textiles Material ist das Material, aus dem die textilen Gebilde bestehen können, also neben Fasern oder Filamenten aus Natur- oder Kunstfaser auch Metallfäden, Steinfasem, Glasfasern usw.
- Der Erfindung liegt die überraschende Erkenntnis zugrunde, dass die zur Beschichtung von massiven Gegenständen aus Kunststoff oder Metall bekannten Beschichtungsverfahren aus der Gasphase auf Fäden bzw. Filamente und Fasern in einem textilen Gebilde angewandt werden können, und zu Produkten mit Eigenschaften führen, die bisher nicht oder nur mit unverhältnissmässig hohem Aufwand erhältich waren. Das Behandlungsmedium wird in dem Verfahren durch chemische (CVD) (Römpp Chemie Lexikon, 9. Auflage (1990), Band 2) oder physikalische (PVD) Verfahren (Römpp Chemie Lexikon, 9. Auflage (1992), Band 5) erzeugt. Vorversuche zur Modifizierung der chemischen oder physikalischen Eigenschaften textiler Materialien nach einem PVD-Verfahren, dem NiedertemperaturPlasma-Verfahren, sind bekannt (Y. Rogister, J. Knott, L. Ruys, M. Van Lancker, Etude de l'influence de Nouvelles Techniques de Traitement de Surface sur les Propriétés des Fibres, Techtextil-Symposium 1992). In diesen Versuchen wurde eine Anlage zur Behandlung von Kunststoffolien eingesetzt, die das Plasma durch elektromagnetische Anregung erzeugte. Es wurde in dieser Anlage während der Behandlung ein Unterdruck bis 1,33 Pa (10-2 Torr) erzeugt und der Einfluss des Plasmas auf das Textil untersucht, wobei Änderungen in der Benetzbarkeit, der Oberflächenstruktur und auch den mechanischen Eigenschaften beobachtet wurden und im wesentlichen abtragende Effekte im Vordergrund standen. Überraschend wurde nun gefunden, dass derartige Techniken auch zum Aufbringen von Schichten auf textiles Material genutzt werden können.
- Die hohe Mobilität der erzeugten reaktiven Gasteilchen führt dazu, dass in textilen Gebilden jeder einzelne Faden bzw. jede Faser zuverlässig in seiner Gesamtheit oberflächlich beaufschlagt wird und dass bei der Behandlung von Zwirnen oder Multifilamentgarnen auch die einzelnen Fasern beschichtet werden. Mit dem erfindungsgemässen Verfahren hergestellte Beschichtungen haften wesentlich fester als herkömmliche Schichten und können als porenfreie Umhüllung des textilen Materials hergestellt werden. Dadurch wird es möglich, Fäden aus Materialien zu verwenden, deren mechanische Eigenschaften zwar wünschenswert sind, die jedoch oberflächlich unerwünschte Reaktionen mit der Umgebung eingehen. Als Beispiele seien feuchtigkeitsempfindliche oder allergieauslösende Materialien genannt.
- Durch das erfindungsgemässe Verfahren wird auch das Spektrum möglicher Oberflächenbeschichtungen stark erweitert.
- Es können z. B. Metallschichten aufgebracht werden, um eine elektrische Leitfähigkeit zu erhalten oder den optischen Eindruck zu beeinflussen. Es kann direkt auf der Oberfläche jeder Fibrille des Substrats eine Polymerisation durchgeführt werden, wenn die Behandlung mit einem gasförmigen Monomer durchgeführt wird. Es ist auch möglich, in Vorbereitung der Beschichtung zunächst mit den gleichen Verfahren eine intensive Reinigung bzw. Präparierung der Oberflächen durchzuführen, wie z. B. die trockene Abtragung einer Avivage, wodurch die gegenüber den bekannten Verfahren bereits deutlich bessere Haftung bzw. Behandlungsintensität nochmals gesteigert werden kann. Es können je nach Verfahrensbedingungen kontinuierliche oder diskontinuierliche Schichten erzeugt werden.
- Bezüglich der Umweltproblematik ist noch hervorzuheben, dass das erfindungsgemässe Verfahren keine Lösungsmittel oder andere flüssige Träger benötigt und auch keine Trocknungsvorgänge durchgeführt werden müssen, wodurch der Energieverbrauch wesentlich gesenkt wird. Wegen der hohen Qualität der Umwandlung ist es auch möglich, die Gesamtmenge des Beschichtungs- bzw. Reaktionsmaterials zu senken, da die Behandlung aus der Gasphase eine extrem gleichmässige Einwirkung auf die zu behandelnden Oberflächen gewährleistet.
- Auch die Behandlung von empfindlichen Materialien mit hochreaktiven Substanzen zur chemischen Modifizierung der Oberfläche, die bei den bekannten Verfahren meist hohe Temperaturen voraussetzten oder überhaupt nicht möglich waren, sind nach dem erfindungsgemässen Verfahren durchführbar, da die thermische Belastung des zu behandelnden Gegenstandes durch Einstellen geeigneter Prozessparameter reduziert odervermieden werden kann. Insbesondere haben die Ionen des Plasmas In einer Niederdruck-Plasmabehandlung etwa Zimmertemperatur.
- Das vorliegende Verfahren eignet sich auch sehr gut zur Imprägnierung volumenhaltiger bzw. dreidimensional geformter Textilkörper wie z. B. Abstandgewebe, Abstandsmaschenware oder Faservliese. Die Imprägnierung bzw. der Schichtaufbau findet auch im Volumen statt und beschichtet im Innem der Konstruktion alle Fasern.
- Eine bevorzugte Ausführungsart des erfindungsgemässen Verfahrens besteht darin, einen textilen Körper in eine herkömmliche Kammer für die PVD-Beschichtung nach dem Niedertemperatur-Plasma-Verfahren zu bringen. Um einen gleichmässigen Zutritt des Behandlungsgases zu erreichen, wird der textile Körper durch ein Stützgestell oder einen Spannrahmen so gehalten, dass die Oberflächen möglichst frei zugänglich sind. Die Prozessparameter gemäss der geplanten Beschichtung werden eingestellt, also Vakuum, Gaseintrag und Temperatur. Zu verdampfende Behandlungsmittel werden wie in diesem Verfahren üblich als Festkörper oder auch als Pulver oder Granulat, in die Behandlungskammer eingebracht. Als Gas der Behandlungsatmosphäre kommen Edelgase, beispielsweise Argon, aber auch Stickstoff und Sauerstoff in Frage. Die Auswahl richtet sich nach den Eigenschaften des jeweiligen zu beschichtenden Substrat und dem Beschichtungsmaterial.
- Bei Anlegen einer Gleichstrom-Gilmmentladung treffen Plasmateilchen u. a. auf das Behandlungsmittel in derfesten Form und führen zu seiner Verdampfung.
- Eine ionische Wechselwirkung zwischen den sich abscheidenden Teilchen und der Oberfläche, d. h. dem Substrat, führt zu besonders festhaftenden und sehr stabilen Schichten. Eine besonders feste Verbindung zwischen Schicht und Substrat tritt auf, wenn im Verlauf der Abscheidung chemische Bindungen zwischen Substrat und Schicht ausgebildet werden, z. B. durch Propfung. Sehr stabile Schichten werden erhalten, wenn die Polymerisation zu vernetzten, Insbesondere dreidimensional vemetzten Strukturen führt. Oft wird vor der Abscheidung noch ein Reinigungsprozess beobachtet, der auch durch entsprechende Prozessparameter erzwungen oder gefördert werden kann, wodurch eine tiefgreifende Reinigung der zu behandelnden Oberflächen des textilen Körpers und damit eine hohe Qualität der Beschichtung erzielt wird.
- Vorteilhaft an einer Beschichtung durch oberflächliche Polymerisation gemäss der vorliegenden Erfindung ist, dass die aktivierten Monomerteilchen trotz ihrer Anregung, z. B. lonisierung, nur wenig erhöhte Temperatur aufweisen und damit eine Polymerisierung auch auf temperaturempfindlichen Materialien wie beispielsweise Thermoplasten erfolgen kann. Es ist auch möglich, auf übliche, chemische Art nicht polymerisierbare Stoffe einzusetzen, wie z. B. Alkane, da unter der Einwirkung einer Glimmentladung derartige Moleküle unter Bruch von Bindungen oder Abspaltung von Fragmenten in reaktive Formen übergehen.
- Mit dem erfindungsgemässen Verfahren wurden zum Beispiel textile Körper aus Polyethylenfäden mit PTFE beschichtet, wodurch die hohe Reissfestigkeit des Polyethylen mit derAntihaftwirkung des PTFE kombiniert werden konnte. Kohlefasern können durch eine entsprechende Beschichtung gegen den Sauerstoff der Luft geschützt werden. Die abgeschiedenen Schichten können reinigungs-, wasch- und sogar koch- und (dampf-)sterilisationsbeständig ausgeführt werden.
- Es ist auch möglich, Bahnen von Textilmaterial zu behandeln. Dazu kann das Textilmaterial auf Rollen in die Behandlungskammer eingebracht und in dieser während der Behandlungszeit umgerollt werden, oder das Textilmaterial kann von Luft zu Luft durch die Kammer durchgezogen werden, wozu die Kammer Eingangs- und Ausgangsschleusen aufweisen muss.
- Zusammenfassend kann also nach dem erfindungsgemässen Verfahren ein textiler Körper ganzheitlich mit neuen oberflächenbedingten Eigenschaften ausgestattet werden. Die Oberflächenbehandlung erfolgt dabei intensiv und wegen der Behandlung aus der Gasphase sehr gleichmässig auch in bereits verwobenem odervermaschten Material, und die aufgebrachten Schichten können wegen der hohen Qualität sehr dünn gehalten werden, z. B. dünner als 1 % des Faserdurchmessers oder nur einige hundert Atom- bzw. Molekülschichten dick, so dass eine merkliche Volumenzunahme durch die Beschichtung vermieden werden kann. Unter anderem können folgende Oberflächeneigenschaften durch Wahl des oder der entsprechenden Behandlungsmittel eingestellt werden: antibakterielle Ausrüstung, wasch- und kochbeständig; fungizide Eigenschaften; Benetzbarkeit; UV-IR-Absorption; Strahlungs-, insbesondere IR-, UV-, Lichtreflexion; Gleitfähigkeit; Knittereigenschaften; Brennbarkeit; Antipilling; elektrische Leitfähigkeit; usw. Die Schichten haften sehr gut auf den Oberflächen des Textilmaterials und sind auch in feinsten Zwischenräumen gut ausgebildet. Damit istvorteilhaft auch eine durchdringende Behandlung von voluminösen Textilstrukturen möglich, wie Abstandsgeweben, -gestricken, Vliesen und Filzen. Mit dem erfindungsgemäßen Verfahren können auch Ummantelungen mit Materialien durchgeführt werden, deren Verwendung nach den bekannten Verfahren zu teuer kam, da bei der Erfindung nur geringe Mengen nötig sind und damit auch die Bedeutung des Materialkostenfaktors generell zurückgedrängt wird.
- Die durch die Erfindung bereitgestellte Faserummantelung ist als Verfahrensstufe bei vorhandenen Anlagen und Beschichtungsverfahren implementierbar.
- Durch die Erfindung wird eine Technologie im Textilbereich angewandt, die bisher nur in anderen technischen Bereichen, z.B. bei der Metallbehandlung für die Oberflächenhärtung und bei Leiterplatten zur FCKW-freien zuverlässigen Reinigung auch in allerfeinsten Bohrlöchern angewandt worden ist. Diese Technologie wird für flächige und räumliche Textilien zugänglich gemacht. Die Moleküle des Monomers werden durch Zusammenstoß mit den energiereichen Partikeln, den in der Gasentladung vorhandenen Elektronen, angeregt und zu einem erheblichen Teil auch fragmentiert, d.h. zu Molekülstücken zerschlagen. Dadurch können die Monomere und Fragmente im Gasraum an allen Oberflächen miteinander reagieren. Diese Reaktionen sind die eigentliche Basis der Plasmapolymerisation.
- Das Plasma, das diese Vorgänge anregt, ist ein ionisiertes Gas, das aus Ionen, Elektronen, Lichtquanten, Atomen und Molekülen besteht. Durch die Möglichkeit der Niedertemperaturbeschichtung ist es möglich, im Vakuum bei Zimmertemperatur zu beschichten. Dadurch können sogar Thermoplaste (z.B. Polyethylen oder Polypropylen) beschichtet werden. Die entstehenden Schichten sind dreidimensional hochvernetzt und haben eine hervorragende Haftung auf dem Substrat.
- Mit ein und derselben Anlage sind aber auch abtragende Prozesse möglich. So kann z.B. durch das Zünden eines Sauerstoffplasmas eine "kalte Verbrennung" erzeugt werden. Hierbei werden organische oder fettige Verunreinigungen ohne umweltbedenkliche Chemikalie abgetragen. Es bleibt lediglich ein aschartiger Rest übrig.
- Beide Vorgänge, das Ab- und Auftragen können durch die entsprechende Steuerung der Parameter in einem Arbeitsgang, d.h. bei einer Reaktorbeschikkung ablaufen. Dadurch kann gewährleistet werden, daß eine Beschichtungsmatrix nur auf ein absolut sauberes Substrat aufgebracht wird.
- Ein weiterer Aspekt der auf- und abtragenden Plasma-Technologie ist die hundertprozentig sterilisierende Wirkung des Plasmas (zerstörende Wirkung auf Organismen). Auch durch die Verpackung von z.B. Verbandsmaterial hindurch lassen sich sämtliche Bakterien zuverlässig abtöten.
- Das Beschichtungsverfahren der Plasmatechnologie ist eine sehr sparsame und damit auch umweltfreundliche Technologie. Der elektrische Energieverbrauch ist sehr gering. Dies alles sind Vorteile gegenüber den bekannten Naßverfahren, die bezüglich der Verfahrensschritte sowohl zeit- als auch energie- und kostenaufwendig sind, da die Flotte (Wasser) aufgeheizt und auf Temperatur gehalten werden muß. Anschließend ist wiederum ein hoher Energieverbrauch beim Trocknen notwendig. Diese Verfahrensschritte fallen weg. Weiterhin entfällt die Entsorgung der bisher üblichen Chemikalienreste beim Naßverfahren.
- Die Schichten, die plasmagestützt aufgetragen werden können, haben wegen der hohen Vernetzung ganz neue Eigenschaften, die sich grundsätzlich von denen eines konventionell aus Monomeren hergestellten Polymers unterscheiden. Das Polymerisat ist stets ein Duromer, ist sehr temperaturbeständig und schon in geringer Schichtdicke frei von Pinholds (kleinste unbedeckte Bereiche) und ist fast von keinem Lösungsmittel angreifbar.
- Die im Plasma angeregten energiereichen Partikel lösen daher beim Monomer (Gas) intensive und tiefgehende Effekte aus. Das kalte Plasma stellt hohe Energien in chemisch sehr wirksamer Form bei Raumtemperatur bereit. Ähnliche Reaktionen sind z.B. in der heißen Flamme nicht realisierbar. Es können praktisch alle organischen Verbindungen zur Schichtbildung gebracht werden.
- Erfindungsgemäß wird im speziellen Plasma innerhalb der Textilfläche jede Fibrille eines Fadens ummantelt. Die Entladung erreicht somit auch sehr kompliziert geformte Teile, Hinterschneidungen und erfaßt auch die nicht freiliegenden Kontaktbereiche der Fasern. Die Volumeneigenschaften des beschichteten Textils werden hierbei nicht spür- oder sichtbar beeinflußt.
- Das Textil befindet sich während der Behandlung in einem Unterdruckkessel. Die eventuell entstehenden Überschuß- oder Abfallgase werden von einer Vakuumpumpe abgesaugt und können problemlos aufgefangen oder als Kreislauf wieder zur Reaktion zurückgeführt werden. Vom Prinzip her ist beim Plasmaverfahren eine unkontrollierte Verteilung von bedenklichen Stoffen nicht zu erwarten.
- Wegen der sehr dünnen Schichten sind die Materialkosten sehr gering.
- Abschließend sollen noch einige mit Niedertemperaturplasma erzielende Effekte aufgeführt werden:
- Beeinflussung der Oberfläche durch Abtragung
- Beeinflussung der Oberfläche durch Beschichtung
- Einstellung der Benetzbarkeit (hydrophil)
- Steigerung/Verminderung der Haftbereitschaft (hierdurch problemlose Färbung)
- Erzeugung elektrisch isolierender/leitfähiger Schichten
- Einstellung der Permeationsdaten für Gase und Flüssigkeiten
- Steigerung der Abrasionsbeständigkeit
- Änderung des Reflexionsverhaltens (UV- und IR-Schutz)
- Änderung des Gleitverhaltens.
- Der Reaktor zur Beschichtung des textilen Substrats kann entweder als Glockenreaktor ausgebildet sein, bei dem die Monomerzufuhr von oben erfolgt. Das Substrat befindetsich in der Nähe der Kathode bzw. im Kathodenfallgebiet, da dort der Ionisierungsgrad des Beschichtungsmonomers hoch ist. Als Strömungsform ergibt sich eine radiale Überströmung des Substrats.
- Es kann auch ein Rohrreaktor verwendet werden, bei dem die Elektroden parallel zur Rohrachse angeordnet sind. Das Substrat wird hier vom Monomer parallel überströmt.
- Die Plasmapolymerisation kann in fünf Schritte gegliedert werden, die teilweise parallel ablaufen.
- Im ersten Schritt, der Initiierung, werden Monomere in der Gasphase durch Elektronenstoß aktiviert bzw. radikalisiert. Außerdem werden auf der Substratoberfläche adsorbierte Monomere durch Elektronen-, Ionen- oder Photonenbeschuß zur Reaktion mit anderen Monomeren angeregt.
- Ein zweiter Schritt, die Adsorption, beschreibt die Adsorption von Monomeren und von radikalen Spezies auf der Substratoberfläche. Das Kettenwachstum wird in einem dritten Schritt beschrieben. Hierbei können Reaktionen auftreten zwischen Radikalen und Monomeren in der Gasphase, adsorbierten Radikalen und gasförmigen Monomeren, sowie adsorbierten Radikalen und adsorbierten Monomeren.
- Der vierte Schritt, die Termination, führt zur Bildung von polymeren Gebilden. Durch Reaktion längerkettiger Radikaler in der Gasphase können Polymere in der Gasphase entstehen. Durch die Reaktion von Radikalen aus der Gasphase mit adsorbierten Radikalen bzw. von adsorbierten Radikalen untereinander, entstehen Polymere, die auf dem Substrat adsorbiert sind.
- Ein fünfter Schritt, die Reinitiierung, beschreibt zum einen die nochmalige Fragmentierung des bereits gebildeten Polymers in der Gasphase durch Einwirkung des Plasmas und zum anderen den Prozeß der dreidimensionalen Vernetzung des Polymers auf der Substratoberfläche durch Einwirkung von Ionen, Elektronen und Photonen.
- Die Plasmapolymerisation wird in einem Druckbereich zwischen 0,01 mbar und 10 mbar durchgeführt. Bei niedrigen Drücken werden die erzielbaren Abscheideraten zu gering, während bei höheren Drükken sich keine transpartenten durchgehenden Schichten mit den erwünschten Eigenschaften herstellen lassen.
- Unter den durch die Plasmatechnologie auf die Textilien aufbringenden Funktionsschichten lassen sich neun Gruppen unterscheiden:
- 1) Adhäsive Funktionsschichten, die folgende Eigenschaften beeinflussen: Bedruckbarkeit, Lakkierbarkeit, Metallisierbarkeit Klebbarkeit, Benetzbarkeit, Hydrophilisierung, Hydrophobisierung, Antiadhäsivierung, Schichtverbundfestigkeit, Teilchenverbundfestigkeit und Faserverbundfestigkeit.
- 2) Optische Funktionsschichten, die folgende Eigenschaften beeinflussen: Farbstabilität, Brechungsindex, Antireflexionswirkung, Antibeschlagwirkung, Entspiegelungswirkung, Adsorptionskoeffizient.
- 3) Textile Funktionsschichten, die folgende Eigenschaften beeinflussen: Festigkeit, Formbeständigkeit, Bedruckbarkeit, Färbbarkeit, Farbechtheit, Farbhaftung, Klebbarkeit, Flammfestigkeit, statische Aufladbarkeit, Schmutzempfindlichkeit, Wasseraufnahmevermögen, Antifilzwirkung.
- 4) Biomedizinische Funktionsschichten, die fürTextilien im medizinischen Bereich eingesetzt werden können. Diese beeinflussen z.B. folgende Eigenschaften: Organofilierung, Biokompatibiltät, immunbiologisches Verhalten, Antitoxizität.
- 5) Elektrische Funktionsschichten, die die elektrischen Eigenschaften der Fasern beeinflussen: Dielektrizitätskonstante, Isolationswiderstand, antistatisches Verhalten, Leitfähigkeit.
- 6) Chemische Funktionsschichten zur Beeinflussung der folgenden Fasereigenschaften: Migrationsschutz, Diffusionsschutz, Korrosionsschutz, Lösungsmittelresistenz.
- 7) Mechanische Funktionsschichten zur Steuerung der folgenden Eigenschaften: Verschleißverhalten, Abrasionsschutz, Reibungskoeffizient.
- 8) Permeable Funktionsschichten zur Steuerung von z.B. Porosität und Permeabilität.
- 9) Thermische Funktionsschichten zur Beeinflussung der Formbeständigkeit, Haftfähigkeit und Wärmereflektion der textilen Fasern.
- Jedes Beschichtungsmonomer hat wegen seiner chemischen Zusammensetzung und Struktur sowie aufgrund der erforderlichen Prozeßparameter eine eigene Polymerisationskinetik. Die Polymerisationsgeschwindigkeit und damit die Wachstumsgeschwindigkeitvon Schichten unterschiedlicher Monomere differieren erheblich. So sind z.B. bei Monomeren mit hohen Molekulargewichten die Beschichtungsraten in der Regel höher, da sich größere niedermolekulare Fragmentationsprodukte bilden und anlagern können. Es können zur Erzielung unterschiedlicher gewünschter Eigenschaften mehrere Monomere gleichzeitig oder in Abfolge durch Plasmatechnik auf das Textilsubstrat aufgebracht werden.
Claims (12)
- Verfahren zur Behandlung der Oberfläche von Fäden, die aus einem oder mehreren Filamenten aufgebaut sind und von Fasern in textilen Gebilden mit einem Behandlungsmittel, umfassend eine Aktivierung des Behandlungsmittels in einem Plasma, in welchem das Behandlungsmittel in einen gas- oder plasmaförmigen Zustand überführt und auf der Oberfläche der Fasern oder Filamente zurAbscheldung gebracht wird,
wobei das Behandlungsmittel unter Einwirkung einer Glimmentladung in eine reaktive Form überführt wird und
im Verlauf der Abscheidung chemische Bindungen zwischen dem Filament bzw. der Faser und der abzuscheidenden Schicht des Behandlungsmittels ausgebildet werden, wobei des Behandlungsmittel durch Verdampfen eines Festkörpers aus einem Beschichtungsmittel bereitgestellt wird. - Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass die Behandlung unter einem Gasgesamtdruck von höchstens etwa 10 kPa durchgeführt wird.
- Verfahren gemäss einem der Anspruche 1 bis 2, dadurch gekennzeichnet, dass das Behandlungsmittel im gasförmigen Zustand durch eine elektrische Entladung oder Wechselwirkung mit Plasmateilchen der Umgebung, die durch Energieeinstrahlung, insbesondere durch elektromagnetische Felder erzeugt werden, in einen chemisch reaktiven Zustand überführt wird.
- Verfahren gemäss einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass das Behandlungsmittel durch Strahlungs- und/oder Wärmeeinwirkung in einen Zustand überführt wird, in dem das Behandlungsmittel fähig ist, sich auf der zu beschichtenden Oberfläche abzuscheiden.
- Verfahren gemäss Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Behandlungsmittel polymerisationsfähig ist und indirekt über in der Atmosphäre des Behandlungsraumes gebildete angeregte oder reaktive Teilchen oder direkt zur Polymerisation angeregt wird.
- Verfahren gemäss einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das zu beschichtende Gebilde durch Mikrowellen erwärmt wird.
- Verfahren gemäss einem der Anspruche 1 bis 6 zum Beschichten von textilem Material und aus solchem zumindest teilweise bestehenden Gebilden, dadurch gekennzeichnet, dass die Fasern oder Filamente des textilen Materials gleichmässig mit einer Schicht ummantelt werden, die vom Behandlungsmittel durch oberflächliche Abscheidung oder Polymerisation erzeugt wird.
- Verfahren gemäss einem der Ansprüche 1 bis 6 zum Beschichten von textilem Material, dadurch gekennzeichnet, dass die Fasern oder Filamente des textilen Gebildes gleichmässig mit einer Oberfläche versehen werden, die eine oder mehrere der folgenden Eigenschaften aufweist: elektrisch leitend, elektrisch isolierend, metallisch, gasundurchlässig, strahlungsreflektierend, lichtreflektierend, antibakteriell, fungizid, reinigungsbeständig, sterilisationsbeständig.
- Verfahren nach einem der Anprüche 1 - 6, dadurch gekennzeichnet, daß eine Plasmabeschichtung bei Raumtemperatur erfolgt.
- Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Plasmabeschichtung im PVD- oder CVD-Verfahren erfolgt.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß vor der Beschichtung durch das Zünden eines Sauerstoffplasmas eine kalte Verbrennung zur Beseitigung organischer Verunreinigungen des Substrats erzeugt wird.
- Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Zünden des Sauerstoffplasmas und die anschließende Beschichtung in einem Arbeitsgang durchgeführt werden.
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CH1221/93 | 1993-04-21 | ||
| CH122193 | 1993-04-21 | ||
| CH122193 | 1993-04-21 | ||
| PCT/DE1994/000439 WO1994024358A2 (de) | 1993-04-21 | 1994-04-21 | Verfahren zur ummantelung von garnen und fasern in textilen gegenständen |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0695384A1 EP0695384A1 (de) | 1996-02-07 |
| EP0695384B1 EP0695384B1 (de) | 2002-04-03 |
| EP0695384B2 true EP0695384B2 (de) | 2006-04-26 |
Family
ID=4205330
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP94912475A Expired - Lifetime EP0695384B2 (de) | 1993-04-21 | 1994-04-21 | Verfahren zur ummantelung von garnen und fasern in textilen gegenständen |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP0695384B2 (de) |
| DE (1) | DE59410093D1 (de) |
| WO (1) | WO1994024358A2 (de) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2775488B1 (fr) * | 1998-02-27 | 2000-05-19 | Nylstar Sa | Procede de traitement par plasma d'un article en fibres ou fils |
| US6287687B1 (en) * | 1998-05-08 | 2001-09-11 | Asten, Inc. | Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same |
| WO1999058755A1 (en) * | 1998-05-08 | 1999-11-18 | Asten, Inc. | Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same |
| US6146462A (en) * | 1998-05-08 | 2000-11-14 | Astenjohnson, Inc. | Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same |
| WO1999058756A1 (en) * | 1998-05-08 | 1999-11-18 | Asten, Inc. | Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same |
| DE10019816A1 (de) * | 2000-04-20 | 2001-10-31 | Asten Ag Eupen | Verfahren zur Beschichtung eines Garns sowie dadurch hergestelltes textiles Flächengebilde |
| CN112131757B (zh) * | 2020-10-13 | 2022-08-23 | 天津工业大学 | 涂层纺织材料固化过程中溶剂扩散过程的数值模拟方法 |
| EP4528019A1 (de) | 2023-09-21 | 2025-03-26 | Empa | Hydrophobe beschichtung von fasern, garnen und textilien |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3477902A (en) * | 1965-10-14 | 1969-11-11 | Radiation Res Corp | Process for making tires by exposure to an ionized gas and treatment with resorcinol-formaldehyde/latex composition and the product |
| FR1598055A (de) * | 1968-12-23 | 1970-06-29 | ||
| US3674667A (en) * | 1969-07-23 | 1972-07-04 | Allis Chalmers Mfg Co | Process for increasing water repellency of cotton cloth |
| US4188426A (en) * | 1977-12-12 | 1980-02-12 | Lord Corporation | Cold plasma modification of organic and inorganic surfaces |
| US4605539A (en) * | 1984-11-16 | 1986-08-12 | Ethyl Corporation | Phosphonitrilic chloride trimer purification |
| US4632842A (en) * | 1985-06-20 | 1986-12-30 | Atrium Medical Corporation | Glow discharge process for producing implantable devices |
| JP2990608B2 (ja) * | 1989-12-13 | 1999-12-13 | 株式会社ブリヂストン | 表面処理方法 |
| ATE141348T1 (de) * | 1990-12-27 | 1996-08-15 | Amann & Soehne | Verfahren zur veränderung der eigenschaften eines textilen substrates |
-
1994
- 1994-04-21 DE DE59410093T patent/DE59410093D1/de not_active Expired - Fee Related
- 1994-04-21 WO PCT/DE1994/000439 patent/WO1994024358A2/de not_active Ceased
- 1994-04-21 EP EP94912475A patent/EP0695384B2/de not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| WO1994024358A3 (de) | 1994-12-08 |
| DE59410093D1 (de) | 2002-05-08 |
| WO1994024358A2 (de) | 1994-10-27 |
| EP0695384A1 (de) | 1996-02-07 |
| EP0695384B1 (de) | 2002-04-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Shahidi et al. | New advances in plasma technology for textile | |
| Hong | Preparation and properties of electrospun poly (vinyl alcohol)/silver fiber web as wound dressings | |
| Sparavigna | Plasma treatment advantages for textiles | |
| Buyle | Nanoscale finishing of textiles via plasma treatment | |
| JP4664282B2 (ja) | 真空蒸着により機能化された多孔性材料 | |
| El-Sayed et al. | Recent advances in the application of plasma in textile finishing (A Review) | |
| Shah et al. | Innovative plasma technology in textile processing: a step towards green environment | |
| EP2104763A1 (de) | Substrat mit antimikrobieller beschichtung | |
| WO2008131152A2 (en) | Fibrous articles with one or more polyelectrolyte layers thereon and methods for making the same | |
| Shahidi et al. | Comparison between oxygen and nitrogen plasma treatment on adhesion properties and antibacterial activity of metal coated polypropylene fabrics | |
| EP0663968B1 (de) | Verfahren zur plasmabehandlung von antiballistisch wirksamen materialien | |
| EP0695384B2 (de) | Verfahren zur ummantelung von garnen und fasern in textilen gegenständen | |
| Vajpayee et al. | Non-thermal plasma treatment of cellulosic biopolymer to enhance its surface property for various applications: A review | |
| MX2011005535A (es) | Materiales de alta repelencia mediante nanotopografia y tratamiento posterior. | |
| Haji et al. | Plasma treatment for sustainable functionalization of textiles | |
| EP3697958B1 (de) | Verfahren zur herstellung eines textilen artikels mit hydrophobierter textiler oberfläche durch plasmabehandlung und nasschemische behandlung | |
| Parvinzadeh | Surface modification of synthetic fibers to improve performance: recent approaches | |
| SK732005A3 (sk) | Spôsob úpravy textilných výstužných materiálov, scieľom zvýšiť adhéziu ku gumárenskej zmesi | |
| Deshmukh et al. | Pretreatments of textiles prior to dyeing: Plasma processing | |
| El-Gabry et al. | Functional finishes of acrylic fibers using different technologies | |
| Saleem et al. | Plasma-fabric interaction for surface activation and functionalization: A review | |
| EP0232398B1 (de) | Verfahren zum modifizieren der oberfläche von polytetrafluorethylen, modifizierte formkörper auf der basis von polytetrafluorethylen und verwendung derselben | |
| EP3259396B1 (de) | Verfahren zur verbesserung der haftung zwischen einem verstärkungselement und einem elastomeren matrixmaterial | |
| DE19517210B4 (de) | Formteil und Verfahren zu dessen Herstellung | |
| Praveen et al. | Plasma-assisted fabrication of hydrophobic siloxane based sol–gel-coated coir fibres |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19951118 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE ES FR GB IT LI |
|
| 17Q | First examination report despatched |
Effective date: 19960509 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAASS, RUTH |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 20020403 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020403 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020403 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REF | Corresponds to: |
Ref document number: 59410093 Country of ref document: DE Date of ref document: 20020508 |
|
| GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20020403 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021021 Year of fee payment: 9 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021030 |
|
| EN | Fr: translation not filed | ||
| PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
| 26 | Opposition filed |
Opponent name: THE PROCTER & GAMBLE COMPANY Effective date: 20030102 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20030505 Year of fee payment: 10 |
|
| PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
| PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 |
|
| PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
| PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
| PLBC | Reply to examination report in opposition received |
Free format text: ORIGINAL CODE: EPIDOSNORE3 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
| 27A | Patent maintained in amended form |
Effective date: 20060426 |
|
| AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): CH DE ES FR GB IT LI |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20020422 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20061030 Year of fee payment: 13 |
|
| EN | Fr: translation not filed | ||
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071101 |