EP0693357B1 - Method for extrusion blow moulding hollow bodies of thermoplastic material - Google Patents

Method for extrusion blow moulding hollow bodies of thermoplastic material Download PDF

Info

Publication number
EP0693357B1
EP0693357B1 EP95109413A EP95109413A EP0693357B1 EP 0693357 B1 EP0693357 B1 EP 0693357B1 EP 95109413 A EP95109413 A EP 95109413A EP 95109413 A EP95109413 A EP 95109413A EP 0693357 B1 EP0693357 B1 EP 0693357B1
Authority
EP
European Patent Office
Prior art keywords
preform
extrusion
process according
weight
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95109413A
Other languages
German (de)
French (fr)
Other versions
EP0693357A2 (en
EP0693357A3 (en
Inventor
Harald Feuerherm
Horst Deckwerth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0693357A2 publication Critical patent/EP0693357A2/en
Publication of EP0693357A3 publication Critical patent/EP0693357A3/en
Application granted granted Critical
Publication of EP0693357B1 publication Critical patent/EP0693357B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • B29C49/0411Means for defining the wall or layer thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C2049/787Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C2049/7874Preform or article shape, weight, defect or presence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92066Time, e.g. start, termination, duration or interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92142Length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92428Calibration, after-treatment, or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92885Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding

Definitions

  • the invention relates to a method for extrusion blow molding of hollow bodies made of thermoplastic, in the case of the tubular preforms by means of a Screw extruder from the according to a wall thickness program controlled nozzle gap of an extrusion head extruded and in the following work cycles the extruded Preforms expanded into hollow bodies in a blow mold, the hollow body formed and adhering waste slugs be removed.
  • the wall thickness program controlling the nozzle gap has at least a pronounced maximum of function, the one Preform section of large wall thickness is assigned.
  • Each extreme the program curve set in individual areas is, the more precisely that belongs to these points Material that is subjected to the greatest stretching is in the right place in the blow mold be positioned.
  • Deviations of more than ⁇ 1% related to the height of the blow mold lead to considerable Loss of quality in the form of a hollow body distortion, lower compression values and lower strength properties of the finished hollow body.
  • one is optical measuring device for detecting the lower edge of the extruded preforms provided in a given Distance from the die gap of the extrusion head is positioned and upon detection of the lower edge of the preform controls the movement of the blow mold.
  • the time to which the preform reaches its target position is also measured and compared with a target time.
  • the speed of the Screw extruder regulated, with the aim of keeping the time in which a preform is formed, as constant as possible to keep.
  • the weights of the hollow body measured. Weight deviations occur from a target weight on, the nozzle gap of the Extrusion head.
  • blow mold is independent of the Timing preform length. The sequence of movements the blow mold and its parts are controlled in a timely manner.
  • the invention has for its object a method for extrusion blow molding of hollow bodies at the beginning Specify the type described in the case of weight deviations the hollow body as well as deviations from the given. Distribution of materials in the hollow bodies, in particular in Hollow body sections in the blow mold a particularly subject to strong stretching, quickly and safely corrected can be.
  • the paired use of extrusion time and Weight measurements on the same object in different production levels are detected, form a set of information that enables the Screw speed and the nozzle gap at the same time change that most of the time that follows extruded preforms the specified extrusion time and the hollow body produced from it the given one Have target weight.
  • the necessary regulations can be determined be carried out as soon as the still required Weight measurement is available. Are disturbances in this way so early by changing the screw speed and the Correctable nozzle gap.
  • Another improvement of the method according to the invention can be achieved in that a - for example at Start-up, batch change or optimization - new ones Setpoint deviation of the extrusion time, which a exceeds the given limit in the next work cycle regardless of the weight measurement not yet available by changing the screw speed and / or is eliminated by changing the nozzle gap. Will one Setpoint deviation found, the correction of Control variable that influences the situation, priority. The Correction is made so that the preform sections that subject to particularly strong stretching in the blow mold, take their target position.
  • An alternative embodiment of the method according to the invention provides that a manipulated variable for the preform formation correcting the position of the preform is activated if the setpoint deviation of the measured extrusion time one exceeds the predetermined limit, being used for the measurement the extrusion time a measuring device is used, the along the extrusion path at a distance from the lower edge of the preform of the fully extruded preform is arranged.
  • the manipulated variable for the position correction of the The amount of the preform is such that the assigned a functional maximum of the wall thickness range Preform cross section positioned in the blow mold there is where a maximum assigned to the maximum function value Stretching occurs during the blowing process.
  • the embodiments of the invention described above allow particularly quick regulation of the preform position.
  • the rule intervention has only provisional Character.
  • Weight measurement is available a few clock cycles later the necessary speed and nozzle gap corrections made that in the subsequent preforms not only the extrusion time but also its weight or that Weight of the hollow bodies made from the preforms correspond to the target values.
  • Wrong regulations, which resulted from the provisional intervention can be corrected in one step.
  • To the preforms have this final correction not only the right position for blow molding but also that right weight.
  • the invention is based on the consideration from that for the quality of a hollow body in the first place
  • Line compliance with minimum compression values is crucial are and the precise adherence to the target weights on the other hand, it is of somewhat less importance.
  • For Achieving a high compression value with a low operating weight are wall thickness programs with pointed ones Functional maxima required. If the procedure with a operated such a wall thickness program, it is crucial to the fact that the assigned to the functional maxima Preform sections their target position to the blow mold take in.
  • the disadvantage that some of the hollow bodies in the train manufacturing can have hollow body weights that may differ slightly from the target weight, however can easily be accepted.
  • the speed of the screw extruder is changed in accordance with the weight deviations from the predetermined target weight and, in addition, the nozzle gap is corrected in accordance with the weight deviations in conjunction with the assigned target value deviations of the extrusion time.
  • the gross weight of the hollow body, including the adhering waste slugs, measured after the removal from the blow mold, is preferably used as the measured weight G actual .
  • it is also within the scope of the invention to use other weight measurements for the control method in particular the net weight or another comparative weight which is characteristic of the blow product removed from the blow mold and which can also represent the sum of partial weights.
  • the net weight of the hollow body after removal of the waste slugs is preferably used here as the measured weight G actual .
  • the gross hollow body weights or other comparison weights which can also represent the sum of partial weights, can also be used.
  • the extrusion time by a measuring device captures that near the bottom of the completely extruded preforms is positioned.
  • the distance the measuring device from the nozzle gap is chosen such that even if the preform is not the desired length still reaches a measurement signal is given.
  • the method provides that the extrusion time by a Measuring device is detected, its distance from the nozzle gap is dimensioned so that this distance of the target length of a preform section from the preform lower edge or a reference mark up to one critical preform cross-section that a functional maxium assigned to the wall thickness program.
  • the extrusion time measurement a function maximum of Wall thickness program directly assigned. Equals to Extrusion time measured value to the setpoint, so is exactly at this point the preform section extrudes the subject to particularly strong stretching in the blow mold.
  • the relative movement changed between the blow mold and the preform and / or the sequence of the wall thickness program relative to Preform moved or with a short-term Provide a stopover at a specified profile point and / or the molding time is changed or a different one comparable time correction can be made.
  • a fine correction in the wall thickness range the length of the program curve section corresponding to the section between the bottom of the preform and one with respect to the later stretching of the blow mold Preform critical cross section of the preform is assigned to be changed.
  • the invention teaches that Lower edge of the preforms by at least one light barrier is recorded, which is the timing of the Extrusion time stops.
  • the several horizontally arranged light barriers stopped measured time values compared and that an error signal associated with the preform is saved when the time difference between the stopped time measurement values outside of a predetermined one Tolerance range.
  • the error signal can be discharged the molded from the preform in question Hollow body and / or as a controlled variable for changing a Operating parameters of the extrusion blow molding process used become.
  • the time sequence of the error signal underlying measurement signals allow conclusions to be drawn about the Shape of the preform bottom edge and allow that Detect operational failures.
  • a distracting Hose misalignment is as identifiable as one too large or too small amount of supporting air.
  • the method according to the invention is therefore in accordance with the chronological order of the error signal underlying measurement signals the amount of supporting air or a slanted hose run corrected.
  • a great measurement accuracy and reliable evaluation of the measurement signals is particularly important then ensured when the light barriers in Groups are arranged horizontally at an angle of 90 ° are preferably aligned with each other and each include at least two parallel light barriers.
  • the measurement signals are described in the above Way evaluated.
  • by averaging of the time measurements stopped by the light barrier determines the setpoint comparison used extrusion time become.
  • the invention teaches that an associated with the preform Signal is saved when the setpoint deviation of the Extrusion time outside of a predetermined operational Tolerance field lies, and that this signal to discharge defective hollow body is used.
  • the signal controls a sorting device, if the from a preform with the signal blown hollow body reaches the sorting device, the hollow body in question is discharged.
  • the extrusion time of a preform not only to control and regulate the process, but also as a quality characteristic of that from the concerned Preform produced hollow body used.
  • the invention teaches in this context in a further advantageous embodiment that the Setpoint deviations of the preforms frequency distributions created and saved and that the operational tolerance, which is the criterion for Ejection of hollow bodies is used depending changed by the applicable frequency distribution becomes.
  • the target weight is preferably also the tolerance field changed, with a narrow tolerance field a smaller one Target weight and a wider tolerance field a larger one Target weight is to be assigned.
  • An increase in the target weight by a few percentage points compared to a target weight, which with fully regulated blow molding system and steady state is aimed for is Appropriate starting procedure.
  • the dependency between that Target weight, the operational tolerance area and the Frequency distribution of the setpoint deviation is through empirical functions tangible and expedient in saved on a computer. When sending the signal to Removing defective hollow bodies are the in Computer stored functions taken into account.
  • a optical and / or acoustic interference signal is emitted and the hollow bodies are removed if the setpoint deviation the measured extrusion time outside of an operational tolerance range reached.
  • the inventive method described above is characterized by considerable advantages. Allows starting a blow molding machine with automatic Transition to the production phase, allows optimization the hollow body and is of course also suitable for Material batch change and for the stationary Production plant. It allows you to work with one Wall thickness program, which is a program curve with extreme inserted functional maxima. According to the invention Processed hollow bodies stand out due to high minimum compression values with minimum hollow body weight out. Disturbances can be corrected quickly and specifically are minimizing rejects. Furthermore, one Control and discharge of hollow bodies guaranteed which do not reach the required mechanical values. Finally, the method according to the invention enables Manufacture of canisters and other hollow bodies with complicated shape in continuous extrusion. The method is especially for the production of Suitable plastic fuel tanks where the Maintaining minimum wall thicknesses is the main problem.
  • tubular preforms 1 are extruded from the die gap 4 of an extrusion head 5, which is controlled according to a wall thickness program 3, by means of a screw extruder 2.
  • the extruded preforms 1 are then expanded into hollow bodies 7 in a blow mold 6.
  • the hollow bodies 7 are formed and adhering waste slugs are removed.
  • the extrusion time t actual required to reach a predetermined tube length is measured, its setpoint deviation ⁇ t is determined from a setpoint t setpoint , and the setpoint deviation ⁇ t together with the actual values for the speed n S of the screw extruder 2 and the die gap s A stored in a computer 8.
  • the storage takes place with assignment to the preform 1 and the hollow body produced therefrom.
  • weights G Ist of the hollow body 7 are measured, namely their gross weights G B or their net weights G N.
  • weight determined deviations ⁇ G from a predetermined desired weight W is to be with the associated stored setpoint deviations ⁇ t the extrusion time t in pairs as control deviations for determining the required speed and die gap corrections ⁇ n S, ⁇ s A used.
  • the operating parameters n S , s A for the extrusion are determined in the following working cycle from the stored speed and nozzle gap values and the determined speed and nozzle gap corrections ⁇ n S , ⁇ s A.
  • the speed ⁇ n S of the screw extruder is additionally corrected in accordance with the weight deviations ⁇ G, but in conjunction with the assigned set point deviations of the extrusion time ⁇ t.
  • Speed and nozzle gap corrections ⁇ n S , ⁇ s A are carried out simultaneously.
  • the net weight G N is preferably used as the weight measurement.
  • the extrusion time t actual is recorded by a measuring device 9, which is positioned in the area of the lower edge of the preforms 1 after their complete extrusion and has at least one light barrier which stops the time measurement of the extrusion time t actual .
  • the distance of the measuring device 9 from the nozzle gap 4 corresponds approximately to the desired length of the preforms 1, but is selected so that even if the actual preform length is somewhat shorter than the desired length, a measurement signal is still emitted.
  • the measuring device 9 expediently comprises a plurality of light barriers.
  • the extrusion time t actual used for the setpoint comparison is determined by averaging the time measured values stopped by the light barriers. In this way, measurement errors due to irregularities on the lower edge of the preform can be largely eliminated.
  • length adjustment or length control further measuring devices 10a, 10b are provided. Divided by two or more measuring devices 10b arranged one below the other, 10a, 9 and an extraction time comparison between the Start and the measuring equipment can have operating parameters to compensate for sag and / or shrinkage be determined.
  • the table below shows, using examples, operating states which can occur in the method according to the invention and the resulting procedural measures. It is assumed that the target value t target for the extrusion time is 12.0 seconds. If the measured extrusion time t Vfl is in a range from 11.9 to 12.1 seconds, the preform takes up the predetermined position relative to the blow mold. Thickened wall sections of the preform, to which functional maxima of the wall thickness program are assigned, are positioned in blow molding areas in which the greatest stretching occurs. The hollow bodies made from these preforms have the required properties.
  • the screw speed n S is regulated in accordance with the setpoint deviation ⁇ t and the extrusion parameters, in the exemplary embodiment the screw speed n S , are corrected in this way. If the setpoint deviation ⁇ t lies outside the operational tolerance field t Tol2- , t Tol2 + specified by t Tol2- and t Tol2 + , a signal assigned to the preform is stored.
  • the signal controls the sorting device 11 in the manner described for discharging defective hollow bodies when the hollow body in question has reached the sorting device.
  • the screw speed is also regulated here in accordance with the setpoint deviation t. If the setpoint deviation finally reaches the limit values t Tol3- , t Tol3 + which lie outside the operational tolerance range , an optical and / or acoustic interference signal is emitted without a time delay and all hollow bodies are removed.
  • FIG. 2 shows the frequency distribution for the setpoint deviation .DELTA.t from the extrusion time t.sub.act in a blow molding system operated according to the inventive method in comparison with the prior art.
  • the bar graph 12 relates to the method according to the invention.
  • the distribution curve B shows a frequency distribution which is measured in a blow molding system operated according to a known open-loop and closed-loop control method. It can be achieved by the method according to the invention that the deviations ⁇ t from the extrusion time lie in a comparatively very narrow band.
  • This narrow frequency distribution when using the method according to the invention is based on the fact that disturbances which influence the position of the preforms in relation to the blow mold can be corrected quickly and in a targeted manner.
  • the measuring device 9 comprises a plurality of light barriers 14, which are arranged horizontally next to each other.
  • the light barriers 14 are arranged in groups, the horizontally at an angle of preferably 90 ° are aligned with each other and at least two each include parallel light barriers.
  • the groups in different horizontal levels arranged.
  • Photoelectric sensors are intended within the scope of the invention Photo sensors as well as other contactless working Measuring devices for the position detection of the preform are suitable include.
  • the one from the light barriers 14 stopped time measurements are compared, and it becomes an error signal associated with the preform saved when the time differences between the stopped time measurement values outside of a predetermined Tolerance range. 3 is, for example annoying hose misalignment shown.
  • This signal can be recognized by measurement signals and can therefore be Operating personnel optically and / or acoustically displayed and / or corrected by intervening in the control process become.
  • a disturbing hose misalignment reduces the Quality of the preform 1 made Hollow body 7. Consequently, the error signal also to discharge the preform from the concerned 1 shaped hollow body 7 used.
  • the error signal can also use the error signal as a controlled variable for change an operating parameter of the extrusion blow molding process be, e.g. B. to change the temperature of a or several heating or cooling segments of the extrusion head 5 or heating or cooling devices on the preform 1.
  • an operating parameter of the extrusion blow molding process be, e.g. B. to change the temperature of a or several heating or cooling segments of the extrusion head 5 or heating or cooling devices on the preform 1.
  • Measuring device 9 can be detected and by intervention in the Control procedures by hand or, if necessary, automatically Getting corrected.
  • the program curve of the wall thickness program 3 points to narrow areas, pronounced Function maxima KP1, KP2 at a distance y1, y2 (from which in Direction of extrusion viewed from the front end of the preform) on the preform areas assigned which are strongly stretched in the blow mold. These preform cross sections are therefore also called critical cross sections.
  • the program curve of the wall thickness program 3 is composed of one in the embodiment uniform basic gap 13, a ramp 14 and one Profile curve 15.
  • the ramp 14 increases from the beginning of the Preform extrusion at the die gap 4 of the extrusion head 5 continuously.
  • the ramp 14 helps sagging of the preform 1 due to the length-dependent To compensate for weight.
  • the two measuring devices 10a, 10b are critical Points KP1, KP2 assigned and in one of the curve section y2-y1 corresponding to the program curve Distance arranged.
  • the measuring devices 9, 10a are in a distance that the program curve section is assigned to y3. Reaches preform 1 at Extrusion process the measuring device 10a, then becomes the critical preform cross section KP2 produced in the nozzle gap 4.
  • one or more sections y1 / y2, y1 / y3 can be regulated when the wall thickness program is divided into sections. Furthermore, the preform length or the amount of supporting air and / or the supporting air pressure can be increased at a smaller distance y2-y1 and reduced accordingly at a larger distance. It is also possible to briefly interrupt the sequence of the wall thickness program at one or more profile points, preferably at the minimum between the function maxima KP1, KP2. Since the extrusion of the preform continues during the interruption of the program sequence, with the operating settings at the time of the program interruption, the preform is stretched in the middle area between the functional maxima. If the distance y2-y1 is too small, a correction is possible by reducing the profile factor and increasing the base gap or increasing the ramp. Reverse dependencies arise when the distance y2-y1 is too large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

The thermoplastic extruder's (2) orifice (4) is controlled by the wall thickness program (3). The preform (1) is blown to a hollow body (7) in the mould (6), removed, and any adherent fragments are taken out. The time t1st to extrude a given length, is measured; difference at DELTA G from the desired value Gsoll; this is stored, paired with DELTA t values. The pairs control ns and sa in a following cycle. It measures the time to grow the preform, even before it is blown to shape. This is largely controlled by the extrusion gap and extruder screw speed, for given material properties. The weight of the vessel, the material distribution in the hollow blown body, and the wall thickness are controlled. The process in this case produces a particularly marked stretching of the preform, a rectangular vessel being depicted. The parameters are particularly quickly stabilised. Any weight variation is fed back to the next cycle. All the key process parameters are inter-related to the programmed wall thickness. Because the parameters are inter-related, methods relying on individual adjustment and measuring the effects in isolation are obviated. Further process details are provided, and examples of the necessary corrective action, in terms of screw speed alteration, required by measured extrusion times, are tabulated for a practical case. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Extrusionsblasformen von Hohlkörpern aus thermoplastischem Kunststoff, bei dem schlauchförmige Vorformlinge mittels eines Schneckenextruders aus dem nach Maßgabe eines Wanddickenprogramms gesteuerten Düsenspalt eines Strangpreßkopfes extrudiert und in folgenden Arbeitstakten die extrudierten Vorformlinge in einer Blasform zu Hohlkörpern aufgeweitet, die Hohlkörper ausgeformt und anhaftende Abfallbutzen entfernt werden.The invention relates to a method for extrusion blow molding of hollow bodies made of thermoplastic, in the case of the tubular preforms by means of a Screw extruder from the according to a wall thickness program controlled nozzle gap of an extrusion head extruded and in the following work cycles the extruded Preforms expanded into hollow bodies in a blow mold, the hollow body formed and adhering waste slugs be removed.

Das den Düsenspalt steuernde Wanddickenprogramm weist mindestens ein ausgeprägtes Funktionsmaximum auf, dem ein Vorformlingsabschnitt großer Wandstärke zugeordnet ist. Der dem Funktionsmaximum zugeordnete Vorformlingsabschnitt unterliegt in der Blasform einer starken Reckung. Je extremer die Programmkurve in einzelnen Bereichen eingestellt ist, um so genauer muß das zu diesen Punkten gehörende Material, welches der größten Reckung unterworfen ist, auch an der richtigen Stelle in der Blasform positioniert werden. Abweichungen von mehr als ± 1 % bezogen auf die Höhe der Blasform führen zu erheblichen Qualitätseinbußen in Form eines Hohlkörperverzugs, geringeren Stauchwerten und geringeren Festigkeitseigenschaften des fertigen Hohlkörpers. Um sicherzustellen, daß die Vorformlinge eine vorgegebene Soll-Lage relativ zur Blasform einnehmen und außerdem die aus den Vorformlingen gefertigten Hohlkörper das vorgegebene Sollgewicht aufweisen, ist eine Regelung des Verfahrens erforderlich, welche mindestens auf die Drehzahl des Schneckenextruders sowie den Düsenspalt des Strangpreßkopfes Einfluß nimmt.The wall thickness program controlling the nozzle gap has at least a pronounced maximum of function, the one Preform section of large wall thickness is assigned. The preform section assigned to the functional maximum subject to strong stretching in the blow mold. Each extreme the program curve set in individual areas is, the more precisely that belongs to these points Material that is subjected to the greatest stretching is in the right place in the blow mold be positioned. Deviations of more than ± 1% related to the height of the blow mold lead to considerable Loss of quality in the form of a hollow body distortion, lower compression values and lower strength properties of the finished hollow body. To ensure, that the preforms a predetermined target position relative to Take the blow mold and also that from the preforms manufactured hollow body have the specified target weight, regulation of the procedure is necessary, which at least depends on the speed of the screw extruder as well as the die gap of the extrusion head.

Bei einem aus EP-A-0 345 474 bekannten Verfahren werden an den Hohlkörpern zwei unterschiedliche Gewichtsmessungen durchgeführt und nach Maßgabe der Gewichtsmeßwerte die. Schneckendrehzahl und der Düsenspalt des Strangpreßkopfes gesteuert. Vorzugsweise werden das Bruttogewicht der Hohlkörper im Anschluß an die Entformung aus der Blasform sowie das Nettogewicht der Hohlkörper, nach vorangegangener Entfernung der Abfallbutzen, gemessen und diese Meßwerte für das Regelungsverfahren verwendet. Das Verfahren hat sich an sich bewährt. Da die Gewichtsmeßwerte systembedingt aber frühestens nach dem vierten Arbeitstakt vorliegen, und zwar im Anschluß an Vorformlingsbildung (Takt 1), Aufweitung in der Blasform (Takt 2) und Entfernung der Abfallbutzen (Takt 3), reagiert das Verfahren auf Störungen bei der Extrusion, beispielsweise infolge geänderter Massetemperaturen, Schwankungen der Förderleistung, Änderungen der Materialeigenschaften, und dergleichen, mit erheblicher Zeitverzögerung. Zwischenzeitlich im zweiten bis vierten Arbeitstakt gefertigte Vorformlinge können zu fehlerhaften Hohlkörpern führen. Das Erfordernis von zwei Gewichtsmeßeinrichtungen erfordert ferner einen beachtlichen anlagentechnischen Aufwand.In a method known from EP-A-0 345 474 on the hollow body two different weight measurements carried out and according to the weight measurements. Screw speed and the die gap of the extrusion head controlled. Preferably the gross weight of the hollow body following removal from the blow mold as well as the net weight of the hollow body, according to the previous one Removal of the waste slugs, measured and this Measured values used for the control process. The procedure has proven itself in itself. Because the weight measurements due to the system, however, at the earliest after the fourth work cycle are present, namely after preform formation (Bar 1), widening in the blow mold (bar 2) and removal the waste slug (bar 3), the procedure reacts for disturbances in the extrusion, for example as a result changed melt temperatures, fluctuations in the delivery rate, Changes in material properties, and the like, with a considerable time delay. In the meantime preforms produced in the second to fourth work cycle can lead to defective hollow bodies. The Requires two weight measuring devices also a considerable investment in plant technology.

Bei einem aus EP-A-0 026 828 bekannten Verfahren ist eine optische Meßvorrichtung zur Erfassung der Unterkante der extrudierten Vorformlinge vorgesehen, die in einem vorgegebenen Abstand von dem Düsenspalt des Strangpreßkopfes positioniert ist und bei Erfassung der Vorformlings-Unterkante die Bewegung der Blasform steuert. Der Zeitpunkt, zu dem der Vorformling seine Soll-Lage erreicht, wird ebenfalls gemessen und mit einem Soll-Zeitpunkt verglichen. Nach Maßgabe der Sollwert-Abweichung wird die Drehzahl des Schneckenextruders geregelt, mit dem Ziel, die Zeit, in welcher ein Vorformling gebildet wird, möglichst konstant zu halten. Ferner werden die Gewichte der Hohlkörper gemessen. Treten Gewichtsabweichungen von einem Sollgewicht auf, so erfolgt eine Korrektur des Düsenspaltes des Strangpreßkopfes. Aufgrund der Wechselwirkung zwischen den Parametern sind mehrere Regelkreise erforderlich, die in bestimmter Reihenfolge aktiviert werden. Priorität hat die Erfassung des Hohlkörpergewichtes. Wird eine Gewichtsabweichung festgestellt, so erfolgt eine Korrektur des Düsenspaltes. Es resultiert eine Längenänderung des Vorformlings, die wiederum eine Änderung der schlauchlängen-abhängig gesteuerten Taktzeit der Maschine bewirkt. Mit Hilfe eines unterlagerten Regelkreises wird die Längenänderung des Vorformlings durch eine Korrektur der Extruderdrehzahl wieder kompensiert und die Taktzeit der Blasformanlage einem Sollwert angepaßt. Ein dritter unterlagerter Regelkreis wird aktiviert, wenn Unterschiede zwischen der Taktzeit der Blasformanlage und der Zykluszeit des Wanddickenprogrammierers infolge einer zu gering gewählten Schrittgröße bei der Extruderdrehzahlkorrektur auftreten. Das Regelungsverfahren arbeitet, insbesondere im Hinblick auf die Lagekorrektur des Vorformlings, langsam. Das Regelungsverfahren ist aufwendig. In a method known from EP-A-0 026 828, one is optical measuring device for detecting the lower edge of the extruded preforms provided in a given Distance from the die gap of the extrusion head is positioned and upon detection of the lower edge of the preform controls the movement of the blow mold. The time to which the preform reaches its target position is also measured and compared with a target time. In accordance with the setpoint deviation, the speed of the Screw extruder regulated, with the aim of keeping the time in which a preform is formed, as constant as possible to keep. Furthermore, the weights of the hollow body measured. Weight deviations occur from a target weight on, the nozzle gap of the Extrusion head. Because of the interaction between the Several control loops are required in the parameters in a specific order. Has priority Detection of the hollow body weight. Becomes a weight deviation determined, a correction of the Nozzle gap. There is a change in the length of the preform, which in turn is a change in hose length-dependent controlled cycle time of the machine. With The length change is made with the help of a subordinate control loop of the preform by correcting the Extruder speed compensated again and the cycle time of the Blow molding system adapted to a setpoint. A third subordinate Loop is activated when there are differences between the cycle time of the blow molding system and the cycle time the wall thickness programmer due to a too low selected step size for the extruder speed correction occur. The regulatory process works, in particular with regard to correcting the position of the preform, slowly. The regulatory process is complex.

Daneben ist es bekannt, die Blasform unabhängig von der Vorformlingslänge zeitlich zu steuern. Der Bewegungsablauf der Blasform und deren Teile wird zeitstarr gesteuert.In addition, it is known that the blow mold is independent of the Timing preform length. The sequence of movements the blow mold and its parts are controlled in a timely manner.

Die Praxis hat gezeigt, daß einzelne Blasprodukte einer nach dem Stand der Technik geregelten Blasformanlage noch. beachtliche Stauchwertunterschiede aufweisen können. Wenn das Wanddickenprogramm auf schmale Bereiche beschränkte, ausgeprägte Funktionsmaxima aufweist, sind die Unterschiede besonders groß. Zur Erreichung hoher Stauchwerte bei minimalem Einsatzgewicht sind solche ausgeprägten Funktionsmaxima aber erforderlich. Je extremer die Funktionsmaxima ausgeprägt sind, um so wichtiger ist die Einhaltung der Lage zur Blasform. Werden bei Stichproben an einzelnen Hohlkörpern Unterschreitungen der Mindeststauchwerte festgestellt, so ist die ganze Produktions-charge unbrauchbar, denn ein unzureichender Stauchwert eines einzigen Hohlkörpers kann in der Praxis die Ursache dafür sein, daß beispielsweise ein Stapel aus gefüllten Kanistern kippt. Um bei dem Betreiben des Verfahrens auf der sicheren Seite zu liegen, hilft man sich in der Praxis häufig damit, daß die Kurve des Wanddickenprogramms unter Reduzierung der Funktionsmaxima, bei gleichzeitiger Verbreiterung der Funktionsspitzen, verschliffen wird, wobei erhöhter Materialbedarf oder geringere Stauchwerte in Kauf genommen werden. Das ist unbefriedigend.Practice has shown that individual blown products are one Blow molding system controlled according to the state of the art. can have considerable differences in compression value. If limited the wall thickness range to narrow areas, distinctive functional maxima are the differences extraordinary big. To achieve high compression values with a minimal operating weight, these are pronounced Functional maxima are required. The more extreme that Functional maxima are pronounced, the more important is the Compliance with the blow mold position. Will be at random individual hollow bodies are below the minimum compression values the whole production batch is determined unusable because of an insufficient compression value In practice, a single hollow body can be the cause be sure that, for example, a stack of filled Canisters tip over. In order to operate in the process to be on the safe side is helpful in practice often with the curve of the wall thickness program below Reduction of the functional maxima, while broadening the functional tips, is sanded, whereby increased material requirements or lower compression values in purchase be taken. It is unsatisfactory.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Extrusionsblasformen von Hohlkörpern der eingangs beschriebenen Art anzugeben, bei dem Gewichtsabweichungen der Hohlkörper sowie Abweichungen von der vorgegebenen. Materialverteilung in den Hohlkörpern, insbesondere in Hohlkörperabschnitten, die in der Blasform einer besonders starken Reckung unterliegen, schnell und sicher ausgeregelt werden können.The invention has for its object a method for extrusion blow molding of hollow bodies at the beginning Specify the type described in the case of weight deviations the hollow body as well as deviations from the given. Distribution of materials in the hollow bodies, in particular in Hollow body sections in the blow mold a particularly subject to strong stretching, quickly and safely corrected can be.

Gegenstand der Erfindung und Lösung dieser Aufgabe ist ein Verfahren zum Extrusionsblasformen von Hohlkörpern aus thermoplastischem Kunststoff, bei dem schlauchförmige Vorformlinge mittels eines Schneckenextruders aus dem nach Maßgabe eines Wanddickenprogramms gesteuerten Düsenspalt eines Strangpreßkopfes extrudiert und in folgenden Arbeitstakten die extrudierten Vorformlinge in einer Blasform zu Hohlkörpern aufgeweitet, die Hohlkörper ausgeformt und anhaftende Abfallbutzen entfernt werden, wobei

  • zu jedem Vorformling die bis zum Erreichen einer vorgegebenen Schlauchlänge benötigte Extrusionszeit gemessen, deren Sollwertabweichung von einem Sollwert bestimmt und die Sollwertabweichung zusammen mit dem Istwert für die Drehzahl und/oder der Drehzahländerung des Schneckenextruders sowie dem Istwert für den Düsenspalt und/oder der Düsenspaltänderung unter Zuordnung zum Vorformling und daraus hergestelltem Hohlkörper in einem Rechner gespeichert wird,
  • die Gewichte der Hohlkörper gemessen und Gewichtsabweichungen von einem vorgegebenen Sollgewicht mit den zugeordneten, gespeicherten Sollwertabweichungen der Extrusionszeit paarweise als Regelabweichungen für die Festlegung erforderlicher Drehzahl- und Düsenspaltkorrekturen eingesetzt werden und
  • aus den gespeicherten Drehzahl- und Düsenspaltwerten sowie den ermittelten Drehzahl- und Düsenspaltkorrekturen die Betriebsparameter für die Extrusion in einem folgenden Arbeitstakt festgelegt werden.
  • The object of the invention and solution to this problem is a process for the extrusion blow molding of hollow bodies made of thermoplastic material, in which tubular preforms are extruded from the die gap of an extrusion head controlled according to a wall thickness program by means of a screw extruder and the extruded preforms are expanded in a blow mold into hollow bodies in the following working cycles. the hollow bodies are formed and adhering waste slugs are removed, wherein
  • For each preform, the extrusion time required to reach a specified hose length is measured, its setpoint deviation is determined from a setpoint and the setpoint deviation is assigned together with the actual value for the speed and / or the speed change of the screw extruder and the actual value for the die gap and / or the die gap change the preform and the hollow body produced therefrom is stored in a computer,
  • the weights of the hollow bodies are measured and weight deviations from a predetermined nominal weight with the assigned, stored nominal value deviations of the extrusion time are used in pairs as control deviations for determining the required speed and nozzle gap corrections and
  • the operating parameters for the extrusion are determined in a subsequent work cycle from the stored speed and nozzle gap values and the determined speed and nozzle gap corrections.
  • Die paarweise Verwendung zugeordneten Extrusionszeit- und Gewichtsmeßwerte, die an ein und demselben Gegenstand in unterschiedlichen Fertigungsstufen erfaßt werden, bilden einen Satz von Informationen, der es ermöglicht, die Schneckendrehzahl und den Düsenspalt gleichzeitig so zu verändern, daß schon meistens die im folgenden Zeittakt extrudierten Vorformlinge die vorgegebene Extrusionszeit und die daraus hergestellten Hohlkörper das vorgegebene Sollgewicht aufweisen. Im Rahmen der Erfindung liegt es, als Gewichtsmeßwert das Nettogewicht des Hohlkörpers nach Entfernen der Abfallbutzen oder das Hohlkörperbruttogewicht, welches unmittelbar im Anschluß an die Entformung des Hohlkörpers aus der Blasform gemessen wird, oder auch ein anderes für das der Blasform entnommene Blasprodukt charakteristisches Vergleichsgewicht, welches auch die Summe von Teilgewichten darstellen kann, einzusetzen. Im Rahmen der Erfindung liegt es, auch das Gewicht des unteren Abfallbutzens als Gewichtsmeßwert einzusetzen. Da die Extrusionszeit schon in einem vorangegangenen Zeittakt ermittelt wurde, können die erforderlichen Regelungen durchgeführt werden, sobald der noch erforderliche Gewichtsmeßwert vorliegt. Störgrößen sind auf diese Weise so frühzeitig durch Änderung der Schneckendrehzahl und des Düsenspaltes korrigierbar.The paired use of extrusion time and Weight measurements on the same object in different production levels are detected, form a set of information that enables the Screw speed and the nozzle gap at the same time change that most of the time that follows extruded preforms the specified extrusion time and the hollow body produced from it the given one Have target weight. It is within the scope of the invention the weight of the net weight of the hollow body after Removing the waste slugs or the gross body weight, which immediately after demolding of the hollow body is measured from the blow mold, or also another for the blow product taken from the blow mold characteristic reference weight, which is also the Can represent the sum of partial weights. in the The scope of the invention is also the weight of the lower waste as a weight measurement. There the extrusion time in a previous time cycle the necessary regulations can be determined be carried out as soon as the still required Weight measurement is available. Are disturbances in this way so early by changing the screw speed and the Correctable nozzle gap.

    Eine weitere Verbesserung des erfindungsgemäßen Verfahrens ist dadurch erreichbar, daß eine - beispielsweise beim Anfahren, Chargenwechsel oder Optimieren - neu auftretende Sollwertabweichung der Extrusionszeit, welche einen gegebenen Grenzwert übersteigt, im nächsten Arbeitstakt ohne Rücksicht auf den noch nicht vorhandenen Gewichtsmeßwert durch Änderungen der Schneckendrehzahl und/oder durch Änderung des Düsenspaltes beseitigt wird. Wird eine Sollwertabweichung festgestellt, so hat die Korrektur der Regelgröße, welche die Lage beeinflußt, Priorität. Die Korrektur erfolgt so, daß die Vorformlingsabschnitte, die in der Blasform einer besonders starken Reckung unterliegen, ihre SollLage einnehmen. Eine alternative Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, daß schon im Takt der Vorformlingsbildung eine Stellgröße für die Lagekorrektur des Vorformlings aktiviert wird, wenn die Sollwertabweichung der gemessenen Extrusionszeit einen vorgegebenen Grenzwert übersteigt, wobei für die Messung der Extrusionszeit eine Meßeinrichtung verwendet wird, die entlang des Extrusionsweges mit Abstand von der Vorformlingsunterkante des vollständig extrudierten Vorformlings angeordnet ist. Die Stellgröße für die Lagekorrektur des Vorformlings ist dem Betrage nach so bemessen, daß der einem Funktionsmaximum des Wanddickenprogramms zugeordnete Vorformlingsquerschnitt in der Blasform dort positioniert ist, wo eine dem Funktionsmaximalwert zugeordnete maximale Reckung beim Blasvorgang auftritt. Another improvement of the method according to the invention can be achieved in that a - for example at Start-up, batch change or optimization - new ones Setpoint deviation of the extrusion time, which a exceeds the given limit in the next work cycle regardless of the weight measurement not yet available by changing the screw speed and / or is eliminated by changing the nozzle gap. Will one Setpoint deviation found, the correction of Control variable that influences the situation, priority. The Correction is made so that the preform sections that subject to particularly strong stretching in the blow mold, take their target position. An alternative embodiment of the method according to the invention provides that a manipulated variable for the preform formation correcting the position of the preform is activated if the setpoint deviation of the measured extrusion time one exceeds the predetermined limit, being used for the measurement the extrusion time a measuring device is used, the along the extrusion path at a distance from the lower edge of the preform of the fully extruded preform is arranged. The manipulated variable for the position correction of the The amount of the preform is such that the assigned a functional maximum of the wall thickness range Preform cross section positioned in the blow mold there is where a maximum assigned to the maximum function value Stretching occurs during the blowing process.

    Die vorstehend beschriebenen Ausgestaltungen der Erfindung erlauben eine besonders schnelle Regelung der Vorformlingslage. Der Regeleingriff hat nur vorläufigen Charakter. Sobald der zur Extrusionszeit zugehörende Gewichtsmeßwert einige Zeittakte später vorliegt, werden die erforderlichen Drehzahl- und Düsenspaltkorrekturen so vorgenommen, daß bei den nachfolgenden Vorformlingen nicht nur die Extrusionszeit sondern auch deren Gewicht bzw. das Gewicht der aus den Vorformlingen hergestellten Hohlkörpern den Sollwerten entsprechen. Falsche Regelungen, die sich durch den vorläufigen Regeleingriff ergeben haben können, können in einem Schritt korrigiert werden. Nach dieser abschließenden Korrektur haben die Vorformlinge nicht nur die richtige Lage zur Blasform sondern auch das richtige Gewicht. Die Erfindung geht von der Überlegung aus, daß für die Qualität eines Hohlkörpers in erster Linie die Einhaltung von Mindeststauchwerten entscheidend sind und die präzise Einhaltung der Sollgewichte demgegenüber von etwas geringerer Bedeutung ist. Zur Erreichung eines hohen Stauchwertes bei geringem Einsatzgewicht sind Wanddickenprogramme mit spitz gesteckten Funktionsmaxima erforderlich. Wird das Verfahren mit einem solchen Wanddickenprogramm betrieben, so kommt es entscheidend darauf an, daß die den Funktionsmaxima zugeordneten Vorformlingsabschnitte ihre Soll-Lage zur Blasform einnehmen. Der Nachteil, daß einige der Hohlkörper im Zuge der Fertigung Hohlkörpergewichte aufweisen können, die geringfügig von dem Sollgewicht abweichen, kann demgegenüber ohne weiteres in Kauf genommen werden. The embodiments of the invention described above allow particularly quick regulation of the preform position. The rule intervention has only provisional Character. As soon as the one belonging to the extrusion time Weight measurement is available a few clock cycles later the necessary speed and nozzle gap corrections made that in the subsequent preforms not only the extrusion time but also its weight or that Weight of the hollow bodies made from the preforms correspond to the target values. Wrong regulations, which resulted from the provisional intervention can be corrected in one step. To the preforms have this final correction not only the right position for blow molding but also that right weight. The invention is based on the consideration from that for the quality of a hollow body in the first place Line compliance with minimum compression values is crucial are and the precise adherence to the target weights on the other hand, it is of somewhat less importance. For Achieving a high compression value with a low operating weight are wall thickness programs with pointed ones Functional maxima required. If the procedure with a operated such a wall thickness program, it is crucial to the fact that the assigned to the functional maxima Preform sections their target position to the blow mold take in. The disadvantage that some of the hollow bodies in the train manufacturing can have hollow body weights that may differ slightly from the target weight, however can easily be accepted.

    Bei der praktischen Ausführung des erfindungsgemäßen Verfahrens wird man zweckmäßigerweise Änderungen der Schneckendrehzahl und des Düsenspaltes nur dann einleiten, wenn die Sollwertabweichungen der Extrusionszeit in ein vorgegebenes, durch innere Grenzwerte und äußere Grenzwerte begrenztes Toleranzfeld fallen, wobei die inneren Grenzwerte einen schmalen Bandbereich mit positiven und negativen Abweichungen von dem Sollwert der Extrusionszeit begrenzen und wobei die äußeren Grenzwerte maximal zulässige positive und negative Abweichungen von dem Sollwert der Extrusionszeit definieren.In the practical implementation of the method according to the invention one will expediently change the Only start the screw speed and the nozzle gap if the setpoint deviations of the extrusion time in one given by internal limits and external ones Limit values fall within the tolerance range, whereby the internal limits with a narrow band range positive and negative deviations from the setpoint of the Limit extrusion time and take the outer limits maximum permissible positive and negative deviations from define the target value of the extrusion time.

    Für die weitere Ausgestaltung des erfindungsgemäßen Verfahrens bieten sich verschiedene Möglichkeiten an. Bei einer ersten Ausführung der Erfindung wird nach Maßgabe der Gewichtsabweichungen von dem vorgegebenen Sollgewicht die Drehzahl des Schneckenextruders verändert und erfolgt nach Maßgabe der Gewichtsabweichungen in Verbindung mit den zugeordneten Sollwertabweichungen der Extrusionszeit zusätzlich eine Korrektur des Düsenspaltes. Unter Zugrundelegung linearer Abhängigkeiten wird die Drehzahländerung Δ nS der Schneckendrehzahl nS und die Verstellung ΔsA des Düsenspaltes sA in Abhängigkeit von den Extrusionszeit- und Gewichtsmeßwerten tIst, GIst und den zugeordneten Sollwerten tSoll, GSoll nach folgendem Algorithmus Δ ns = ns(GSoll - GIst)Gsoll Δ sA = sA • (1- tIst tSoll ns ns + Δns ) vorgenommen. Als Gewichtsmeßwert GIst wird vorzugsweise das Bruttogewicht der Hohlkörper einschließlich der anhaftenden Abfallbutzen, gemessen im Anschluß an die Entformung aus der Blasform, verwendet. Im Rahmen der Erfindung liegt es aber auch, andere Gewichtsmeßwerte, insbesondere das Nettogewicht oder ein anderes für das der Blasform entnommene Blasprodukt charakteristisches Vergleichsgewicht, welches auch die Summe von Teilgewichten darstellen kann, für das Regelungsverfahren einzusetzen.Various options are available for the further configuration of the method according to the invention. In a first embodiment of the invention, the speed of the screw extruder is changed in accordance with the weight deviations from the predetermined target weight and, in addition, the nozzle gap is corrected in accordance with the weight deviations in conjunction with the assigned target value deviations of the extrusion time. On the basis of linear dependencies, the speed change Δ n S of the screw speed n S and the adjustment Δ s A of the die gap s A as a function of the extrusion time and weight measured values t actual , G actual and the assigned target values t target , G target according to the following algorithm Δ n s = n s (G Should - G Is ) G should Δ s A = s A • (1- t Is t Should n s n s + Δn s ) performed. The gross weight of the hollow body, including the adhering waste slugs, measured after the removal from the blow mold, is preferably used as the measured weight G actual . However, it is also within the scope of the invention to use other weight measurements for the control method, in particular the net weight or another comparative weight which is characteristic of the blow product removed from the blow mold and which can also represent the sum of partial weights.

    Gemäß einer anderen Ausführung der Erfindung wird nach Maßgabe der Gewichtsabweichungen von dem vorgegebenen Sollgewicht der Düsenspalt des Strangpreßkopfes korrigiert und wird nach Maßgabe der Gewichtsabweichungen in Verbindung mit den zugeordneten Sollwertabweichungen der Extrusionszeit zusätzlich eine Veränderung der Schneckendrehzahl vorgenommen.According to another embodiment of the invention, after Determination of the weight deviations from the specified Corrected target weight of the die gap of the extrusion head and is in accordance with the weight deviations in Connection with the assigned setpoint deviations of the Extrusion time an additional change in screw speed performed.

    Unter Zugrundelegung linearer Abhängigkeiten wird die Verstellung des Düsenspaltes ΔsA und die Drehzahländerung ΔnS der Schneckendrehzahl Δ nS in Abhängigkeit von den Extrusionszeit- und Gewichtsmeßwerten tIst, GIst und den zugeordneten Sollwerten tSoll, GSoll nach folgendem Algorithmus Δ sA = sA(GSoll - GIst)Gsoll Δ nS = nS • (1- tSoll tIst sA sA + ΔsA vorgenommen. Als Gewichtsmeßwert GIst wird hier vorzugsweise das Nettogewicht des Hohlkörpers nach Entfernen der Abfallbutzen verwendet. Auch die Bruttohohlkörpergewichte oder andere Vergleichsgewichte, die auch die Summe von Teilgewichten darstellen können, sind jedoch einsetzbar.Based on linear dependencies, the adjustment of the nozzle gap Δs A and the speed change Δn S of the screw speed Δ n S are dependent on the extrusion time and weight measurements t actual , G actual and the assigned target values t target , G target according to the following algorithm Δ s A = s A (G Should - G Is ) G should Δ n S = n S • (1- t Should t Is s A s A + Δs A performed. The net weight of the hollow body after removal of the waste slugs is preferably used here as the measured weight G actual . However, the gross hollow body weights or other comparison weights, which can also represent the sum of partial weights, can also be used.

    Für die Anordnung der Meßeinrichtung entlang des Extrusionsweges zur Messung der Extrusionszeit bestehen verschiedene Möglichkeiten. Gemäß einer ersten Ausführungsform wird die Extrusionszeit durch eine Meßeinrichtung erfaßt, die nahe der Unterkante der vollständig extrudierten Vorformlinge positioniert ist. Der Abstand der Meßeinrichtung von dem Düsenspalt wird so gewählt, daß auch dann, wenn der Vorformling nicht die Soll-Länge erreicht noch ein Meßsignal abgegeben wird.For the arrangement of the measuring device along the Exist extrusion path for measuring the extrusion time various possibilities. According to a first embodiment the extrusion time by a measuring device captures that near the bottom of the completely extruded preforms is positioned. The distance the measuring device from the nozzle gap is chosen such that even if the preform is not the desired length still reaches a measurement signal is given.

    Eine andere vorteilhafte Ausführung des erfindungsgemäßen Verfahrens sieht vor, daß die Extrusionszeit durch eine Meßeinrichtung erfaßt wird, deren Abstand von dem Düsenspalt so bemessen ist, daß dieser Abstand der Soll-Länge eines Vorformlingsabschnittes von der Vorformlingsunterkante oder einer Referenzmarkierung bis zu einem kritischen Vorformlingsquerschnitt, der einem Funktions-maxium des Wanddickenprogramms zugeordnet ist, entspricht. Bei dieser Ausführung des erfindungsgemäßen Verfahrens ist der Extrusionszeitmeßwert einem Funktionsmaximum des Wanddickenprogramms unmittelbar zugeordnet. Entspricht der Extrusionszeitmeßwert dem Sollwert, so wird genau zu diesem Zeitpunkt der Vorformlingsabschnitt extrudiert, der in der Blasform einer besonders starken Reckung unterliegt. Da bei dieser Ausführung des erfindungsgemäßen Verfahrens die Zeitmessung nicht am Ende des Vorformlings, also nach vollständigem Ablauf der Extrusion, erfolgt, sollte durch eine Überwachung sichergestellt werden, daß die Restextrusion des Vorformlings nach der Messung nicht noch gestört wird. In weiterer Ausgestaltung lehrt die Erfindung deshalb, daß der programmkonforme Ablauf der Restextrusion überprüft wird und ein Störsignal abgegeben wird, wenn bei der Restextrusion des Vorformlings eine Störung auftritt, wobei der aus dem betreffenden Vorformling gefertigte Hohlkörper aufgrund des Störsignals ausgeschleust wird. Die Überwachung der Restextrusion ist auf verschiedene Weise möglich. Wenn beispielsweise die im nächsten Arbeitstakt gemessene Extrusionszeit - im Rahmen der zulässigen, betriebsbedingten Abweichungen - der zuvor gemessenen Extrusionszeit entspricht, so ist die Restextrusion ohne Störungen ausgeführt worden. Die Überwachung der Restextrusion kann folglich in einem Vergleich der in aufeinanderfolgenden Arbeitstakten gemessenen Extrusionszeiten bestehen. Zur Überwachung der Restextrusion kann ferner eine zusätzliche Zeitmeßeinrichtung nahe der Unterkante der vollständig extrudierten Vorformlinge angeordnet werden, wobei diese zusätzliche Zeitmeßeinrichtung das Störsignal auslöst, wenn der Zeitmeßwert vorgegebene Grenzwerte erreicht.Another advantageous embodiment of the invention The method provides that the extrusion time by a Measuring device is detected, its distance from the nozzle gap is dimensioned so that this distance of the target length of a preform section from the preform lower edge or a reference mark up to one critical preform cross-section that a functional maxium assigned to the wall thickness program. In this embodiment of the method according to the invention the extrusion time measurement a function maximum of Wall thickness program directly assigned. Equals to Extrusion time measured value to the setpoint, so is exactly at this point the preform section extrudes the subject to particularly strong stretching in the blow mold. Since in this embodiment of the method according to the invention timing not at the end of the preform, that is, after the extrusion has been completed, surveillance should ensure that: the residual extrusion of the preform after the measurement is not is still disturbed. In a further embodiment, the Invention therefore that the program-compliant process of Residual extrusion is checked and an interference signal is emitted becomes when a. during the residual extrusion of the preform Disorder occurs, the one from the concerned Preform manufactured hollow body due to the interference signal is removed. The monitoring of residual extrusion is possible in different ways. For example, if the im extrusion time measured in the next working cycle - within the framework the permissible, operational deviations - those before corresponds to the measured extrusion time, so is the residual extrusion been carried out without interference. The supervision the residual extrusion can therefore be compared that measured in successive work cycles There are extrusion times. To monitor residual extrusion can also an additional time measuring device near the bottom edge of the fully extruded one Preforms are arranged, these additional Time measurement device triggers the interference signal when the time measurement value specified limit values reached.

    Wenn eine Verschiebung des kritischen Querschnitts des Vorformlings relativ zur Blasform festgestellt wird, obwohl die Gewichts- und Extrusionszeitmeßwerte den Sollwerten entsprechen, ist eine Feinkorrektur zweckmäßig.If there is a shift in the critical cross section of the Preform is determined relative to the blow mold, although the weight and extrusion time readings do A fine correction is advisable if it corresponds to the target values.

    Zum Zwecke der Feinkorrektur kann die Relativbewegung zwischen der Blasform und dem Vorformling geändert und/oder der Ablauf des Wanddickenprogramms relativ zum Vorformling verschoben oder mit einem kurzzeitigen Zwischenstop an einem vorgegebenen Profilpunkt versehen wird und/oder die Einformzeit geändert bzw. ein andere vergleichbare Zeitkorrektur vorgenommen werden. Ferner kann zum Zwecke einer Feinkorrektur im Wanddickenprogramm die Länge des Programmkurvenabschnitts, der dem Abschnitt zwischen der Vorformlingsunterkante und einem in bezug auf die in der Blasform später auftretende Reckung des Vorformlings kritischen Querschnitt des Vorformlings zugeordnet ist, verändert werden.For the purpose of fine correction, the relative movement changed between the blow mold and the preform and / or the sequence of the wall thickness program relative to Preform moved or with a short-term Provide a stopover at a specified profile point and / or the molding time is changed or a different one comparable time correction can be made. Further can be used for a fine correction in the wall thickness range the length of the program curve section corresponding to the section between the bottom of the preform and one with respect to the later stretching of the blow mold Preform critical cross section of the preform is assigned to be changed.

    In weiterer Ausgestaltung lehrt die Erfindung, daß die Unterkante der Vorformlinge durch mindestens eine Lichtschranke erfaßt wird, welche die Zeitmessung der Extrusionszeit stoppt. Vorzugsweise sind mehrere Lichtschranken in einer horizontalen Ebene vorgesehen, wobei durch Mittelwertbildung der von den Lichtschranken gestoppten Zeitmeßwerte die für den Sollwertvergleich eingesetzte Extrusionszeit (Ist-Zeit) bestimmt wird. In weiterer Ausgestaltung lehrt die Erfindung, daß die von mehreren horizontal nebeneinander angeordneten Lichtschranken gestoppten Zeitmeßwerte miteinander verglichen werden und daß ein dem Vorformling zugeordnetes Fehlersignal gespeichert wird, wenn die Zeitdifferenzen zwischen den gestoppten Zeitmeßwerten außerhalb eines vorgegebenen Toleranzbereiches liegen. Das Fehlersignal kann zum Ausschleusen des aus dem betreffenden Vorformling geformten Hohlkörpers und/oder als Regelgröße zur Veränderung eines Betriebsparameters des Extrusionsblasverfahrens verwendet werden. Die zeitliche Abfolge der dem Fehlersignal zugrundeliegenden Meßsignale lassen Rückschlüsse auf die Form der Vorformlingsunterkante zu und erlauben das Erkennen von betrieblichen Störungen. Ein störender Schlauchschieflauf ist ebenso identifizierbar wie eine zu große oder zu geringe Stützluftmenge. Nach bevorzugter Ausführung des erfindungsgemäßen Verfahrens wird daher nach Maßgabe der zeitlichen Abfolge der dem Fehlersignal zugrundeliegenden Meßsignale die Stützluftmenge oder ein schiefer Schlauchlauf korrigiert. Eine große Meßgenauigkeit und sichere Auswertung der Meßsignale ist insbesondere dann gewährleistet, wenn die Lichtschranken in Gruppen angeordnet sind, die horizontal unter einem Winkel von vorzugsweise 90° zueinander ausgerichtet sind und jeweils mindestens zwei parallele Lichtschranken umfassen. Die Meßsignale werden in der vorstehend beschriebenen Weise ausgewertet. Außerdem kann durch Mittelwertbildung der von der Lichtschranke gestoppten Zeitmeßwerte die für den Sollwertvergleich eingesetzte Extrusionszeit bestimmt werden. In a further embodiment, the invention teaches that Lower edge of the preforms by at least one light barrier is recorded, which is the timing of the Extrusion time stops. Preferably there are several light barriers provided in a horizontal plane, wherein by averaging that of the light barriers stopped time measurements for the setpoint comparison used extrusion time (actual time) is determined. In Another embodiment teaches the invention that the several horizontally arranged light barriers stopped measured time values compared and that an error signal associated with the preform is saved when the time difference between the stopped time measurement values outside of a predetermined one Tolerance range. The error signal can be discharged the molded from the preform in question Hollow body and / or as a controlled variable for changing a Operating parameters of the extrusion blow molding process used become. The time sequence of the error signal underlying measurement signals allow conclusions to be drawn about the Shape of the preform bottom edge and allow that Detect operational failures. A distracting Hose misalignment is as identifiable as one too large or too small amount of supporting air. According to preferred Execution of the method according to the invention is therefore in accordance with the chronological order of the error signal underlying measurement signals the amount of supporting air or a slanted hose run corrected. A great measurement accuracy and reliable evaluation of the measurement signals is particularly important then ensured when the light barriers in Groups are arranged horizontally at an angle of 90 ° are preferably aligned with each other and each include at least two parallel light barriers. The measurement signals are described in the above Way evaluated. In addition, by averaging of the time measurements stopped by the light barrier determines the setpoint comparison used extrusion time become.

    Es versteht sich, daß anstelle von Lichtschranken in entsprechender Weise auch andere Meßeinrichtungen zur Erfassung der Vorformlingsunterkante und/oder einer an dem Vorformling angebrachten Markierung eingesetzt werden können, deren Meßsignale in der beschriebenen Weise ausgewertet werden. Die Zeitmessung kann schließlich synchron oder auch zeitlich versetzt mit Beginn des Arbeitstaktes oder durch ein Meßsignal einer unterhalb des Düsenspaltes angeordneten optischen Meßeinrichtung, die z. B. eine Markierung auf dem Vorformling oder die Vorformlingsunterkante erfaßt, gestartet werden.It goes without saying that in place of light barriers correspondingly other measuring devices for Detection of the lower edge of the preform and / or one on the Preform attached marking can be used can whose measurement signals in the manner described be evaluated. The timing can finally synchronously or at different times from the start of the Working cycle or by a measurement signal one below the Nozzle gap arranged optical measuring device, the e.g. B. a mark on the preform or the Preform lower edge detected, started.

    Im Rahmen der Erfindung liegt es, mehrere Meßeinrichtungen in der Vorformlingsextrusionsrichtung zum Zwecke der Lagekontrolle, Längeneinstellung oder Längenregelung vorzusehen. Wenn die Materialverteilung im Hohlkörper unbefriedigend ist, obwohl die Extrusionszeitmeßwerte und die zugeordneten Gewichtsmeßwerte den Sollwerten entsprechen, sind Feinkorrekturen an Betriebseinstellungen der Blasformanlage zweckmäßig, die in der Figurenbeschreibung noch erläutert werden.It is within the scope of the invention to have several measuring devices in the direction of preform extrusion for the purpose of position control, Provide length adjustment or length control. If the material distribution in the hollow body is unsatisfactory is, although the extrusion time measurements and the assigned weight measurements correspond to the target values, are fine adjustments to the operating settings of the blow molding system expedient that in the description of the figures are explained.

    In weiterer Ausbildung des erfindungsgemäßen Verfahrens lehrt die Erfindung, daß ein dem Vorformling zugeordnetes Signal gespeichert wird, wenn die Sollwertabweichung der Extrusionszeit außerhalb eines vorgegebenen betrieblichen Toleranzfeldes liegt, und daß dieses Signal zum Ausschleusen fehlerbehafteter Hohlkörper verwendet wird. Zweckmäßigerweise steuert das Signal eine Sortiervorrichtung, wenn der aus einem mit dem Signal belegten Vorformling geblasene Hohlkörper die Sortiervorrichtung erreicht, wobei der betreffende Hohlkörper ausgeschleust wird. Erfindungsgemäß wird die Extrusionszeit eines Vorformlings nicht nur zur Steuerung und Regelung des Verfahrens, sondern auch als Qualitätsmerkmal des aus dem betreffenden Vorformling hergestellten Hohlkörpers herangezogen.In a further development of the method according to the invention the invention teaches that an associated with the preform Signal is saved when the setpoint deviation of the Extrusion time outside of a predetermined operational Tolerance field lies, and that this signal to discharge defective hollow body is used. Conveniently the signal controls a sorting device, if the from a preform with the signal blown hollow body reaches the sorting device, the hollow body in question is discharged. According to the invention, the extrusion time of a preform not only to control and regulate the process, but also as a quality characteristic of that from the concerned Preform produced hollow body used.

    Beim Anfahren einer Extrusionsblasformanlage sind zunächst erhebliche Sollwertabweichungen der Extrusionszeit zu erwarten. Sobald die Blasformanlage voll ausgeregelt ist und einen stationären Betriebspunkt erreicht hat, ist die mittlere Sollwertabweichung der Extrusionszeit im allgemeinen kleiner. Das betriebliche Toleranzfeld, welches als Kriterium zum Ausschleusen von Hohlkörpern verwendet wird, kann dem angepaßt werden. Während der Anfahrphase oder einem Material-, Chargen- oder Farbwechsel ist es zweckmäßig, unter Inkaufnahme eines etwas erhöhten Materialbedarfes die mittlere Wandstärke der Vorformlinge und damit das Gewicht der Hohlkörper um einige Prozentpunkte zu vergrößern, um sicherzustellen, daß auch bei einem breiteren betrieblichen Toleranzfeld und größeren zulässigen Sollwertabweichungen der Extrusionszeit die geforderten Festigkeitseigenschaften der Hohlkörper erreicht werden. Die Erfindung lehrt in diesem Zusammenhang in weiterer vorteilhafter Ausgestaltung, daß zu den Sollwertabweichungen der Vorformlinge Häufigkeitsverteilungen erstellt und gespeichert werden und daß das betriebliche Toleranzfeld, welches als Kriterium zum Ausschleusen von Hohlkörpern verwendet wird, in Abhängigkeit von der geltenden Häufigkeitsverteilung verändert wird. In Abhängigkeit von der Breite des betrieblichen Toleranzfeldes wird vorzugsweise auch das Sollgewicht verändert, wobei einem schmalen Toleranzfeld ein kleineres Sollgewicht und einem breiteren Toleranzfeld ein größeres Sollgewicht zuzuordnen ist. Eine Anhebung des Sollgewichtes um einige Prozentpunkte gegenüber einem Sollgewicht, welches bei voll ausgeregelter Blasformanlage und stationärem Betriebszustand angestrebt ist, ist für den Anfahrvorgang zweckmäßig. Die Abhängigkeit zwischen dem Sollgewicht, dem betrieblichen Toleranzfeld sowie der Häufigkeitsverteilung der Sollwertabweichung ist durch empirische Funktionen faßbar und zweckmäßigerweise in einem Rechner gespeichert. Bei der Abgabe des Signals zum Ausschleusen fehlerbehafteter Hohlkörper werden die im Rechner abgelegten Funktionen berücksichtigt.When starting up an extrusion blow molding machine are first considerable setpoint deviations in the extrusion time expect. As soon as the blow molding system is fully regulated and has reached a steady operating point is the average setpoint deviation of the extrusion time in general smaller. The operational tolerance area, which as Criterion for discharging hollow bodies is used, can be adjusted. During the start-up phase or a material, batch or color change, it is advisable while accepting a somewhat increased material requirement the mean wall thickness of the preforms and thus the weight of the hollow body by a few percentage points to make sure that even with one wider operational tolerance and larger allowable Setpoint deviations of the extrusion time required strength properties of the hollow body achieved become. The invention teaches in this context in a further advantageous embodiment that the Setpoint deviations of the preforms frequency distributions created and saved and that the operational tolerance, which is the criterion for Ejection of hollow bodies is used depending changed by the applicable frequency distribution becomes. Depending on the breadth of the operational The target weight is preferably also the tolerance field changed, with a narrow tolerance field a smaller one Target weight and a wider tolerance field a larger one Target weight is to be assigned. An increase in the target weight by a few percentage points compared to a target weight, which with fully regulated blow molding system and steady state is aimed for is Appropriate starting procedure. The dependency between that Target weight, the operational tolerance area and the Frequency distribution of the setpoint deviation is through empirical functions tangible and expedient in saved on a computer. When sending the signal to Removing defective hollow bodies are the in Computer stored functions taken into account.

    Im Rahmen der Erfindung liegt es ferner, die inneren Grenzwerte tTol-1, tTol+1 des betrieblichen Toleranzfeldes, welche das Kriterium für die Einleitung von Regelkorrekturen bilden, in Abhängigkeit von der geltenden Häufigkeitsverteilung zu verändern. Stochastische Schwankungen der Zeitmeßwerte innerhalb des von den inneren Grenzwerten tTol-1, tTol+1 begrenzten schmalen Bandbereiches sind anlagenabhängig. Bei ausgeregelten, ruhiglaufenden und im stationären Betriebszustand betriebenen Anlagen kann mit einem sehr schmalen Bandbereich gearbeitet werden. Die Zuordnung der Breite des von den Grenzwerten tTol-1, tTol+1 begrenzten Bandbereiches an die Häufigkeitsverteilung ermöglicht eine ständige Anpassung des Bandbereiches an die Anlage bzw. den Betrieb der Anlage. It is also within the scope of the invention to change the internal limit values t Tol-1 , t Tol + 1 of the operational tolerance field, which form the criterion for initiating control corrections, as a function of the prevailing frequency distribution. Stochastic fluctuations of the time measurement values within the narrow band range limited by the internal limit values t Tol-1 , t Tol + 1 are system-dependent. A very narrow band range can be used for regulated, quiet-running systems that are operated in the steady state. The assignment of the width of the band area delimited by the limit values t Tol-1 , t Tol + 1 to the frequency distribution enables the band area to be continuously adapted to the system or the operation of the system.

    Im Rahmen der Erfindung liegt es schließlich, daß ein optisches und/oder akustisches Störsignal abgegeben wird und die Hohlkörper ausgeschleust werden, wenn die Sollwertabweichung der gemessenen Extrusionszeit außerhalb eines betrieblichen Toleranzfeldes liegende Grenzwerte erreicht.Finally, it is within the scope of the invention that a optical and / or acoustic interference signal is emitted and the hollow bodies are removed if the setpoint deviation the measured extrusion time outside of an operational tolerance range reached.

    Das vorstehend beschriebene erfindungsgemäße Verfahren zeichnet sich durch beachtliche Vorteile aus. Es ermöglicht das Anfahren einer Blasformanlage mit automatischem Übergang in die Produktionsphase, erlaubt eine Optimierung der Hohlkörper und eignet sich selbstverständlich auch bei Materialchargenwechsel und für den stationären Produktionsbetrieb. Es ermöglicht das Arbeiten mit einem Wanddickenprogramm, welches eine Programmkurve mit extrem gesteckten Funktionsmaxima aufweist. Die nach dem erfindungsgemäßen Verfahren gefertigen Hohlkörper zeichnen sich durch hohe Mindeststauchwerte bei minimalem Hohlkörpergewicht aus. Störgrößen können schnell und gezielt ausgeregelt werden unter Ausschußminimierung. Ferner ist eine Kontrolle und Ausschleusen von Hohlkörpern gewährleistet, welche die geforderten mechanischen Werte nicht erreichen. Schließlich ermöglicht das erfindungsgemäße Verfahren die Herstellung von Kanistern und anderen Hohlkörpern mit komplizierter Formgebung in kontinuierlicher Extrusion. Das Verfahren ist.insbesondere auch zur Herstellung von Kunststoffkraftstoffbehältern geeignet, bei denen die Einhaltung von Mindestwandstärken das Hauptproblem ist. The inventive method described above is characterized by considerable advantages. Allows starting a blow molding machine with automatic Transition to the production phase, allows optimization the hollow body and is of course also suitable for Material batch change and for the stationary Production plant. It allows you to work with one Wall thickness program, which is a program curve with extreme inserted functional maxima. According to the invention Processed hollow bodies stand out due to high minimum compression values with minimum hollow body weight out. Disturbances can be corrected quickly and specifically are minimizing rejects. Furthermore, one Control and discharge of hollow bodies guaranteed which do not reach the required mechanical values. Finally, the method according to the invention enables Manufacture of canisters and other hollow bodies with complicated shape in continuous extrusion. The method is especially for the production of Suitable plastic fuel tanks where the Maintaining minimum wall thicknesses is the main problem.

    Im folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung erläutert. Es zeigen in schematischer Darstellung

    Fig. 1
    ein Anlagen- und Regelschema zum Extrusionsblasformen von. Hohlkörpern aus thermoplastischem Kunststoff,
    Fig. 2
    die Häufigkeitsverteilung für die Sollwertabweichung von der Extrusionszeit bei einer nach dem erfindungsgemäßen Verfahren betriebenen Blasformanlage im Vergleich zum Stand der Technik,
    Fig. 3
    eine der Vorformlingsunterkante zugeordnete Meßeinrichtung,
    Fig. 4
    den Schnitt A-A in Figur 3.
    In the following the invention will be explained with reference to a drawing showing only one embodiment. They show a schematic representation
    Fig. 1
    a system and control scheme for extrusion blow molding of. Hollow bodies made of thermoplastic,
    Fig. 2
    the frequency distribution for the setpoint deviation from the extrusion time in a blow molding system operated according to the inventive method in comparison to the prior art,
    Fig. 3
    a measuring device assigned to the lower edge of the preform,
    Fig. 4
    the section AA in Figure 3.

    Dem in Fig. 1 dargestellten Anlagen- und Regelschema entnimmt man, daß schlauchförmige Vorformlinge 1 mittels eines Schneckenextruders 2 aus dem nach Maßgabe eines Wanddickenprogramms 3 gesteuerten Düsenspalt 4 eines Strangpreßkopfes 5 extrudiert werden. Die extrudierten Vorformlinge 1 werden anschließend in einer Blasform 6 zu Hohlkörpern 7 aufgeweitet. Die Hohlkörper 7 werden ausgeformt und anhaftende Abfallbutzen entfernt. Zu jedem Vorformling 1 wird die bis zum Erreichen einer vorgegebenen Schlauchlänge benötige Extrusionszeit tIst gemessen, deren Sollwertabweichung Δ t von einem Sollwert tSoll bestimmt und die Sollwertabweichung Δ t zusammen mit den Ist-Werten für die Drehzahl nS des Schneckenextruders 2 und den Düsenspalt sA in einem Rechner 8 gespeichert. Die Speicherung erfolgt unter Zuordnung zum Vorformling 1 und dem daraus hergestellten Hohlkörper. Außerdem werden die Gewichte GIst der Hohlkörper 7 gemessen, und zwar deren Bruttogewichte GB oder deren Nettogewichte GN. Dabei festgestellte Gewichtsabweichungen Δ G von einem vorgegebenen Sollgewicht GSoll werden mit den zugeordneten, gespeicherten Sollwertabweichungen Δ t der Extrusionszeit tIst paarweise als Regelabweichungen für die Festlegung erforderlicher Drehzahl- und Düsenspaltkorrekturen Δ nS, Δ sA eingesetzt. Aus den gespeicherten Drehzahl- und Düsenspaltwerten sowie den ermittelten Drehzahl- und Düsenspaltkorrekturen Δ nS, Δ sA werden die Betriebsparameter nS, sA für die Extrusion im folgenden Arbeitstakt festgelegt.1 shows that tubular preforms 1 are extruded from the die gap 4 of an extrusion head 5, which is controlled according to a wall thickness program 3, by means of a screw extruder 2. The extruded preforms 1 are then expanded into hollow bodies 7 in a blow mold 6. The hollow bodies 7 are formed and adhering waste slugs are removed. For each preform 1, the extrusion time t actual required to reach a predetermined tube length is measured, its setpoint deviation Δt is determined from a setpoint t setpoint , and the setpoint deviation Δt together with the actual values for the speed n S of the screw extruder 2 and the die gap s A stored in a computer 8. The storage takes place with assignment to the preform 1 and the hollow body produced therefrom. In addition, the weights G Ist of the hollow body 7 are measured, namely their gross weights G B or their net weights G N. In this case, weight determined deviations Δ G from a predetermined desired weight W is to be with the associated stored setpoint deviations Δ t the extrusion time t in pairs as control deviations for determining the required speed and die gap corrections Δ n S, Δ s A used. The operating parameters n S , s A for the extrusion are determined in the following working cycle from the stored speed and nozzle gap values and the determined speed and nozzle gap corrections Δ n S , Δ s A.

    Die Drehzahländerung Δ nS der Schneckendrehzahl nS und die Verstellung Δ sA des Düsenspaltes sA wird in Abhängigkeit von den Extrusionszeit- und Gewichtsmeßwerten tIst und GIst und den zugeordneten Sollwerten tSoll, GSoll nach folgendem Algorithmus Δ sA = sA(GSoll - GIst)Gsoll Δ nS = nS • (1- tSoll tIst sA sA + ΔsA vorgenommen. Dem angegebenen Algorithmus entnimmt man, daß nach Maßgabe der Gewichtsänderung Δ G von dem vorgegebenen Sollgewicht GSoll der Düsenspalt Δ sA verändert wird. Außerdem wird nach Maßgabe der Gewichtsabweichungen Δ G, jedoch in Verbindung mit den zugeordneten Sollwertabweichungen der Extrusionszeit Δ t, zusätzlich eine Korrektur der Drehzahl Δ nS des Schneckenextruders vorgenommen. Drehzahl- und Düsenspaltkorrekturen Δ nS, Δ sA erfolgen gleichzeitig. Als Gewichtsmeßwert wird vorzugsweise das Nettogewicht GN verwendet.The speed change Δ n S of the screw speed n S and the adjustment Δ s A of the nozzle gap s A is dependent on the extrusion time and weight measured values t actual and G actual and the assigned target values t target , G target according to the following algorithm Δ s A = s A (G Should - G Is ) G should Δ n S = n S • (1- t Should t Is s A s A + Δs A performed. From the specified algorithm it can be seen that the nozzle gap Δ s A is changed in accordance with the change in weight Δ G from the predetermined target weight G Soll . In addition, the speed Δ n S of the screw extruder is additionally corrected in accordance with the weight deviations Δ G, but in conjunction with the assigned set point deviations of the extrusion time Δ t. Speed and nozzle gap corrections Δ n S , Δ s A are carried out simultaneously. The net weight G N is preferably used as the weight measurement.

    Die Extrusionszeit tIst wird von einer Meßeinrichtung 9 erfaßt, die im Bereich der Unterkante der Vorformlinge 1, nach deren vollständiger Extrusion, positioniert ist und mindestens eine Lichtschranke aufweist, welche die Zeitmessung der Extrusionszeit tIst stoppt. Der Abstand der Meßeinrichtung 9 von dem Düsenspalt 4 entspricht etwa der Soll-Länge der Vorformlinge 1, ist aber so gewählt, daß auch dann, wenn die tatsächliche Vorformlinglänge etwas kürzer ist als die Soll-Länge, ein Meßsignal noch abgegeben wird. Zweckmäßigerweise umfaßt die Meßeinrichtung 9 mehrere Lichtschranken. Durch Mittelwertbildung der von den Lichtschranken gestoppten Zeitmeßwerte wird die für den Sollwertvergleich eingesetzte Extrusionszeit tIst bestimmt. Auf diese Weise können Meßfehler aufgrund von Unregelmäßigkeiten an der Unterkante des Vorformlings weitestgehend eliminiert werden.The extrusion time t actual is recorded by a measuring device 9, which is positioned in the area of the lower edge of the preforms 1 after their complete extrusion and has at least one light barrier which stops the time measurement of the extrusion time t actual . The distance of the measuring device 9 from the nozzle gap 4 corresponds approximately to the desired length of the preforms 1, but is selected so that even if the actual preform length is somewhat shorter than the desired length, a measurement signal is still emitted. The measuring device 9 expediently comprises a plurality of light barriers. The extrusion time t actual used for the setpoint comparison is determined by averaging the time measured values stopped by the light barriers. In this way, measurement errors due to irregularities on the lower edge of the preform can be largely eliminated.

    In der Vorformlingsextrusionsrichtung sind zum Zwecke der Lagekontrolle, Längeneinstellung oder Längenregelung weitere Meßeinrichtungen 10a, 10b vorgesehen. Durch zwei oder mehr untereinander angeordnete Meßeinrichtungen 10b, 10a, 9 und einem Extruxionszeitvergleich zwischen dem Start und den Meßeinrichtungen können Betriebsparameter zum Ausgleich von Durchhängung und/oder Schrumpfung ermittelt werden.In the preform extrusion direction are for the purpose of Position control, length adjustment or length control further measuring devices 10a, 10b are provided. Divided by two or more measuring devices 10b arranged one below the other, 10a, 9 and an extraction time comparison between the Start and the measuring equipment can have operating parameters to compensate for sag and / or shrinkage be determined.

    Wenn die Sollwertabweichung Δ t der gemessenen Extrusionszeit außerhalb eines vorgegebenen betrieblichen Toleranzfeldes liegt, wird ein dem Vorformling 1 zugeordnetes Signal gespeichert, welches zum Ausschleusen fehlerbehafteter Hohlkörper verwendet wird. Das Signal steuert dazu eine Sortiervorrichtung 11 an, wenn der aus einem mit dem Signal belegten Vorformling geblasene Hohlkörper 7' die Sortiervorrichtung erreicht. Der betreffende Hohlkörper 7' wird dann ausgeschleust.If the setpoint deviation Δ t of the measured extrusion time outside a given operational tolerance range lies, is assigned to the preform 1 Signal stored, which is defective for ejection Hollow body is used. The signal controls to this end a sorting device 11 if the one with blown hollow bodies 7 'assigned to the signal reached the sorting device. The hollow body in question 7 'is then removed.

    Die anliegende Tabelle zeigt anhand von Beispielen Betriebszustände, die bei dem erfindungsgemäßen Verfahren auftreten können und die dann resultierenden Verfahrensmaßnahmen. Es wird angenommen, daß der Sollwert tSoll für die Extrusionszeit 12,0 sec. beträgt. Liegt die gemessene Extrusionszeit tVfl in einem Bereich von 11,9 bis 12,1 sec., so nimmt der Vorformling die vorbestimmte Lage relativ zur Blasform ein. Verdickte Wandabschnitte des Vorformlings, denen Funktionsmaxima des Wanddickenprogramms zugeordnet sind, sind in Blasformbereichen positioniert, in denen die größte Reckung auftritt. Die aus diesen Vorformlingen gefertigen Hohlkörper haben die geforderten Eigenschaften. Liegt die gemessene Extrusionszeit in einem Toleranzfeld zwischen tTol2- (11,6 sec.) und tTol2+ (12,4 sec.), aber außerhalb des dem Sollwert tSoll zugerechneten Bandes von 11,9 bis 12,1 sec., so nimmt der Vorformling eine noch akzeptable Lage in der Blasform ein und der daraus gefertigte Hohlkörper ist brauchbar. Jedoch wird nach Maßgabe der Sollwertabweichung Δ t eine Regelung der Schneckendrehzahl nS vorgenommen und werden die Extrusionsparameter, im Ausführungsbeispiel die Schneckendrehzahl nS, auf diese Weise korrigiert. Liegt die Sollwertabweichung Δ t außerhalb des durch tTol2- und tTol2+ vorgegebenen betrieblichen Toleranzfeldes tTol2-, tTol2+, so wird ein dem Vorformling zugeordnetes Signal gespeichert. Das Signal steuert in der beschriebenen Weise die Sortiervorrichtung 11 zum Ausschleusen fehlerbehafteter Hohlkörper, wenn der betreffende Hohlkörper die Sortiervorrichtung erreicht hat. Nach Maßgabe der Sollwertabweichung t erfolgt auch hier eine Regelung der Schneckendrehzahl. Erreicht die Sollwertabweichung schließlich außerhalb des betrieblichen Toleranzfeldes liegende Grenzwerte tTol3-, tTol3+, so wird ein optisches und/oder akustisches Störsignal ohne Zeitverzögerung abgegeben und alle Hohlkörper werden ausgeschleust.The table below shows, using examples, operating states which can occur in the method according to the invention and the resulting procedural measures. It is assumed that the target value t target for the extrusion time is 12.0 seconds. If the measured extrusion time t Vfl is in a range from 11.9 to 12.1 seconds, the preform takes up the predetermined position relative to the blow mold. Thickened wall sections of the preform, to which functional maxima of the wall thickness program are assigned, are positioned in blow molding areas in which the greatest stretching occurs. The hollow bodies made from these preforms have the required properties. If the measured extrusion time in a tolerance field between t Tol2- (11.6 sec.) And t Tol2 + (sec 12.4.), But outside of the target value t set attributed band from 11.9 to 12.1 sec., Then the preform occupies an acceptable position in the blow mold and the hollow body made from it is usable. However, the screw speed n S is regulated in accordance with the setpoint deviation Δ t and the extrusion parameters, in the exemplary embodiment the screw speed n S , are corrected in this way. If the setpoint deviation Δt lies outside the operational tolerance field t Tol2- , t Tol2 + specified by t Tol2- and t Tol2 + , a signal assigned to the preform is stored. The signal controls the sorting device 11 in the manner described for discharging defective hollow bodies when the hollow body in question has reached the sorting device. The screw speed is also regulated here in accordance with the setpoint deviation t. If the setpoint deviation finally reaches the limit values t Tol3- , t Tol3 + which lie outside the operational tolerance range , an optical and / or acoustic interference signal is emitted without a time delay and all hollow bodies are removed.

    Die Fig. 2 zeigt die Häufigkeitsverteilung für die Sollwertabweichung Δ t von der Extrusionszeit tIst an einer nach dem erfindungsgemäßen Verfahren betriebenen Blasformanlage im Vergleich zum Stand der Technik. Die Balkendarstellung 12 bezieht sich auf das erfindungsgemäße Verfahren. Die Verteilungskurve B zeigt eine Häufigkeitsverteilung, die bei einer nach einem bekannten Steuer- und Regelungsverfahren betriebenen Blasformanlage gemessen wird. Durch das erfindungsgemäße Verfahren ist erreichbar, daß die Abweichungen Δ t von der Extrusionszeit in einem vergleichsweise sehr engen Band liegen. Diese enge Häufigkeitsverteilung bei Anwendung des erfindungsgemäßen Verfahrens beruht darauf, daß Störgrößen, welche die Lage der Vorformlinge zur Blasform beeinflussen, schnell und gezielt ausgeregelt werden können.FIG. 2 shows the frequency distribution for the setpoint deviation .DELTA.t from the extrusion time t.sub.act in a blow molding system operated according to the inventive method in comparison with the prior art. The bar graph 12 relates to the method according to the invention. The distribution curve B shows a frequency distribution which is measured in a blow molding system operated according to a known open-loop and closed-loop control method. It can be achieved by the method according to the invention that the deviations Δ t from the extrusion time lie in a comparatively very narrow band. This narrow frequency distribution when using the method according to the invention is based on the fact that disturbances which influence the position of the preforms in relation to the blow mold can be corrected quickly and in a targeted manner.

    Die Meßeinrichtung 9 umfaßt eine Mehrzahl von Lichtschranken 14, die horizontal nebeneinander angeordnet sind. Bei einer vergleichenden Betrachtung der Fig. 3 und 4 entnimmt man, daß die Lichtschranken 14 in Gruppen angeordnet sind, die horizontal unter einem Winkel von vorzugsweise 90° zueinander ausgerichtet sind und jeweils mindestens zwei parallele Lichtschranken umfassen. Im Ausführungsbeispiel sind die Gruppen in unterschiedlichen horizontalen Ebenen angeordnet. Lichtschranken sollen im Rahmen der Erfindung Fotosensoren ebenso wie andere berührungslos arbeitenden Meßeinrichtungen, die zur Positionserfassung des Vorformlings geeignet sind, umfassen. Die von den Lichtschranken 14 gestoppten Zeitmeßwerte werden miteinander verglichen, und es wird ein dem Vorformling zugeordnetes Fehlersignal gespeichert, wenn die Zeitdifferenzen zwischen den gestoppten Zeitmeßwerten außerhalb eines vorgegebenen Toleranzbereiches liegen. In Fig. 3 ist beispielsweise ein störender Schlauchschieflauf dargestellt. Aus der zeitlichen Abfolge der dem Fehlersignal zugrundeliegenden Meßsignale ist diese Störung erkennbar und kann somit dem Bedienungspersonal optisch und/oder akustisch angezeigt und/oder durch Eingriff in das Regelverfahren korrigiert werden. Ein störender Schlauchschieflauf mindert die Qualität des aus dem betreffenden Vorformling 1 gefertigten Hohlkörpers 7. Folglich wird das Fehlersignal ebenfalls zum Ausschleusen des aus dem betreffenden Vorformling 1 geformten Hohlkörpers 7 verwendet. Zusätzlich kann das Fehlersignal auch als Regelgröße zur Veränderung eines Betriebsparameters des Extrusionsblasverfahrens verwendet werden, z. B. zur Änderung der Temperatur eines oder mehrerer Heiz- oder Kühlsegmente des Strangpreßkopfes 5 oder Heiz- oder Kühleinrichtungen am Vorformling 1. Nicht nur ein störender Schlauchschieflauf sondern auch eine von dem Sollwert abweichende Stützluftmenge ist mit Hilfe der aus mehreren Lichtschranken 14 bestehenden Meßeinrichtung 9 erfaßbar und kann durch Eingriff in das Regelverfahren von Hand oder ggf. auch automatisch korrigiert werden.The measuring device 9 comprises a plurality of light barriers 14, which are arranged horizontally next to each other. At a comparative view of FIGS. 3 and 4 one that the light barriers 14 are arranged in groups, the horizontally at an angle of preferably 90 ° are aligned with each other and at least two each include parallel light barriers. In the embodiment are the groups in different horizontal levels arranged. Photoelectric sensors are intended within the scope of the invention Photo sensors as well as other contactless working Measuring devices for the position detection of the preform are suitable include. The one from the light barriers 14 stopped time measurements are compared, and it becomes an error signal associated with the preform saved when the time differences between the stopped time measurement values outside of a predetermined Tolerance range. 3 is, for example annoying hose misalignment shown. From the temporal Sequence of the basis of the error signal This signal can be recognized by measurement signals and can therefore be Operating personnel optically and / or acoustically displayed and / or corrected by intervening in the control process become. A disturbing hose misalignment reduces the Quality of the preform 1 made Hollow body 7. Consequently, the error signal also to discharge the preform from the concerned 1 shaped hollow body 7 used. In addition can also use the error signal as a controlled variable for change an operating parameter of the extrusion blow molding process be, e.g. B. to change the temperature of a or several heating or cooling segments of the extrusion head 5 or heating or cooling devices on the preform 1. Not only annoying hose misalignment but also a quantity of supporting air deviating from the setpoint is included With the help of several light barriers 14 Measuring device 9 can be detected and by intervention in the Control procedures by hand or, if necessary, automatically Getting corrected.

    Das Wanddickenprogramm 3 unterteilt das Vorformlingsvolumen in n äquidistant verteilte Wanddickenprofilpunkte. Vorzugsweise wird mit n = 25 Wanddickenprofilpunkten gearbeitet. Die Pogrammkurve des Wanddickenprogramms 3 weist auf schmale Bereiche beschränkte, ausgeprägte Funktionsmaxima KP1, KP2 im Abstand y1, y2 (von dem in Extrusionsrichtung vorderen Ende des Vorformlings betrachtet) auf, die Vorformlingsbereichen zugeordnet sind, die in der Blasform stark gereckt werden. Diese Vorformlingsquerschnitte heißen daher auch kritische Querschnitte. Die Programmkurve des Wanddickenprogramms 3 setzt sich im Ausführungsbeispiel zusammen aus einem gleichmäßigen Grundspalt 13, einer Rampe 14 und einer Profilkurve 15. Die Rampe 14 vergrößert vom Beginn der Vorformlingsextrusion an den Düsenspalt 4 des Strangpreßkopfes 5 kontinuierlich. Die Rampe 14 trägt dazu bei, ein Durchhängen des Vorformlings 1 aufgrund des längenabhängigen Gewichtes zu kompensieren.The wall thickness program 3 divides the preform volume in n equidistantly distributed wall thickness profile points. Preferably with n = 25 wall thickness profile points worked. The program curve of the wall thickness program 3 points to narrow areas, pronounced Function maxima KP1, KP2 at a distance y1, y2 (from which in Direction of extrusion viewed from the front end of the preform) on the preform areas assigned which are strongly stretched in the blow mold. These preform cross sections are therefore also called critical cross sections. The program curve of the wall thickness program 3 is composed of one in the embodiment uniform basic gap 13, a ramp 14 and one Profile curve 15. The ramp 14 increases from the beginning of the Preform extrusion at the die gap 4 of the extrusion head 5 continuously. The ramp 14 helps sagging of the preform 1 due to the length-dependent To compensate for weight.

    Die beiden Meßeinrichtungen 10a, 10b sind den kritischen Punkten KP1, KP2 zugeordnet und in einem dem Kurvenabschnitt y2-y1 der Programmkurve korrespondierenden Abstand angeordnet. Die Meßeinrichtungen 9, 10a sind in einem Abstand angeordnet, der dem Programmkurvenabschnitt y3 zugeordnet ist. Erreicht der Vorformling 1 beim Extrusionsvorgang die Meßeinrichtung 10a, so wird zu diesem Zeitpunkt der kritische Vorformlingsquerschnitt KP2 im Düsenspalt 4 produziert.The two measuring devices 10a, 10b are critical Points KP1, KP2 assigned and in one of the curve section y2-y1 corresponding to the program curve Distance arranged. The measuring devices 9, 10a are in a distance that the program curve section is assigned to y3. Reaches preform 1 at Extrusion process the measuring device 10a, then becomes the critical preform cross section KP2 produced in the nozzle gap 4.

    Wird die Lageregelung nicht auf den hauptkritischen Punkt KP2 sondern auf die Vorformlingslänge nach fast vollständiger Extrusion des Vorformling 1 angelegt und wird eine Verschiebung des kritischen Querschnittes KP2 relativ zur Blasform festgestellt, obwohl die Gewichts- und Extrusionszeitmeßwerte den Sollwerten entsprechen, so sind zum Zwecke der Feinkorrektur folgende Korrekturmaßnahmen allein oder in Kombination möglich:

    • Relativbewegung zwischen der Blasform und dem Vorformling ändern;
    • Ablauf des Wanddickenprogramms relativ zum Vorformling verschieben;
    • Einformzeit ändern oder eine andere vergleichbare Zeitkorrektur vornehmen;
    • Länge des Abschnitts y3 der Programmkurve korrigieren.
    If the position control is not applied to the main critical point KP2 but to the preform length after almost complete extrusion of the preform 1 and a shift in the critical cross-section KP2 relative to the blow mold is found, although the weight and extrusion time measured values correspond to the target values, these are for the purpose of fine correction the following corrective measures are possible alone or in combination:
    • Change relative motion between the blow mold and the preform;
    • Shift the sequence of the wall thickness program relative to the preform;
    • Change the molding time or make another comparable time correction;
    • Correct the length of section y3 of the program curve.

    Die vorstehend beschriebenen Maßnahmen sind auch möglich, um die Restextrusion des dem Programmabschnitt y3 zugeordneten Vorformlingsabschnittes zu steuern.The measures described above are also possible the residual extrusion of the program section y3 to control associated preform section.

    Änderungen in bezug auf die Durchhängung stellen nach Schwankungen der Schwellung und Förderleistung bei konstanten Maschinenbedingungen die nächst größere Störgröße dar. Die Durchhängung ist in erster Näherung eine Funktion des momentanen Vorformlingsgewichtes und des Düsenspaltquerschnittes. Die Störgrößen sind unterschiedliche Materialeigenschaften und unterschiedliche Massetemperatur. Je extremer das Wanddickenprofil im Vorformling eingestellt werden muß, desto schwieriger ist die Durchhängung beispielsweise durch eine linear steigende Rampe auszugleichen. Wenn die Materialverteilung im Hohlkörper unbefriedigend ist, obwohl die Extrusionszeitmeßwerte und die zugeordneten Gewichtsmeßwerte den Sollwerten entsprechen, sind Feinkorrekturen an Betriebseinstellungen der Blasformanlage zweckmäßig, wobei verschiedene Maßnahmen möglich sind. Als erste Verbesserung empfiehlt die Erfindung den Anteil des Profilfaktors und somit der Profilkurve im Verhältnis zum Grundspalt zu modifizieren. Der Profilfaktor wird mit den Funktionswerten der Programmkurve multipliziert und streckt oder staucht diese. Der Profilfaktor kann die Verwendung eines Grundspaltes ersetzen. Eine weitere Verbesserung kann darin bestehen, daß der Profilfaktor mit einer linear oder exponentiell steigenden Rampe verwendet wird. Schließlich ist es möglich, die Durchhängung näherungsweise durch eine beliebige Kombination aus

  • a) einer linear steigenden Rampe,
  • b) einer exponentiell steigenden Rampe,
  • c) einem modifizierten Profilfaktor im Verhältnis zum Grundspalt,
  • d) einem Düsenspaltfaktor gleich Summe aus Grundspalt und Profilkurve multipliziert mit einem Profilfaktor,
  • e) einem reziproken Düsenspaltfaktor
  • zu beschreiben.Changes in the sagging are the next largest disturbance variable after fluctuations in the swelling and delivery rate under constant machine conditions. The sagging is, in a first approximation, a function of the current preform weight and the nozzle gap cross-section. The disturbances are different material properties and different melt temperatures. The more extreme the wall thickness profile in the preform has to be set, the more difficult it is to compensate for the sag, for example, by a linearly increasing ramp. If the material distribution in the hollow body is unsatisfactory, although the extrusion time measurement values and the assigned weight measurement values correspond to the target values, fine adjustments to the operating settings of the blow molding system are expedient, various measures being possible. As a first improvement, the invention recommends modifying the proportion of the profile factor and thus the profile curve in relation to the basic gap. The profile factor is multiplied by the function values of the program curve and stretches or compresses them. The profile factor can replace the use of a basic gap. Another improvement can be that the profile factor is used with a linear or exponentially increasing ramp. Finally, it is possible to approximate the sag by any combination
  • a) a linearly increasing ramp,
  • b) an exponentially increasing ramp,
  • c) a modified profile factor in relation to the basic gap,
  • d) a nozzle gap factor equal to the sum of the basic gap and the profile curve multiplied by a profile factor,
  • e) a reciprocal nozzle gap factor
  • to describe.

    Optimal wäre die Durchhängung durch ein weiteres Programmfeld ähnlich dem Wanddickenprogramm, welches auch synchron zu diesem abläuft, zu jedem Wanddickenpunkt separat einzugeben. Erforderliche Änderungen sind als ein Bruchteil der ermittelten Kurve automatisch addierbar oder subtrahierbar.The sagging through another program field would be optimal similar to the wall thickness range, which is also synchronous to this expires, enter separately for each wall thickness point. Required changes are a fraction of the determined curve can be added automatically or subtractable.

    Werden Meßeinrichtungen 9, 10a und 10b, wie in der Fig. 1 angegeben, eingesetzt, so können bei Aufteilung des Wanddickenprogramms in Abschnitte ein oder mehrere Abschnitte y1/y2, y1/y3 geregelt werden. Ferner kann die Vorformlingslänge oder die Stützluftmenge und/oder der Stützluftdruck bei geringerem Abstand y2-y1 vergrößert und bei größerem Abstand entsprechend verkleinert werden. Ferner besteht die Möglichkeit, den Ablauf des Wanddickenprogramms an einem oder mehreren Profilpunkten, vorzugsweise am Minimum zwischen den Funktionsmaxima KP1, KP2, kurzzeitig zu unterbrechen. Da die Extrusion des Vorformlings während der Unterbrechung des Programmablaufs fortgesetzt wird, und zwar mit den Betriebseinstellungen zum Zeitpunkt der Programmunterbrechung, resultiert eine Streckung des Vorformlings im Mittelbereich zwischen den Funktionsmaxima. Ist der Abstand y2-y1 zu klein, so ist eine Korrektur dadurch möglich, daß der Profilfaktor verkleinert und der Grundspalt vergrößert oder die Rampe vergrößert wird. Umgekehrte Abhängigkeiten ergeben sich, wenn der Abstand y2-y1 zu groß ist.

    Figure 00300001
    If measuring devices 9, 10a and 10b, as indicated in FIG. 1, are used, one or more sections y1 / y2, y1 / y3 can be regulated when the wall thickness program is divided into sections. Furthermore, the preform length or the amount of supporting air and / or the supporting air pressure can be increased at a smaller distance y2-y1 and reduced accordingly at a larger distance. It is also possible to briefly interrupt the sequence of the wall thickness program at one or more profile points, preferably at the minimum between the function maxima KP1, KP2. Since the extrusion of the preform continues during the interruption of the program sequence, with the operating settings at the time of the program interruption, the preform is stretched in the middle area between the functional maxima. If the distance y2-y1 is too small, a correction is possible by reducing the profile factor and increasing the base gap or increasing the ramp. Reverse dependencies arise when the distance y2-y1 is too large.
    Figure 00300001

    Claims (29)

    1. A process for extrusion blow moulding of hollow members from thermoplastic, wherein tubular preforms (1) are extruded by a screw extruder (2) from the die gap (4) of an extrusion head (5) controlled in accordance with a wall thickness program (3), and in subsequent work cycles the extruded preforms (1) are expanded in a blow mould (6) to form hollow members (7), which are taken out of the mould and any adhering flashes are removed, wherein
      the extrusion time (tIst) required by each preform (1) to reach a predetermined tube length is measured, the deviation (Δt) thereof from a set value (tSoll) is determined, and the deviation (Δt) is stored in a computer (8) together with the actual speed (nS) of the screw extruder (2) and/or the change (ΔnS) in the said speed and the actual nozzle gap (SA) and/or the change (ΔsA) in the nozzle gap in association with the preform (1) and hollow members (7) made therefrom,
      the weight (GIst) of the hollow members (7) is measured and deviations (ΔG) from a preset weight (GSoll) with the associated stored deviations (Δt) from the set extrusion time are used in pairs as control deviations for determining any corrections (ΔnS, ΔsA) required in the speed or the die gap and
      the operating parameters (nS, sA) for the extrusion are determined in a subsequent work cycle from the stored speed and die-gap values and the calculated speed and die-gap corrections (ΔnS, ΔsA).
    2. A process according to claim 1, wherein a newly occurring deviation (Δt) from the set extrusion time exceeding a set limit (tTol-1, tTol+1) is eliminated in the next working cycle by changing the screw speed (ΔnS) and/or by changing the die gap (ΔsA) without regard to the not yet available weight measurement.
    3. A process according to claim 1, wherein in time with the production of the preform, a value for correcting the position of the preform (1) is activated if the deviation (Δt) of the measured extrusion time from the set value exceeds a set limit (tTol-1, tTol+1) wherein the extrusion time is measured by a measuring device (10a, 10b) disposed along the extrusion path at a distance from the bottom edge of the completely extruded preform.
    4. A method according to claim 3, wherein the value for correcting the position of the preform (1) is so chosen so that the preform cross-section associated with a function maximum (KP1, KP2) of the wall thickness program (3) is positioned in the blow mould (6) at the place where a maximum stretching associated with the function maximum occurs during the blowing process.
    5. A process according to any one of claims 1 to 4, wherein changes in the screw speed (ΔnS) and in the die gap (ΔsA) are introduced only if the deviations (Δt) of the extrusion time from the set value are within a preset tolerance range defined by inner limits (tTol-1, tTol+1) and outer limits (tTol-2, tTol+2), wherein the inner limits (tTol-1, tTol+1) define a narrow band range with positive and negative deviations from the set value (tSoll) of the extrusion time and wherein the outer limits (tTol-2, tTol+2) define maximum permissible positive and negative deviations from the set value (tSoll) of the extrusion time.
    6. A process according to any of claims 1 to 5, wherein the speed (nS) of the screw extruder (2) is changed in dependence on the deviations (ΔG) from the preset weight (GSoll) and wherein the die gap (sA) is corrected in dependence on the weight deviations (ΔG) in conjunction with the associated deviations (Δt) from the set extrusion time.
    7. A process according to claim 6, wherein the change (ΔnS) in the screw speed (nS) and the adjustment (ΔsA) of the die gap (sA) are made in dependence on the measured extrusion time and the measured weight (tIst, GIst) and the associated set values (tSoll, GSoll) in accordance with the following algorithm
    8. A process according to claim 6 or 7, wherein Δ ns = ns(GSoll - GIst)Gsoll SA = SA • (1- tIst tSoll ns ns + Δns ) the weight measurement GIst is the gross weight (GB) of the hollow member including the adhering flashes, measured on removal from the mould.
    9. A process according to any of claims 1 to 5, wherein the die gap (sA) of the extrusion head is corrected in dependence on the deviations (ΔG) from the set weight (GSoll) and wherein the screw speed (ns) is additionally changed in dependence on the weight deviations (ΔG) in conjunction with the associated deviations (Δt) of the extrusion time from the set value.
    10. A process according to claim 9, wherein the die gap is adjusted (ΔsA) and the screw speed (nS) is changed (ΔnS) in dependence on the measured extrusion time and weight (tIst, GIst) and the associated set values (tSoll, GSoll) in accordance with the following algorithm: Δ SA = SA(GSoll - GIst)Gsoll ns = ns • (1- tSoll tIst SA SA + ΔSA )
    11. A process according to claim 9 or 10, wherein the measured weight (GIst) is the net weight (GN) of the hollow member after removal of the flashes.
    12. A process according to any of claims 1 to 11, wherein the extrusion time (tIst) is detected by a measuring device (9) positioned near the bottom edge of the completely extruded preform.
    13. A process according to any of claims 1 to 11, wherein the extrusion time (tIst) is detected by a measuring device (10a, 10b) at a distance from the die gap (4) such that the said distance corresponds to the set length of a portion of the bottom edge of the preform or a reference marking up to a critical preform cross-section (KP1, KP2) associated with a function maximum of the wall thickness program (3).
    14. A process according to any of claims 1 to 13, wherein for the purpose of precise correction, the relative motion between the blow mould (6) and the preform (1) is changed and/or the sequence of the wall thickness program (3) is displaced relative to the preform (1) or an intermediate stop is provided at a preset profile point and/or the moulding time is changed or another comparable time correction is made and/or the length of the curve portion (y3) of the wall thickness program (3) corresponding to the portion between the preform bottom edge and a critical cross-section (KP2) of the preform (1) relative to the subsequent stretching of the preform in the blow mould (6) is changed if a displacement of the critical cross-section (KP2) relative to the blow mould (6) is detected, even though the measured weight and extrusion time (GIst, tIst) correspond to the set values (GSoll, tSoll).
    15. A process according to any of claims 1 to 14, wherein the bottom edge of the preform (1) is detected by at least one light barrier (14) which stops the measurement of the extrusion time.
    16. A process according to any of claims 1 to 15, wherein the measuring device comprises a number of horizontal light barriers (14) disposed side by side and the time measurements stopped by the light barriers (14) are compared and wherein an error signal associated with the preform (1) is stored if the differences between the stopped time measurements are outside a preset tolerance range.
    17. A process according to claim 16, wherein the error signal is used for ejecting the hollow member (7') moulded from the preform (1) in question and/or as a control variable for changing an operating parameter of the extrusion-blowing process.
    18. A process according to claim 17, wherein the amount of back-up air or a skewed run of tubing is corrected in dependence on the sequence in time of the measured signals on which the error signal is based.
    19. A process according to any of claims 15 to 19, wherein the light barriers (14) are disposed in groups aligned horizontally at an angle of preferably 90° to one another, each group comprising at least two parallel light barriers (14).
    20. A process according to any of claims 15 to 19, wherein the time measurements stopped by the light barriers are averaged in order to determine the extrusion time (tIst) used for comparison with the set value.
    21. A process according to any of claims 1 to 14, wherein during extrusion a marking is made on the outside of the preform (1) and wherein a device for detecting the marking is used for measuring the extrusion time used for comparison with the set value.
    22. A process according to any of claims 1 to 21, wherein a number of measuring devices (10b, 10a, 9) are provided in the preform extrusion device for checking the position, setting the length or adjusting the length.
    23. A process according to any of claims 1 to 22, wherein a number of measuring devices (10b, 10a, 9) are disposed one beneath the other in the extrusion direction and the extrusion times measured therewith are compared in order to obtain operating parameters for compensating sagging and/or shrinkage.
    24. A process according to claim 23, wherein for the purpose of precise correction, the program curve (13, 14, 15) is corrected if the deviations (Δt) from the set value between the extrusion times measured by the measuring devices (10b, 10a, 9) differ from one another.
    25. A process according to any of claims 1 to 24, wherein the time measurement is started in synchronism with or offset at each cycle from the beginning of the work cycle or by a signal from an optical measuring device disposed underneath the die gap (4) .
    26. A process according to any of claims 1 to 25, wherein a signal associated with the preform (1) is stored if the deviation of the extrusion time from the set value is above a preset operating tolerance range (tTol2-, tTol2+) and wherein the signal is used for ejecting faulty hollow members (7').
    27. A process according to claim 26, wherein the signal actuates a sorting device (11) when the hollow member (7') blown from a preform (1) designated by the signal reaches the sorting device (11), and the hollow member (7') in question is ejected as a result.
    28. A process according to any of claims 1 to 27, wherein frequency distributions relating to the deviations (Δt) of the extrusion time (tIst) from the set value are compiled and stored and wherein the inner limits (tTol-1, tTol+1) and/or the outer limits (tTol-2, tTol+2) of the operating tolerance range are used in dependence on the current frequency distribution.
    29. A process according to any of claims 26 to 28, wherein the set weight (GSoll) is changed in dependence on the width of the operating tolerance range and wherein a smaller set weight is associated with a narrow tolerance range and a greater set weight is associated with a wider tolerance range.
    EP95109413A 1994-06-20 1995-06-19 Method for extrusion blow moulding hollow bodies of thermoplastic material Expired - Lifetime EP0693357B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4421171A DE4421171C1 (en) 1994-06-20 1994-06-20 Process for extrusion blow molding of hollow bodies made of thermoplastic
    DE4421171 1994-06-20

    Publications (3)

    Publication Number Publication Date
    EP0693357A2 EP0693357A2 (en) 1996-01-24
    EP0693357A3 EP0693357A3 (en) 1998-04-29
    EP0693357B1 true EP0693357B1 (en) 2001-10-04

    Family

    ID=6520806

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95109413A Expired - Lifetime EP0693357B1 (en) 1994-06-20 1995-06-19 Method for extrusion blow moulding hollow bodies of thermoplastic material

    Country Status (3)

    Country Link
    EP (1) EP0693357B1 (en)
    AT (1) ATE206350T1 (en)
    DE (2) DE4421171C1 (en)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008052611B3 (en) * 2008-10-21 2010-04-08 Feuerherm, Harald, Dipl.-Ing. Plastic hollow body producing method, involves detecting variations of wall thickness distribution of hollow bodies, and correcting variations by intervening molding process or by changing outflow speed of plastic melt from die gap
    DE102008052609A1 (en) 2008-10-21 2010-04-22 Feuerherm, Harald, Dipl.-Ing. Plastic hollow body manufacturing method, involves correcting influence of deviation of molding process on material distribution in hollow body by intervention in molding process and/or intervention in preform-formation
    DE102008052608B3 (en) * 2008-10-21 2010-05-20 Feuerherm, Harald, Dipl.-Ing. Method for manufacturing plastic hollow bodies by blow molding, involves setting measurement in relation with reference value, where deviation starts between measurement and reference value for preform

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102007030369B4 (en) * 2007-06-29 2015-08-27 Harald Feuerherm Process for producing blow-molded hollow bodies
    DE102008034934B4 (en) * 2007-10-23 2022-10-13 Krones Aktiengesellschaft Device and method for manufacturing containers

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2940418A1 (en) * 1979-10-05 1981-04-16 Kautex-Maschinenbau GmbH, 5300 Bonn DEVICE FOR INFLUENCING THE WEIGHT OF A HOLLOW BODY MADE FROM THERMOPLASTIC PLASTIC, PRODUCED BY EXTRUSION BLOWING
    WO1984002874A1 (en) * 1983-01-22 1984-08-02 Harald Feuerherm Method for regulating the wall thickness of tubular preforms
    DE3816273C3 (en) * 1988-05-12 1996-03-21 Harald Feuerherm Process for extrusion blow molding of a hollow body and device for carrying out the process
    DE3935338A1 (en) * 1989-10-24 1991-05-02 Motech Gmbh Computergestuetzte Controls on extrusion-blow moulding - automatic system uses weight of tubular parison as datum value and adjusts extruded die gap as required to keep prod. within tolerances
    DE3936301A1 (en) * 1989-11-01 1991-05-02 Kautex Maschinenbau Gmbh METHOD FOR PRODUCING HOLLOW BODIES FROM THERMOPLASTIC PLASTIC
    EP0536438B1 (en) * 1991-10-10 1995-09-27 MOTECH GmbH COMPUTERGESTÜTZTE SYSTEM-LÖSUNGEN Method of weight dependent controlling of the diegap of extrusion blow molding machines
    DE59509417D1 (en) * 1994-06-03 2001-08-23 Harald Feuerherm Process for extrusion blow molding of hollow bodies made of thermoplastic

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008052611B3 (en) * 2008-10-21 2010-04-08 Feuerherm, Harald, Dipl.-Ing. Plastic hollow body producing method, involves detecting variations of wall thickness distribution of hollow bodies, and correcting variations by intervening molding process or by changing outflow speed of plastic melt from die gap
    DE102008052609A1 (en) 2008-10-21 2010-04-22 Feuerherm, Harald, Dipl.-Ing. Plastic hollow body manufacturing method, involves correcting influence of deviation of molding process on material distribution in hollow body by intervention in molding process and/or intervention in preform-formation
    DE102008052608B3 (en) * 2008-10-21 2010-05-20 Feuerherm, Harald, Dipl.-Ing. Method for manufacturing plastic hollow bodies by blow molding, involves setting measurement in relation with reference value, where deviation starts between measurement and reference value for preform
    DE102008052609B4 (en) * 2008-10-21 2010-06-02 Feuerherm, Harald, Dipl.-Ing. Process for producing plastic hollow bodies by blow molding

    Also Published As

    Publication number Publication date
    EP0693357A2 (en) 1996-01-24
    DE4421171C1 (en) 1996-01-04
    ATE206350T1 (en) 2001-10-15
    EP0693357A3 (en) 1998-04-29
    DE59509654D1 (en) 2001-11-08

    Similar Documents

    Publication Publication Date Title
    DE3816273C2 (en)
    EP0062788B1 (en) Method and apparatus for producing preferably hollow parisons of a thermoplast
    EP0776752B1 (en) Method of blow moulding and hollow thermoplastic articles
    EP0767148A1 (en) Process and device for manufacturing glass articles by drawing from a preform
    EP0904913A1 (en) Method for achieving a stable control of the bank profile in the extrusion of plastic films and sheets
    DE2940418A1 (en) DEVICE FOR INFLUENCING THE WEIGHT OF A HOLLOW BODY MADE FROM THERMOPLASTIC PLASTIC, PRODUCED BY EXTRUSION BLOWING
    EP0897786A2 (en) Regulation process for an injection moulding machine for plastics
    AT400830B (en) PLANT FOR MONITORING THE PRODUCTION OF PROFILES MADE OF ONE OR MORE BLENDS
    EP0001111B1 (en) Method and apparatus for manufacturing blown films
    DE19801881C1 (en) Assessment of molding quality achieved by pressure injection molding machine
    EP0693357B1 (en) Method for extrusion blow moulding hollow bodies of thermoplastic material
    AT394970B (en) METHOD FOR INJECTION MOLDING THERMOPLASTIC PLASTICS
    EP0162045B1 (en) Method for regulating the wall thickness of tubular preforms
    EP0685315B1 (en) Method for extrusion blow moulding of hollow articles of thermoplastic material
    DE69106906T2 (en) System and method for regulating the wall thickness of preforms.
    DE102019126219B3 (en) Method for operating a plant for producing a film web and plant for carrying out this method
    DE102008052609B4 (en) Process for producing plastic hollow bodies by blow molding
    EP0451239B1 (en) Process for the production of hollow bodies from thermoplastic material
    EP3687762B1 (en) Process for manufacturing of hollow plastic containers
    DE3902405C1 (en)
    DE3416781C2 (en)
    EP0334448B1 (en) Blowmoulding machine for hollow articles with an adjustement of the residual volume
    DE4419460C1 (en) Process for the extrusion blow moulding of hollow articles from thermoplastic material
    DE102018120052B4 (en) Method for changing dimensions during the manufacture of an extruded pipe made of plastic
    DE102008052611B3 (en) Plastic hollow body producing method, involves detecting variations of wall thickness distribution of hollow bodies, and correcting variations by intervening molding process or by changing outflow speed of plastic melt from die gap

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH DE ES FR GB IE IT LI NL

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH DE ES FR GB IE IT LI NL

    17P Request for examination filed

    Effective date: 19980930

    17Q First examination report despatched

    Effective date: 19991105

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB IE IT LI NL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011004

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20011004

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011004

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011004

    REF Corresponds to:

    Ref document number: 206350

    Country of ref document: AT

    Date of ref document: 20011015

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59509654

    Country of ref document: DE

    Date of ref document: 20011108

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    ET Fr: translation filed
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20011004

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020430

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020619

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020630

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20120705

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20120621

    Year of fee payment: 18

    BERE Be: lapsed

    Owner name: *FEUERHERM HARALD

    Effective date: 20130630

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130701

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20140527

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59509654

    Country of ref document: DE