EP0692086B1 - Chemical reactor, refrigerating machine and container provided therewith, and reagent cartridge therefor - Google Patents

Chemical reactor, refrigerating machine and container provided therewith, and reagent cartridge therefor Download PDF

Info

Publication number
EP0692086B1
EP0692086B1 EP94912588A EP94912588A EP0692086B1 EP 0692086 B1 EP0692086 B1 EP 0692086B1 EP 94912588 A EP94912588 A EP 94912588A EP 94912588 A EP94912588 A EP 94912588A EP 0692086 B1 EP0692086 B1 EP 0692086B1
Authority
EP
European Patent Office
Prior art keywords
block
reactor according
reagent
confining
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94912588A
Other languages
German (de)
French (fr)
Other versions
EP0692086A1 (en
Inventor
Gilles Labranque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sofrigam
Original Assignee
Sofrigam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sofrigam filed Critical Sofrigam
Publication of EP0692086A1 publication Critical patent/EP0692086A1/en
Application granted granted Critical
Publication of EP0692086B1 publication Critical patent/EP0692086B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B35/00Boiler-absorbers, i.e. boilers usable for absorption or adsorption
    • F25B35/04Boiler-absorbers, i.e. boilers usable for absorption or adsorption using a solid as sorbent

Definitions

  • the present invention also relates to a refrigeration machine thus equipped.
  • the present invention also relates to a container fitted with such a refrigerating machine.
  • the invention also relates to a cartridge for reagent.
  • the reagent is subjected in service to constraints important, especially temperature and pressure, and it must also be able to absorb chemically and chemically separate from the fluid refrigeration with a speed corresponding to the flows refrigerant in the machine.
  • Such an absorbent material has many cons: the amount of gas it is capable of to absorb per unit volume is relatively limited, and it retains absorbent particles poorly. This is what forces the gas flow to pass through screens that sort of serve as filter but which slow the flow and which risk moreover, in the long run, to take on particles seeking to flee the elementary blocks. In addition, the need to provide such screens further increases the already large volume that is required due to the relatively low absorption performance of blocks themselves. Finally, these blocks being metallic, preferably in stainless steel, the weight of the set is important.
  • FR-A-2 455 713 describes an absorbing device comprising a reactive body, possibly returned "practically self-supporting" by a binder. This body is locked up in a flexible envelope. We make an intimate contact of the envelope with the body by means of a difference of pressure between inside and outside of the envelope.
  • the object of the invention is thus to propose a reactor chemical for refrigeration machine or the like which is capable of ensuring good refrigeration performance which keep for many successive cycles, without prohibitive alteration of its original characteristics.
  • the chemical reactor for a machine refrigerator or the like comprising a prefabricated block of reagent intended to absorb a chemical flux gaseous from an evaporator and desorb this flow by reverse chemical reaction due to an increase in temperature, the reagent block being confined between faces containment, at least some of which are permeable to mass exchanges, is characterized in that the block is subject to variation in volume depending on the quantity of absorbed gas, and in that the confining faces belong to containment walls capable of ensuring the shape stability of the block against the trend to said volume variations.
  • the reagent despite its tendency to increase in volume during the chemical reaction of combination with the refrigerant, supported without disadvantage of being confined in a substantially fixed volume.
  • this influenced negligible on its ability to chemically absorb a significant amount of refrigerant gas.
  • the confinement stabilizes the physical structure of the block, which is favorable for obtaining good performance absorption and desorption.
  • an apparatus according to the invention is capable of producing ice by being placed under a high outdoor temperature (tropical type) without that its size and weight do not exceed usual standards.
  • the reactor according to the invention can receive the most if not all of the reagents containing chlorides.
  • the permeable walls can for example be formed by openwork tubes lining the channels parallels in the block.
  • the fins are placed in a defined annular chamber externally by an insulated sheath. During the refrigeration, this duct channels the air from cooling along the fins. During the regeneration, we at least partially isolate the space surrounded by the sheath relatively on the outside for prevent convection flow along the fins.
  • a heating element is used electrical resistance, mounted in a housing located at heart of the block so the heat produced by this element diffuses through the block practically without losses.
  • the invention relates also a refrigeration machine comprising, in closed circuit, a high pressure tank, a regulator, evaporator and reactor according to the first aspect.
  • the invention relates in in addition to a container fitted with a refrigerating machine according to the second aspect.
  • the cartridge of reagent especially to be part of a reactor according to the first aspect, of a refrigerating machine according to the second aspect or container depending on the third aspect, including a reagent block surrounded by a waterproof envelope, this block comprising cavities opening out through the sealed envelope, is characterized in that said cavities are closed tightly sealed by temporary fillings.
  • Such a cartridge allows handling and storage of the reagent without altering its properties especially without moisture absorption, since its manufacturing until its installation in the reactor.
  • the machine refrigerator 1 fitted to the refrigerated container 2 includes a refrigerant tank or tank liquid 3 subjected to its own vapor pressure saturating.
  • the fluid is chosen in particular so that this pressure is relatively high.
  • this fluid is ammonia whose pressure saturated steam is around 1.5 MPa at 20 ° C.
  • An outlet orifice 4, provided at the bottom of the balloon 3 of so as to let out only liquid, is connected to a regulator 6 via a stop valve 7 which can be a solenoid valve powered by a rechargeable battery associated with container.
  • the regulator 6 and the evaporator 8 are located at the interior of the insulated enclosure 5 of the container refrigerator 2 while the other elements described so far are located outside the enclosure 5.
  • a non-return valve 13 prevents the fluid coming from of reactor 9 to flow towards the evaporator 8, while another non-return valve 14 prevents the fluid contained in balloon 3 to flow to the condenser 11.
  • a superheat measuring device 16 controls the degree of opening of the regulator 6 of so that the fluid leaving the evaporator 8 is completely evaporated without being excessively overheated.
  • reactor 9 contains a reagent, preferably that known from EP-A-0477343 / WO-A-9115292 consisting of a mixture of chloride and a derivative expanded carbon with lamellar structures, having the property of chemically combining with the fluid refrigerator used, in this case ammonia, when its temperature is low, and to separate chemically ammonia when its temperature takes a predetermined high value.
  • a reagent preferably that known from EP-A-0477343 / WO-A-9115292 consisting of a mixture of chloride and a derivative expanded carbon with lamellar structures, having the property of chemically combining with the fluid refrigerator used, in this case ammonia, when its temperature is low, and to separate chemically ammonia when its temperature takes a predetermined high value.
  • the reactor 9 has means selectively allowing it to be heated or cool. Ways to warm it up include basically a heating element 17 which is selectively activated by a switch 18. So not shown, the heating element can be thermostatically controlled.
  • Means for cooling the reactor 9 include a battery-powered fan 19 rechargeable associated with the container. Fan 19 circulates a convection air flow inside an outer sheath 21 of the reactor. Sheath 21 is insulated to limit thermal leakage during heating, and has at its base a flap 22 that it is closed during heating to avoid the effect of fireplace. On the contrary, during the operation of the fan 19, the flap 22 is open.
  • the shut-off valve 7 When the machine is waiting to operate in refrigeration, the shut-off valve 7 is closed, so that the refrigerant reserve is trapped between the non-return valve 14 and the valve 7.
  • Sa pressure is important since it corresponds to the saturated vapor pressure of ammonia at the outside temperature, for example 20 ° C.
  • the heating of the reagent by element 17 causes separation of ammonia which leaves in gaseous state by the same conduit 24 as that by which it was entered the reactor. Given the temperature relatively high in the reactor, the pressure of the outgoing gas tends to be above temperature equilibrium in balloon 3 so the gas crosses the non-return valve 14. It is then brought to room temperature such as 20 ° C in the condenser 11 to reach the liquid state in the flask 3. When almost all of the reagent has been removed mobile ammonia (after commissioning, a certain amount of ammonia remains permanently prisoner of the block), the regeneration cycle stop. A new refrigeration cycle can to start. The ball 3 is then at its high level.
  • Such a container has the advantage of being able to undergo the regeneration process when in warehouse, then to be energy independent to ensure the refrigeration of the food in the container during transport of the container.
  • the reagent block 26 has a general shape cylindrical having the same axis 27 as the sheath 21 and a diameter smaller than the inner diameter of the sheath 21.
  • block 26 is made up of a stack of elementary blocks 28 having the form pancakes.
  • the block 26 is enclosed in containment walls which are preferably made of stainless steel to be mechanically robust and resist corrosion.
  • the containment walls include particular a cylindrical casing 29 in which the elementary blocks 28 are fitted with a slight initial tightening. This tightening is intended to increase after use of the reactor due to the tendency of the reagent to be inflated as described above.
  • the envelope 29 therefore has the role of shrinking the block 26.
  • the peripheral envelope 29 is closed each time axial end of block 26 by a closure plate 31 of circular shape.
  • Block 26 is crossed by a number (four in the example) of channels 32 of cylindrical shape, which are parallel to the axis 27 and distributed angularly around it. Canals 32 coincide with lights 33 practiced through the plates 31 and thus open outside of the containment envelope of block 26.
  • Channels 32 are lined with permeable containment walls made up of perforated stainless steel tubes 34.
  • the perforations of the tubes 34 allow the mass exchanges between the gaseous medium of channels 32 and block 26 being exposed to this medium through the perforations.
  • the annular ends of the tubes perforated 34 are joined with the periphery of corresponding lights 33.
  • the outer casing 29 is also tightly connected to a cap upper 36 and lower respectively 37.
  • An upper spacer 38 and respectively lower 39 is mounted in position substantially central between each cap 36 or respectively 37 and the neighboring containment plate 31.
  • a distribution and collection chamber 41 is defined between the upper cap 36 and the plate containment 31 neighbor, and therefore communicates with the channels 32 through the lights 33.
  • the upper spacer 38 has conduits 42 which communicate the collection and distribution chamber 41 with the inlet and outlet conduit 24 in the reactor 9, through a hole 43 in the cap upper 36 and an orifice 44 for entry and exit in the reactor.
  • the lower cap 37 and the plate containment 31 corresponding define them a circulation chamber 50.
  • the heating element 17 is an electrical element in shape of rod whose useful length corresponds to the axial length of block 26, and which is mounted substantially free from play in an axial housing 46 provided at across the entire axial length of the block 26.
  • the upper end of the housing 46 is closed by the plate 31 adjacent to chamber 41.
  • the housing 46 is not lined so that in operation the reagent, taking into account its tendency to swell, encloses the heating element 17 with the advantage of improving thermal contact between them.
  • the resistance of the plates 31 is increased by the connection between them by the perforated tubes 34 and where appropriate the non-perforated tube 47, and also by spacers 38 and 39 which report the thrust of swelling on the caps 36 and 37 which are resistant thanks to their rounded shape.
  • This reinforcement assured to plates 31 is useful when the pressure in rooms 41 and 50 are low while the trend the swelling of the block is maximum, for example at the end refrigeration cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PCT No. PCT/FR94/00377 Sec. 371 Date Oct. 5, 1995 Sec. 102(e) Date Oct. 6, 1995 PCT Filed Apr. 5, 1994 PCT Pub. No. WO94/23253 PCT Pub. Date Oct. 13, 1994A reagent (26) combines exothermically with a cold refrigerating fluid exiting a refrigerating evaporator during a refrigeration cycle, then releases the refrigerating fluid endothermically once it has been heated to a sufficiently high temperature by means of a heating element (17) during a regeneration cycle during which the released refrigerating fluid condenses in a pressurized tank. The reagent is confined inside stainless steel walls (29, 31, 34) which prevent it from swelling. These walls include perforated tubes (34) lining channels (32) in which the mass exchanges take place during the combining and separating reactions. The heating element (17) is fitted in a central cavity (46). An air flow (54), which is interrupted during regeneration, evacuates the heat of the combining reaction by means of fins (56). The invention prevents the block of reagent from distorting and becoming progressively inoperative over repeated cycles.

Description

La présente invention concerne un réacteur chimique pour machine frigorifique ou analogue.The present invention relates to a chemical reactor for refrigerating machine or the like.

La présente invention concerne également une machine frigorifique ainsi équipée.The present invention also relates to a refrigeration machine thus equipped.

La présente invention concerne encore un conteneur muni d'une telle machine frigorifique.The present invention also relates to a container fitted with such a refrigerating machine.

L'invention concerne aussi une cartouche de réactif.The invention also relates to a cartridge for reagent.

On connaít le principe des machines frigorifiques fonctionnant par réaction chimique.We know the principle of refrigeration machines operating by chemical reaction.

A partir d'une réserve de fluide frigorifique à l'état liquide sous pression, le fluide traverse un détendeur puis un évaporateur placé dans l'enceinte à refroidir. En sortant de l'évaporateur, le gaz est aspiré par le réacteur qui contient un réactif qui, à température ambiante, est chimiquement avide de ce gaz. Le réactif se combine chimiquement avec le gaz en produisant un certain dégagement de chaleur.From a refrigerant reserve at the liquid state under pressure, the fluid passes through a regulator then an evaporator placed in the enclosure to cool. Leaving the evaporator, the gas is sucked up by the reactor which contains a reagent which, at room temperature, is chemically hungry for this gas. The reagent chemically combines with the gas in producing some heat release.

Lorsque la réserve de liquide sous pression est épuisée, le processus s'arrête et il est alors nécessaire d'initier un processus de régénération consistant à fournir de la chaleur au réacteur chimique pour que le réactif se sépare chimiquement du gaz frigorifique et refoule ce gaz sous forte pression. En sortant du réacteur, le gaz passe à travers un condenseur puis est collecté à l'état liquide dans la réserve. Lorsque le processus de régénération est terminé, la réserve est à son niveau maximum et un nouveau processus de réfrigération peut être initié.When the supply of pressurized liquid is exhausted, the process stops and it is then necessary to initiate a regeneration process of supplying heat to the chemical reactor for the reagent to chemically separate from the gas refrigerant and expels this gas under high pressure. In leaving the reactor, the gas passes through a condenser then is collected in the liquid state in the Reserve. When the regeneration process is finished, the reserve is at its maximum level and a new refrigeration process can be initiated.

Ce principe connu a jusqu'à présent posé de graves problèmes de mise en oeuvre.This known principle has so far posed serious implementation problems.

Le réactif est soumis en service à des contraintes importantes, notamment de température et de pression, et il doit en outre être capable d'absorber chimiquement et de se séparer chimiquement du fluide frigorifique avec une vitesse correspondant aux débits de fluide frigorifique dans la machine.The reagent is subjected in service to constraints important, especially temperature and pressure, and it must also be able to absorb chemically and chemically separate from the fluid refrigeration with a speed corresponding to the flows refrigerant in the machine.

On connaít d'après le US-A-2 649 700 un réacteur chimique pour machine frigorifique ou analogue comprenant plusieurs blocs de réactif élémentaires destinés à absorber par combinaison chimique un flux gazeux en provenance d'un évaporateur et désorber ce flux par réaction chimique inverse sous l'effet d'une élévation de température. Les blocs, de forme générale annulaire, sont confinés entre une paroi intérieure et une paroi périphérique. En outre, des écrans poreux séparent les blocs élémentaires l'un de l'autre. Ils distribuent le flux gazeux entre les surfaces supérieures et inférieures des blocs élémentaires et un conduit d'arrivée et de départ. Un canal parallèle à l'axe traverse les blocs élémentaires et les écrans et sert de collecteur pour les flux provenant des écrans ou allant vers ceux-ci.We know from US-A-2 649 700 a reactor chemical for refrigerating machine or the like comprising several elementary reagent blocks intended to absorb a chemical flux gaseous from an evaporator and desorb what flow by reverse chemical reaction under the effect of temperature rise. Blocks, of general shape annular, are confined between an inner wall and a peripheral wall. In addition, porous screens separate the elementary blocks from each other. They distribute the gas flow between surfaces upper and lower elementary blocks and a arrival and departure conduit. A channel parallel to the axis crosses the elementary blocks and the screens and serves as a collector for flows from screens or going towards them.

Selon ce document, les blocs élémentaires sont en métal fritté et sont donc dimensionnellement stables, notamment à l'égard des contraintes précitées de température et de pression. Les parois ont simplement pour but de positionner les blocs.According to this document, the elementary blocks are in sintered metal and are therefore dimensionally stable, in particular with regard to the aforementioned constraints of temperature and pressure. The walls simply for the purpose of positioning the blocks.

Un tel matériau absorbant a de nombreux inconvénients : la quantité de gaz qu'il est capable d'absorber par unité de volume est relativement limitée, et il retient mal les particules absorbantes. C'est ce qui oblige à faire passer le flux gazeux à travers des écrans qui servent en quelque sorte de filtre mais qui ralentissent le flux et qui risquent d'ailleurs, à la longue, de se charger de particules cherchant à fuir les blocs élémentaires. En outre, la nécessité de prévoir de tels écrans augmente encore le volume déjà important qui est nécessaire en raison de la relativement faible performance d'absorption des blocs eux-mêmes. Enfin, ces blocs étant métalliques, de préférence en inox, le poids de l'ensemble est important.Such an absorbent material has many cons: the amount of gas it is capable of to absorb per unit volume is relatively limited, and it retains absorbent particles poorly. This is what forces the gas flow to pass through screens that sort of serve as filter but which slow the flow and which risk moreover, in the long run, to take on particles seeking to flee the elementary blocks. In addition, the need to provide such screens further increases the already large volume that is required due to the relatively low absorption performance of blocks themselves. Finally, these blocks being metallic, preferably in stainless steel, the weight of the set is important.

On connaít par ailleurs d'après le US-A-2384460 un réacteur dans lequel le réactif est une poudre susceptible de gonfler lorsqu'elle absorbe du gaz frigorifique. Cette poudre est logée dans un corps cylindrique en étant confinée dans un volume déterminé. Pour les transferts de masse entre le matériau absorbant et le conduit de gaz, l'espace réservé au matériau est traversé par des tubes perforés remplis de laine de verre pour empêcher les particules de fuir avec le flux gazeux. On retrouve donc d'une manière un peu différente la particularité consistant en un filtre censé retenir les particules et laisser passer le flux gazeux. On comprendra cependant que le concepteur de ce dispositif connu admet que les particules vont traverser les perforations du tube. Sinon, il n'aurait pas prévu de laine de verre dans les tubes. Par conséquent il y aura de plus en plus de particules dans la laine de verre, puis finalement, dans le flux gazeux lui-même, c'est-à-dire précisément ce que l'on avait voulu éviter.We also know from US-A-2384460 a reactor in which the reagent is a powder likely to swell when absorbing gas refrigerator. This powder is housed in a body cylindrical while being confined in a determined volume. For mass transfers between the material absorbent and the gas pipe, the space reserved for material is traversed by perforated tubes filled with glass wool to prevent particles from leaking with the gas flow. So we find in a way a little different the peculiarity consisting of a filter supposed to retain particles and let the flow through gaseous. It will be understood, however, that the designer of this known device admits that the particles go cross the perforations of the tube. Otherwise, he would not have no glass wool in the tubes. By therefore there will be more and more particles in glass wool, then finally in the gas stream itself, that is to say precisely what we had wanted to avoid.

Et on connaít par ailleurs d'après le EP-A-0206875 un réactif solide constitué d'un mélange de chlorure et d'un dérivé expansé du carbone à structures en lamelles. Ce réactif résout les problèmes de transfert de masse et de chaleur. Il est capable d'absorber de grandes quantités de gaz par unité de volume.And we also know from EP-A-0206875 a solid reagent consisting of a mixture of chloride and of an expanded carbon derivative with structures in slats. This reagent solves transfer problems of mass and heat. It is able to absorb large quantities of gas per unit volume.

Par contre, sa tenue mécanique est réduite et il a tendance à se déformer rapidement sous l'action des gradients de pression et des variations de volume rencontrées pendant le fonctionnement de la machine. En particulier, lorsque le réactif absorbe du gaz par combinaison chimique, son volume tend à augmenter progressivement. A la suite de cela, la séparation chimique peut être incomplète et les surfaces du réactif prévues pour les échanges de masse peuvent être tellement déformées qu'elles deviennent inefficaces. Par exemple, si des cavités ont été prévues dans le bloc de réactif pour augmenter la surface d'échange, ces cavités ont tendance à se refermer sur elles-mêmes après quelques cycles de réfrigération-régénération.On the other hand, its mechanical strength is reduced and it has tendency to deform quickly under the action of pressure gradients and volume variations encountered during machine operation. In especially when the reagent absorbs gas by chemical combination, its volume tends to increase gradually. Following this, the separation chemical may be incomplete and the surfaces of the reagent planned for mass exchanges can be so distorted that they become ineffective. By example, if cavities have been provided in the block reactive to increase the exchange surface, these cavities have tendency to close after a few cycles refrigeration-regeneration.

Le FR-A-2 455 713 décrit un dispositif absorbeur comprenant un corps réactif, éventuellement rendu "pratiquement autoportant" par un liant. Ce corps est enfermé dans une enveloppe flexible. On réalise un contact intime de l'enveloppe avec le corps au moyen d'une différence de pression entre l'intérieur et l'extérieur de l'enveloppe.FR-A-2 455 713 describes an absorbing device comprising a reactive body, possibly returned "practically self-supporting" by a binder. This body is locked up in a flexible envelope. We make an intimate contact of the envelope with the body by means of a difference of pressure between inside and outside of the envelope.

Le but de l'invention est ainsi de proposer un réacteur chimique pour machine frigorifique ou analogue qui soit capable d'assurer de bonnes performances frigorifiques qui se conservent pendant de nombreux cycles successifs, sans altération prohibitive de ses caractéristiques initiales.The object of the invention is thus to propose a reactor chemical for refrigeration machine or the like which is capable of ensuring good refrigeration performance which keep for many successive cycles, without prohibitive alteration of its original characteristics.

Suivant l'invention, le réacteur chimique pour machine frigorifique ou analogue, comprenant un bloc préfabriqué de réactif destiné à absorber par combinaison chimique un flux gazeux en provenance d'un évaporateur et désorber ce flux par réaction chimique inverse sous l'effet d'une élévation de température, le bloc de réactif étant confiné entre des faces de confinement dont certaines au moins sont perméables aux échanges de masse, est caractérisé en ce que le bloc est susceptible de variation de volume en fonction de la quantité de gaz absorbée, et en ce que les faces de confinement appartiennent à des parois de confinement capables d'assurer la stabilité de forme du bloc à l'encontre de la tendance auxdites variations de volume.According to the invention, the chemical reactor for a machine refrigerator or the like, comprising a prefabricated block of reagent intended to absorb a chemical flux gaseous from an evaporator and desorb this flow by reverse chemical reaction due to an increase in temperature, the reagent block being confined between faces containment, at least some of which are permeable to mass exchanges, is characterized in that the block is subject to variation in volume depending on the quantity of absorbed gas, and in that the confining faces belong to containment walls capable of ensuring the shape stability of the block against the trend to said volume variations.

On s'est en effet aperçu que le réactif, malgré sa tendance à augmenter de volume pendant la réaction chimique de combinaison avec le fluide frigorifique, supportait sans inconvénient d'être confiné dans un volume sensiblement fixe. En particulier il s'est avéré que cela influait de manière négligeable sur sa capacité à absorber chimiquement une quantité importante de gaz frigorifique. Au contraire, le confinement stabilise la structure physique du bloc, ce qui est favorable pour l'obtention de bonnes performances d'absorption et de désorption. We have indeed noticed that the reagent, despite its tendency to increase in volume during the chemical reaction of combination with the refrigerant, supported without disadvantage of being confined in a substantially fixed volume. In particular, it turned out that this influenced negligible on its ability to chemically absorb a significant amount of refrigerant gas. On the contrary, the confinement stabilizes the physical structure of the block, which is favorable for obtaining good performance absorption and desorption.

Ainsi, selon l'invention, on confine le bloc de réactif dans un volume sensiblement fixe et comme ce bloc est solide, il a en service une bonne cohésion intrinsèque grâce à laquelle la substance active est bien retenue à son intérieur. On maítrise ainsi les problèmes de fuite de réactif avec de simples parois perméables, pouvant par exemple être des parois ajourées.Thus, according to the invention, the block of reactive in a substantially fixed volume and like this block is solid, it has good cohesion in service intrinsic thanks to which the active substance is well retained inside. We thus control the reagent leakage problems with single walls permeable, for example being walls openwork.

Il n'est plus nécessaire de faire passer le flux gazeux à travers des filtres plus ou moins efficaces pour retenir les particules.It is no longer necessary to pass the flow gaseous through more or less efficient filters to retain particles.

Grâce à l'invention, on réalise pour la première fois un réacteur fiable capable d'emmagasiner dans un volume restreint des quantités de gaz permettant d'envisager la production efficace de froid à l'aide d'un appareil à absorption. Par exemple, contrairement aux réfrigérateurs à absorption que l'on connaít actuellement et qui en fait ne sont que des rafraichisseurs, un appareil selon l'invention est capable de produire de la glace en étant placé sous une forte température extérieure (de type tropical) sans que son encombrement ni son poids ne dépassent les normes usuelles.Thanks to the invention, for the first time, times a reliable reactor capable of storing in a limited volume of gas quantities allowing to consider the efficient production of cold using of an absorption device. For example, unlike absorption fridges that we know currently and which in fact are just coolers, an apparatus according to the invention is capable of producing ice by being placed under a high outdoor temperature (tropical type) without that its size and weight do not exceed usual standards.

Le réacteur selon l'invention peut recevoir la plupart sinon la totalité des réactifs contenant des chlorures.The reactor according to the invention can receive the most if not all of the reagents containing chlorides.

Les parois perméables peuvent par exemple être constituées par des tubes ajourés chemisant des canaux parallèles ménagés dans le bloc.The permeable walls can for example be formed by openwork tubes lining the channels parallels in the block.

Pendant la réaction de combinaison, il importe d'évacuer la chaleur produite pour éviter que le réactif s'échauffe et devienne par conséquent moins avide du gaz.During the combination reaction, it is important to dissipate the heat produced to prevent the reagent heats up and therefore becomes less hungry for gas.

Pour cela, on peut fixer sur une paroi périphérique, appartenant aux parois de confinement, des ailettes de refroidissement exposées à un flux d'air de refroidissement, naturel ou forcé. For this, we can fix on a wall peripheral, belonging to the containment walls, cooling fins exposed to a flow cooling air, natural or forced.

Au contraire, pendant la régénération, il est avantageux que la dissipation de chaleur soit aussi faible que possible. C'est pourquoi les ailettes sont placées dans une chambre annulaire définie extérieurement par une gaine calorifugée. Pendant la réfrigération, cette gaine canalise l'air de refroidissement le long des ailettes. Pendant la régénération, on isole au moins partiellement l'espace entouré par la gaine relativement à l'extérieur pour empêcher le flux de convection le long des ailettes.On the contrary, during regeneration, it is advantageous that heat dissipation is also as low as possible. This is why the fins are placed in a defined annular chamber externally by an insulated sheath. During the refrigeration, this duct channels the air from cooling along the fins. During the regeneration, we at least partially isolate the space surrounded by the sheath relatively on the outside for prevent convection flow along the fins.

Pour chauffer le réactif pendant la régénération, on utilise de préférence un élément chauffant à résistance électrique, monté dans un logement situé au coeur du bloc de façon que la chaleur produite par cet élément diffuse à travers le bloc pratiquement sans pertes.To heat the reagent during regeneration, preferably a heating element is used electrical resistance, mounted in a housing located at heart of the block so the heat produced by this element diffuses through the block practically without losses.

On peut si on le désire chemiser ce logement avec une paroi de confinement, mais il est également acceptable de ne pas chemiser le logement, en acceptant que la substance du bloc, en raison de sa tendance à gonfler, vienne enserrer l'élément chauffant. La conduction entre l'élément chauffant et le bloc n'en sera que meilleure. Il faudra bien entendu veiller à utiliser un élément chauffant dont la température en surface n'excède pas la température limite acceptable pour la substance du bloc.We can, if we wish, line this accommodation with a containment wall but it's also acceptable not to line the accommodation, accepting that the substance of the block, due to its tendency to inflate, enclose the heating element. The conduction between the heating element and the block will be that better. Of course, care must be taken to use a heating element whose temperature surface does not exceed acceptable limit temperature for the substance of the block.

Avec l'élément chauffant au coeur du bloc et les ailettes à sa périphérie, la tendance néfaste des ailettes à jouer le rôle de diffuseur thermique pendant la régénération est efficacement combattue.With the heating element in the heart of the block and the fins on its periphery, the harmful trend of fins to play the role of thermal diffuser during regeneration is effectively combated.

Selon son deuxième aspect, l'invention concerne également une machine frigorifique comprenant, en circuit fermé, un réservoir haute pression, un détendeur, un évaporateur et un réacteur selon le premier aspect.According to its second aspect, the invention relates also a refrigeration machine comprising, in closed circuit, a high pressure tank, a regulator, evaporator and reactor according to the first aspect.

Selon son troisième aspect, l'invention concerne en outre un conteneur équipé d'une machine frigorifique selon le deuxième aspect.According to its third aspect, the invention relates in in addition to a container fitted with a refrigerating machine according to the second aspect.

Suivant un quatrième aspect, la cartouche de réactif, notamment pour faire partie d'un réacteur selon le premier aspect, d'une machine frigorifique selon le deuxième aspect ou d'un conteneur selon le troisième aspect, comprenant un bloc de réactif entouré par une enveloppe étanche, ce bloc comportant des cavités débouchant à travers l'enveloppe étanche, est caractérisée en ce que lesdites cavités sont fermées de manière étanche par des obturations provisoires.According to a fourth aspect, the cartridge of reagent, especially to be part of a reactor according to the first aspect, of a refrigerating machine according to the second aspect or container depending on the third aspect, including a reagent block surrounded by a waterproof envelope, this block comprising cavities opening out through the sealed envelope, is characterized in that said cavities are closed tightly sealed by temporary fillings.

Une telle cartouche permet la manutention et le stockage du réactif sans altération de ses propriétés notamment sans absorption d'humidité, depuis sa fabrication jusqu'à son installation dans le réacteur.Such a cartridge allows handling and storage of the reagent without altering its properties especially without moisture absorption, since its manufacturing until its installation in the reactor.

D'autres particularités et avantages de l'invention ressortiront encore de la description ci-après, relative à des exemples non limitatifs.Other features and advantages of the invention will emerge further from the description below, relating to nonlimiting examples.

Aux dessins annexés :

  • la figure 1 est un schéma de principe d'un conteneur frigorifique selon l'invention, pendant la réfrigération ;
  • la figure 2 est une vue analogue à la figure 1 mais pendant la régénération ;
  • la figure 3 est une vue en coupe axiale du réacteur des figures 1 et 2 ;
  • la figure 4 est une vue en coupe transversale du réacteur des figures 1 et 2 ; et
  • la figure 5 est une vue partielle d'une variante de réalisation.
In the accompanying drawings:
  • Figure 1 is a block diagram of a refrigerated container according to the invention, during refrigeration;
  • Figure 2 is a view similar to Figure 1 but during regeneration;
  • Figure 3 is an axial sectional view of the reactor of Figures 1 and 2;
  • Figure 4 is a cross-sectional view of the reactor of Figures 1 and 2; and
  • Figure 5 is a partial view of an alternative embodiment.

Dans l'exemple représenté à la figure 1, la machine frigorifique 1 équipant le conteneur frigorifique 2 comprend une réserve ou ballon de fluide frigorifique liquide 3 soumis à sa propre pression de vapeur saturante. Le fluide est notamment choisi pour que cette pression soit relativement élevée. Dans l'exemple, ce fluide est de l'ammoniac dont la pression de vapeur saturante est de l'ordre de 1,5 MPa à 20°C. Un orifice de sortie 4, prévu au fond du ballon 3 de manière à ne laisser sortir que du liquide, est raccordé à un détendeur 6 par l'intermédiaire d'une vanne d'arrêt 7 qui peut être une électrovanne alimentée par une batterie rechargeable associée au conteneur. Le détendeur 6 est situé à l'entrée d'un évaporateur 8 dont la sortie est reliée par un raccord en T 10 d'une part à un réacteur 9 et d'autre part à un condenseur 11. Le condenseur 11 est lui-même relié à une entrée 12 située au sommet du ballon 3.In the example shown in Figure 1, the machine refrigerator 1 fitted to the refrigerated container 2 includes a refrigerant tank or tank liquid 3 subjected to its own vapor pressure saturating. The fluid is chosen in particular so that this pressure is relatively high. In the example, this fluid is ammonia whose pressure saturated steam is around 1.5 MPa at 20 ° C. An outlet orifice 4, provided at the bottom of the balloon 3 of so as to let out only liquid, is connected to a regulator 6 via a stop valve 7 which can be a solenoid valve powered by a rechargeable battery associated with container. The regulator 6 is located at the entrance of a evaporator 8, the outlet of which is connected by a fitting in T 10 on the one hand to a reactor 9 and on the other hand to a condenser 11. The condenser 11 is itself connected to an entrance 12 located at the top of the balloon 3.

Le détendeur 6 et l'évaporateur 8 sont situés à l'intérieur de l'enceinte calorifugée 5 du conteneur frigorifique 2 tandis que les autres éléments décrits jusqu'à présent sont situés à l'extérieur de l'enceinte 5. Un clapet anti-retour 13 empêche le fluide provenant du réacteur 9 de circuler en direction de l'évaporateur 8, tandis qu'un autre clapet anti-retour 14 empêche le fluide contenu dans le ballon 3 de s'écouler vers le condenseur 11.The regulator 6 and the evaporator 8 are located at the interior of the insulated enclosure 5 of the container refrigerator 2 while the other elements described so far are located outside the enclosure 5. A non-return valve 13 prevents the fluid coming from of reactor 9 to flow towards the evaporator 8, while another non-return valve 14 prevents the fluid contained in balloon 3 to flow to the condenser 11.

Un dispositif de mesure de surchauffe 16, de type connu, commande le degré d'ouverture du détendeur 6 de manière que le fluide sortant de l'évaporateur 8 soit complètement évaporé sans être excessivement surchauffé.A superheat measuring device 16, of the type known, controls the degree of opening of the regulator 6 of so that the fluid leaving the evaporator 8 is completely evaporated without being excessively overheated.

D'une manière qui sera décrite plus en détail plus loin, le réacteur 9 contient un réactif, de préférence celui connu d'après le EP-A-0477343/WO-A-9115292 constitué d'un mélange de chlorure et d'un dérivé expansé de carbone à structures en lamelles, ayant la propriété de se combiner chimiquement avec le fluide frigorifique utilisé, en l'occurence l'ammoniac, lorsque sa température est basse, et de se séparer chimiquement de l'ammoniac lorsque sa température prend une valeur élevée prédéterminée.In a manner which will be described in more detail more far away, reactor 9 contains a reagent, preferably that known from EP-A-0477343 / WO-A-9115292 consisting of a mixture of chloride and a derivative expanded carbon with lamellar structures, having the property of chemically combining with the fluid refrigerator used, in this case ammonia, when its temperature is low, and to separate chemically ammonia when its temperature takes a predetermined high value.

C'est pourquoi le réacteur 9 comporte des moyens permettant sélectivement de le réchauffer ou de le refroidir. Les moyens pour le réchauffer comprennent essentiellement un élément chauffant 17 qui est sélectivement activé par un interrupteur 18. De manière non représentée, l'élément chauffant peut être thermostaté. Les moyens pour refroidir le réacteur 9 comprennent un ventilateur 19 alimenté par la batterie rechargeable associée au conteneur. Le ventilateur 19 fait circuler un flux d'air de convection à l'intérieur d'une gaine extérieure 21 du réacteur. La gaine 21 est calorifugée pour limiter les fuites thermiques pendant le chauffage, et comporte à sa base un volet 22 que l'on ferme pendant le chauffage pour éviter l'effet de cheminée. Au contraire, pendant le fonctionnement du ventilateur 19, le volet 22 est ouvert.This is why the reactor 9 has means selectively allowing it to be heated or cool. Ways to warm it up include basically a heating element 17 which is selectively activated by a switch 18. So not shown, the heating element can be thermostatically controlled. Means for cooling the reactor 9 include a battery-powered fan 19 rechargeable associated with the container. Fan 19 circulates a convection air flow inside an outer sheath 21 of the reactor. Sheath 21 is insulated to limit thermal leakage during heating, and has at its base a flap 22 that it is closed during heating to avoid the effect of fireplace. On the contrary, during the operation of the fan 19, the flap 22 is open.

On va maintenant décrire le fonctionnement général de la machine frigorifique représentée aux figures 1 et 2.We will now describe the general operation of the refrigeration machine shown in Figures 1 and 2.

Lorsque la machine est en attente de fonctionner en réfrigération, la vanne d'arrêt 7 est fermée, de sorte que la réserve de fluide frigorifique est emprisonnée entre le clapet anti-retour 14 et la vanne 7. Sa pression est importante puisqu'elle correspond à la pression de vapeur saturante de l'ammoniac à la température extérieure, par exemple 20°C.When the machine is waiting to operate in refrigeration, the shut-off valve 7 is closed, so that the refrigerant reserve is trapped between the non-return valve 14 and the valve 7. Sa pressure is important since it corresponds to the saturated vapor pressure of ammonia at the outside temperature, for example 20 ° C.

Pour lancer un cycle de réfrigération, il suffit d'ouvrir la vanne d'arrêt 7 et le volet 22, et de mettre en fonctionnement le ventilateur 19. Le liquide quitte le ballon 3 par la sortie 4 et la vanne 7, puis traverse le détendeur 6 en perdant de la pression ce qui lui permet de se vaporiser dans l'évaporateur 8 en extrayant à la chambre froide du conteneur la chaleur latente de vaporisation nécessaire. Le gaz ainsi formé traverse dans le sens passant le clapet anti-retour 13 puis atteint le réacteur 9 où compte-tenu de la basse température entretenue par le ventilateur 19, le gaz se combine chimiquement avec le réactif. L'effet frigorifique disparaít quand le réactif est sensiblement saturé par l'ammoniac, le ballon 3 est alors à son niveau bas.To start a refrigeration cycle, simply open the shut-off valve 7 and the flap 22, and turn on fan 19. Liquid leaves balloon 3 via outlet 4 and valve 7, then passes through the regulator 6 losing pressure this which allows it to vaporize in the evaporator 8 in extracting heat from the container latent vaporization required. The gas thus formed crosswise through the check valve 13 then reached reactor 9 where given the low temperature maintained by fan 19, the gas chemically combines with the reagent. The effect when the reagent is substantially saturated with ammonia, balloon 3 is then at its low level.

Il faut alors procéder à un cycle de régénération, représenté à la figure 2. Pour cela, on ferme la vanne 7 et le volet 22, on interrompt le fonctionnement du ventilateur 19 et on met en fonctionnement l'élément chauffant 17 à l'aide de l'interrupteur 18. Il peut également être prévu de fermer l'extrémité supérieure de la gaine 21 au moyen par exemple d'un obturateur 23.You must then carry out a regeneration cycle, shown in Figure 2. To do this, we close the valve 7 and the flap 22, the operation of the fan 19 and the element is put into operation heating 17 using switch 18. It can also be expected to close the upper end of the sheath 21 by means, for example, of a shutter 23.

Le chauffage du réactif par l'élément 17 provoque la séparation de l'ammoniac qui sort à l'état gazeux par le même conduit 24 que celui par lequel il était entré dans le réacteur. Compte-tenu de la température relativement élevée dans le réacteur, la pression du gaz qui en sort tend à être supérieure à la température d'équilibre dans le ballon 3 de sorte que le gaz traverse le clapet anti-retour 14. Il est ensuite ramené à la température ambiante telle que 20°C dans le condenseur 11 pour parvenir à l'état liquide dans le ballon 3. Quand le réactif est débarrassé de la quasi-totalité de l'ammoniac mobile (après mise en service, une certaine quantité d'ammoniac reste définitivement prisonnière du bloc), le cycle de régénération s'arrête. Un nouveau cycle de réfrigération peut commencer. Le ballon 3 est alors à son niveau haut.The heating of the reagent by element 17 causes separation of ammonia which leaves in gaseous state by the same conduit 24 as that by which it was entered the reactor. Given the temperature relatively high in the reactor, the pressure of the outgoing gas tends to be above temperature equilibrium in balloon 3 so the gas crosses the non-return valve 14. It is then brought to room temperature such as 20 ° C in the condenser 11 to reach the liquid state in the flask 3. When almost all of the reagent has been removed mobile ammonia (after commissioning, a certain amount of ammonia remains permanently prisoner of the block), the regeneration cycle stop. A new refrigeration cycle can to start. The ball 3 is then at its high level.

Un tel conteneur a l'avantage de pouvoir subir le processus de régénération lorsqu'il est en entrepôt, puis d'être ensuite autonome en énergie pour assurer la réfrigération des denrées que renferme le conteneur pendant le transport du conteneur.Such a container has the advantage of being able to undergo the regeneration process when in warehouse, then to be energy independent to ensure the refrigeration of the food in the container during transport of the container.

On va maintenant décrire plus en détail le réacteur 9 en référence aux figures 3 et 4.We will now describe in more detail the reactor 9 with reference to Figures 3 and 4.

Le bloc de réactif 26 a une forme générale cylindrique ayant même axe 27 que la gaine 21 et un diamètre inférieur au diamètre intérieur de la gaine 21.The reagent block 26 has a general shape cylindrical having the same axis 27 as the sheath 21 and a diameter smaller than the inner diameter of the sheath 21.

Dans l'exemple représenté, le bloc 26 est constitué d'un empilage de blocs élémentaires 28 ayant la forme de galettes.In the example shown, block 26 is made up of a stack of elementary blocks 28 having the form pancakes.

Conformément à l'invention, le bloc 26 est enfermé dans des parois de confinement qui sont de préférence réalisées en acier inoxydable pour être mécaniquement robustes et résister à la corrosion.According to the invention, the block 26 is enclosed in containment walls which are preferably made of stainless steel to be mechanically robust and resist corrosion.

Les parois de confinement comprennent en particulier une enveloppe cylindrique 29 dans laquelle les blocs élémentaires 28 sont emmanchés avec un léger serrage initial. Ce serrage est destiné à augmenter après utilisation du réacteur en raison de la tendance du réactif à gonfler comme il a été exposé plus haut. L'enveloppe 29 a donc un rôle de frettage du bloc 26.The containment walls include particular a cylindrical casing 29 in which the elementary blocks 28 are fitted with a slight initial tightening. This tightening is intended to increase after use of the reactor due to the tendency of the reagent to be inflated as described above. The envelope 29 therefore has the role of shrinking the block 26.

L'enveloppe périphérique 29 est fermée à chaque extrémité axiale du bloc 26 par une plaque de fermeture 31 de forme circulaire. Le bloc 26 est traversé par un certain nombre (quatre dans l'exemple) de canaux 32 de forme cylindrique, qui sont parallèles à l'axe 27 et répartis angulairement autour de celui-ci. Les canaux 32 coïncident avec des lumières 33 pratiquées à travers les plaques 31 et débouchent ainsi à l'extérieur de l'enveloppe de confinement du bloc 26. Les canaux 32 sont chemisés par des parois de confinement perméables constituées par des tubes perforés en acier inoxydable 34. Les perforations des tubes 34 permettent les échanges de masse entre le milieu gazeux des canaux 32 et le bloc 26 se trouvant exposé à ce milieu à travers les perforations. Les extrémités annulaires des tubes perforés 34 sont jointives avec le pourtour des lumières 33 correspondantes.The peripheral envelope 29 is closed each time axial end of block 26 by a closure plate 31 of circular shape. Block 26 is crossed by a number (four in the example) of channels 32 of cylindrical shape, which are parallel to the axis 27 and distributed angularly around it. Canals 32 coincide with lights 33 practiced through the plates 31 and thus open outside of the containment envelope of block 26. Channels 32 are lined with permeable containment walls made up of perforated stainless steel tubes 34. The perforations of the tubes 34 allow the mass exchanges between the gaseous medium of channels 32 and block 26 being exposed to this medium through the perforations. The annular ends of the tubes perforated 34 are joined with the periphery of corresponding lights 33.

Dans chacune des deux régions annulaires où l'enveloppe extérieure 29 est reliée à l'une des plaques de confinement 31, l'enveloppe extérieure 29 est également reliée de manière étanche à une calotte de fermeture supérieure 36 et respectivement inférieure 37. Une entretoise supérieure 38 et respectivement inférieure 39 est montée en position sensiblement centrale entre chaque calotte 36 ou respectivement 37 et la plaque de confinement 31 voisine.In each of the two annular regions where the outer casing 29 is connected to one of the containment plates 31, the outer casing 29 is also tightly connected to a cap upper 36 and lower respectively 37. An upper spacer 38 and respectively lower 39 is mounted in position substantially central between each cap 36 or respectively 37 and the neighboring containment plate 31.

Une chambre de répartition et de collecte 41 est définie entre la calotte supérieure 36 et la plaque de confinement 31 voisine, et communique par conséquent avec les canaux 32 à travers les lumières 33. L'entretoise supérieure 38 comporte des conduits 42 qui font communiquer la chambre de collecte et répartition 41 avec le conduit 24 d'entrée et sortie dans le réacteur 9, à travers un perçage 43 de la calotte supérieure 36 et un orifice 44 d'entrée et sortie dans le réacteur. La calotte inférieure 37 et la plaque de confinement 31 correspondante définissent entre elles une chambre de circulation 50.A distribution and collection chamber 41 is defined between the upper cap 36 and the plate containment 31 neighbor, and therefore communicates with the channels 32 through the lights 33. The upper spacer 38 has conduits 42 which communicate the collection and distribution chamber 41 with the inlet and outlet conduit 24 in the reactor 9, through a hole 43 in the cap upper 36 and an orifice 44 for entry and exit in the reactor. The lower cap 37 and the plate containment 31 corresponding define them a circulation chamber 50.

L'élément chauffant 17 est un élément électrique en forme de tige dont la longueur utile correspond à la longueur axiale du bloc 26, et qui est monté sensiblement sans jeu dans un logement axial 46 prévu à travers toute la longueur axiale du bloc 26. L'extrémité supérieure du logement 46 est fermée par la plaque 31 adjacente à la chambre 41. Selon un premier mode de réalisation représenté à la partie gauche de la figure 3, le logement 46 n'est pas chemisé de sorte qu'en fonctionnement le réactif, compte-tenu de sa tendance à gonfler, vient enserrer l'élément chauffant 17 avec l'avantage d'améliorer le contact thermique entre eux.The heating element 17 is an electrical element in shape of rod whose useful length corresponds to the axial length of block 26, and which is mounted substantially free from play in an axial housing 46 provided at across the entire axial length of the block 26. The upper end of the housing 46 is closed by the plate 31 adjacent to chamber 41. According to a first embodiment shown on the left side of the Figure 3, the housing 46 is not lined so that in operation the reagent, taking into account its tendency to swell, encloses the heating element 17 with the advantage of improving thermal contact between them.

Au contraire, comme représenté à la partie droite de la figure 3, si l'on craint que la température de l'élément chauffant 17 dégrade le réactif environnant, il est également possible de chemiser le logement 46 avec un tube 47. Si celui-ci est imperméable, en particulier non perforé, il protège l'élément chauffant 17 de la corrosion.On the contrary, as shown on the right in Figure 3, if we fear that the temperature of the heating element 17 degrades the surrounding reagent, it is also possible to line the housing 46 with a tube 47. If this is waterproof, in particular non-perforated, it protects the heating element 17 corrosion.

L'élément chauffant est monté à travers un perçage 48 de la calotte inférieure 37 et un alésage central 49 de l'entretoise inférieure 39. Celle-ci sert donc de monture pour l'élément chauffant 17. Elle peut par exemple être filetée intérieurement pour recevoir un filtage correspondant de l'élément 17 en vue de sa fixation. La plaque de confinement 31 inférieure présente une lumière centrale 51 pour le passage de l'élément 17.The heating element is mounted through a hole 48 of the lower cap 37 and a central bore 49 of the lower spacer 39. This therefore serves as mounting for the heating element 17. It can by example be internally threaded to receive a corresponding threading of element 17 for its fixation. The lower containment plate 31 has a central light 51 for the passage of item 17.

Pour éviter les fuites d'ammoniac vers l'extérieur, l'enveloppe périphérique 29 est étanche, et elle est reliée de manière étanche aux calottes supérieure 36 et inférieure 37. Celles-ci sont également étanches à l'exception de leurs perçages respectifs 43 et 48, qui communiquent de manière étanche avec les passages intérieurs 42 et 49 de leur entretoise respective 38 et 39, ainsi que, dans le cas de la calotte supérieure 36, avec l'orifice 44 de raccordement au reste du circuit frigorifique. L'élément chauffant 17 est monté de manière étanche dans l'alésage 49.To prevent ammonia from leaking out, the peripheral envelope 29 is waterproof, and it is tightly connected to the upper caps 36 and lower 37. These are also waterproof except for their respective holes 43 and 48, which communicate tightly with the passages interiors 42 and 49 of their respective spacer 38 and 39, as well as, in the case of the upper cap 36, with port 44 for connection to the rest of the circuit refrigerator. The heating element 17 is mounted tightly in bore 49.

La paroi périphérique 29 et la gaine 21 définissent entre elles une chambre annulaire 52 destinée à la circulation ascendante du flux d'air de refroidissement produit par le ventilateur 19 (non représenté à la figure 3) se trouvant en-dessous de la calotte inférieure 37. L'ensemble constitué par le bloc de réactif 26, les parois de confinement 29, 31, 32 et les calottes 36 et 37 ainsi que l'élément chauffant 17 est supporté à l'intérieur de la gaine 21 par tous moyens appropriés tels que des consoles 53 permettant le passage du flux d'air 54.The peripheral wall 29 and the sheath 21 define between them an annular chamber 52 intended for the upward circulation of cooling air flow produced by the fan 19 (not shown in the Figure 3) located below the cap lower 37. The assembly constituted by the block of reagent 26, the containment walls 29, 31, 32 and the caps 36 and 37 as well as the heating element 17 is supported inside the sheath 21 by any means suitable such as consoles 53 allowing the air flow passage 54.

La paroi périphérique 29 porte des ailettes 56 faisant saillie dans la chambre annulaire 52 en direction de la gaine 21. Les ailettes 56 sont disposées dans des plans axiaux de manière à définir entre elles des couloirs de circulation d'air 57 (figure 4) parallèles à l'axe 27. Les ailettes 56 sont par exemple réalisées à l'aide de tronçons de profilé en aluminium en forme de T soudés sur la surface extérieure de l'enveloppe périphérique 29.The peripheral wall 29 carries fins 56 projecting into the annular chamber 52 in direction of the sheath 21. The fins 56 are arranged in axial planes so as to define between them air circulation corridors 57 (Figure 4) parallel to the axis 27. The fins 56 are for example made using profile sections T-shaped aluminum welded to the surface outside of the peripheral envelope 29.

A son extrémité supérieure, la gaine 21 est fermée par une paroi ajourée 58 dont les ouvertures 59 peuvent être sélectivement fermées par un disque obturateur matérialisant l'obturateur 23 représenté schématiquement à la figure 2.At its upper end, the sheath 21 is closed by an openwork wall 58 whose openings 59 can be selectively closed by a shutter disc materializing the shutter 23 shown schematically in Figure 2.

Le fonctionnement du réacteur 9 est le suivant :

  • pendant le fonctionnement en réfrigération, l'ammoniac gazeux, froid et détendu, arrive par l'orifice 24 dans la chambre de répartition et collecte 41 puis dans les canaux 32 avant d'être absorbé par combinaison chimique avec le réactif 26 à travers les perforations des tubes de confinement 34. Le volet 22 est ouvert, comme représenté à la figure 1, et l'obturateur 23 est également dans la position d'ouverture, représentée à la figure 3. Le ventilateur 19 fonctionne et génère le flux d'air de refroidissement 54 lequel évacue la chaleur de la réaction de combinaison exothermique. Le flux 54 est accéléré par l'effet de cheminée à l'intérieur de la gaine 21, en raison de la température des ailettes 56, réchauffées par la chaleur de réaction.
The operation of reactor 9 is as follows:
  • during the refrigeration operation, the gaseous ammonia, cold and relaxed, arrives through the orifice 24 in the distribution chamber and collects 41 then in the channels 32 before being absorbed by chemical combination with the reagent 26 through the perforations containment tubes 34. The shutter 22 is open, as shown in FIG. 1, and the shutter 23 is also in the open position, shown in FIG. 3. The fan 19 operates and generates the air flow cooling 54 which dissipates the heat of the exothermic combination reaction. The flow 54 is accelerated by the chimney effect inside the sheath 21, due to the temperature of the fins 56, heated by the heat of reaction.

Pendant la régénération, on interrompt le fonctionnement du ventilateur 19, on ferme le volet 22 et l'obturateur 23 et on met en fonctionnement l'élément chauffant 17 pour porter le réactif à une température qui peut être de l'ordre de 200°C. Il en résulte une réaction chimique endothermique de séparation entre le réactif et l'ammoniac, lequel se dégage à l'état gazeux à travers les perforations des tubes 34 puis à travers l'orifice d'entrée et sortie 44, via la chambre de répartition et collecte 41 et les conduits 42 de l'entretoise 38.During the regeneration, the operation of the fan 19, the shutter 22 is closed and the shutter 23 and we put into operation the heating element 17 for bringing the reagent to a temperature which can be of the order of 200 ° C. It results from an endothermic chemical reaction of separation between the reagent and the ammonia, which is evolves in a gaseous state through the perforations of the tubes 34 then through the inlet and outlet 44, via the distribution and collection chamber 41 and the conduits 42 of the spacer 38.

Comme à ce stade la chambre annulaire 52 est isolée de l'extérieur, les ailettes 56 ne jouent plus aucun rôle d'évacuation de chaleur, de sorte que la réaction endothermique se produit avec un bon rendement.As at this stage the annular chamber 52 is isolated from the outside, the fins 56 no longer play any role of heat removal, so the reaction endothermic occurs with good efficiency.

Les plaques de confinement 31, bien que planes, résistent efficacement à la tendance du bloc à gonfler car elles sont adjacentes aux chambres 41 et 50 dans lesquelles règne la pression de l'ammoniac gazeux.The containment plates 31, although flat, effectively resist the tendency of the block to swell because they are adjacent to rooms 41 and 50 in which reigns the pressure of gaseous ammonia.

La résistance des plaques 31 est augmentée par la liaison assurée entre elles par les tubes perforés 34 et le cas échéant le tube non perforé 47, et aussi par les entretoises 38 et 39 qui reportent la poussée de gonflement sur les calottes 36 et 37 qui sont résistantes grâce à leur forme bombée. Ce renfort assuré aux plaques 31 est utile quand la pression dans les chambres 41 et 50 est basse alors que la tendance au gonflement du bloc est maximal, par exemple en fin de cycle de réfrigération.The resistance of the plates 31 is increased by the connection between them by the perforated tubes 34 and where appropriate the non-perforated tube 47, and also by spacers 38 and 39 which report the thrust of swelling on the caps 36 and 37 which are resistant thanks to their rounded shape. This reinforcement assured to plates 31 is useful when the pressure in rooms 41 and 50 are low while the trend the swelling of the block is maximum, for example at the end refrigeration cycle.

Dans l'exemple de la figure 5, les blocs élémentaires 28 sont des cartouches préfabriquées ayant leur propre enveloppe extérieure 60 qui est étanche à part les ouvertures 61 de passage des tubes ajourés 34 et de l'élément chauffant 17.In the example in Figure 5, the blocks elementary 28 are prefabricated cartridges having their own outer casing 60 which is waterproof apart the openings 61 for the passage of the perforated tubes 34 and the heating element 17.

L'enveloppe 60 a un simple rôle d'étanchéité et de cohésion mécanique, mais n'est pas conçue pour résister à la pression de service.The envelope 60 has a simple sealing and mechanical cohesion, but is not designed to resist at operating pressure.

A la fabrication des cartouches, on obture les ouvertures 61 avec des obturateurs frangibles 62, étanches, réalisés par exemple en papier étanche. Lors du montage, on assemble d'abord la paroi périphérique 29, la calotte inférieure, la plaque de confinement 31 inférieure, l'entretoise inférieure 39, les tubes perforés 34 et l'élément chauffant 17, puis on empile les blocs élémentaires 28 dans la paroi périphérique 29 tandis que l'élément chauffant 17 et les tubes 34 perforent chacun deux obturateurs 62 de chaque bloc lorsqu'il rentre et respectivement ressort de l'alésage 63 ou 64 qui lui correspond dans le bloc. Les alésages 63 et 64 sont non chemisés. Les obturateurs 62 ont pour fonction de protéger le bloc d'une indésirable absorption d'humidité avant le montage.During the manufacture of the cartridges, the openings 61 with frangible shutters 62, waterproof, made for example of waterproof paper. When of the assembly, we first assemble the peripheral wall 29, the lower cap, the containment plate 31 lower, lower spacer 39, tubes perforated 34 and the heating element 17, then stacked the elementary blocks 28 in the peripheral wall 29 while the heating element 17 and the tubes 34 each perforate two shutters 62 of each block when it comes in and out of the bore respectively 63 or 64 which corresponds to it in the block. The bores 63 and 64 are not jacketed. The shutters 62 have for function to protect the block from unwanted moisture absorption before mounting.

Le montage du coeur du réacteur se termine par la mise en place de la plaque 31 et de la calotte 36 supérieure.The assembly of the reactor core ends with the fitting of plate 31 and cap 36 superior.

La réalisation selon la figure 5 simplifie le montage du réacteur en reportant un certain nombre de précautions, notamment hygrométriques, sur la seule fabrication des blocs.The embodiment according to FIG. 5 simplifies the assembly of the reactor by postponing a certain number of precautions, especially hygrometric, on the sole block manufacturing.

Bien entendu, l'invention n'est pas limitée aux exemples décrits et représentés.Of course, the invention is not limited to examples described and shown.

On pourrait perforer aussi les plaques 31 pour augmenter les surfaces d'échange de masse.We could also perforate the plates 31 for increase the mass exchange surfaces.

Pour interrompre le flux d'air de refroidissement pendant la régénération, on pourrait ne fermer que le haut ou le bas de la gaine.To interrupt the flow of cooling air during regeneration, we could only close the top or bottom of the sheath.

Il pourrait y avoir plusieurs entretoises dans chaque chambre, et plusieurs éléments chauffants dans le bloc.There could be several spacers in each room, and several heating elements in the block.

Le réacteur pourrait avoir deux accès différents, l'un pour l'entrée de l'ammoniac pendant la réfrigération, l'autre pour la sortie de l'ammoniac pendant la régénération.The reactor could have two different accesses, one for the entry of ammonia during the refrigeration, the other for the ammonia outlet during regeneration.

Claims (28)

  1. Chemical reactor for a refrigerating machine (1) or similar comprising a pre-made block of reagent (26) intended to absorb by chemical combination a gaseous flow coming from an evaporator (8) and to desorb this flow by reverse chemical reaction under the effect of a rise in temperature, the block of reagent (26) being confined between confining faces (29, 31, 34, 47) at least some of which (34) are permeable to mass exchanges, characterised in that the block (26) is capable of volume variations as a function of the quantity of gas which it has absorbed and in that the confining faces are part of confining walls capable of providing the block with shape stability in opposition to the tendency to the said volume variations.
  2. Reactor according to Claim 1, characterized in that the permeable confining walls are perforated walls (34) interposed between the substance of the block and a space (32) for circulation of the gaseous flow.
  3. Reactor according to Claim 1 or 2, characterized in that the permeable walls are tubes which line recesses (32) formed in the block (26).
  4. Reactor according to Claim 3, characterized in that the recesses are channels (32) parallel with one another.
  5. Reactor according to Claim 3 or 4, characterized in that, at one at least of their ends, the recesses open in a chamber (41, 50) adjacent to one of two opposite faces of the block (26) of reagent.
  6. Reactor according to Claim 5, characterized in that in that the chamber (41, 50) is separated from the block by a confining plate (31), which is one of the confining walls of the block and through which the recesses (32) open.
  7. Reactor according to Claim 6, characterized in that the chamber (41) adjacent to one of the ends of the block is connected with an orifice (44) for connection with a refrigeration circuit.
  8. Reactor according to Claim 6, characterized in that at least one cross-piece (38, 39) extends between the confining plate (31) and an opposite wall (36, 37) also delimiting the chamber (41, 50).
  9. Reactor according to Claim 8, characterized in that in the cross-piece (38) there is formed a passage (42) connecting the chamber (41) with a refrigeration circuit (24) .
  10. Reactor according to Claim 8, characterized in that the cross-piece (39) is hollow and allows the passage and fixing of a heating element (17) engaged in a cavity (46) formed in the block of reagent (26) and opening through the confining plate (31) opposite the cross-piece (39).
  11. Reactor according to Claim 4, characterized in that the channels (32) are distributed around a cavity (46) formed in a substantially central position in the block (26) and accomodating a heating element (17).
  12. Reactor according to one of Claims 1 to 9, characterized in that the block (26) comprises a cavity (46) in which a heating element (17) is mounted.
  13. Reactor according to Claim 12, characterized in that the heating element (17) is fitted substantially without play in the cavity (46), which is delimited by surfaces which are part of the block of reagent.
  14. Reactor according to one of Claims 10 to 12, characterized in that the housing (46) is delimited by one of the confining walls (47).
  15. Reactor according to Claim 6, characterized in that the confining plate (31) is connected by its periphery to a peripheral hooping casing (29) of the block, being one of the said confining walls.
  16. Reactor according to Claim 15, characterized in that, in the region in which the confining plate (31) is connected to the peripheral casing (29), the confining walls are connected to the peripheral edge of an end cap (36, 37).
  17. Reactor according to one of Claims 1 to 14, characterized in that the block (26) is of cylindrical shape and the confining walls comprise a peripheral hooping casing (29).
  18. Reactor according to one of Claims 1 to 14, characterized in that the confining walls comprise a peripheral casing (29) carrying cooling fins (56) protruding into an annular chamber (52) contained between the peripheral casing (29) and an outer casing (21).
  19. Reactor according to Claim 18, characterized in that the fins (56) are oriented in such a way as to define between them parallel air circulation channels (57), preferably vertical.
  20. Reactor according to Claim 18 or 19, characterized by means (19, 22, 23) for selectively providing and preventing the circulation of air in the annular chamber (52).
  21. Reactor according to one of Claims 18 to 20, characterized in that the outer casing (21) is heat-insulated.
  22. Reactor according to one of Claims 18 to 21, characterized in that the confining walls (29, 31, 34, 47) are made of stainless steel and the fins (56) are made of aluminium.
  23. Reactor according to one of Claims 18 to 22, characterized in that the fins (56) are formed from sections of profiled material fixed to the peripheral casing (29).
  24. Reactor according to one of Claims 15 to 23, characterized in that the block (26) is fitted such that it is lightly clamped in the peripheral casing (29).
  25. Reactor according to one of Claims 15 to 24, characterized in that the block (26) comprises elementary blocks (28) slipped one after the other into the peripheral wall (29).
  26. Refrigerating machine comprising, in a closed circuit, a high pressure reservoir (3), a pressure reduction device (6) an evaporator (8) and a reactor (9) according to one of Claims 1 to 25.
  27. Container provided with a refrigerating machine (1) according to Claim 26.
  28. Reagent cartridge, in particular for being part of a reactor according to one of Claims 1 to 25, of a refrigerating machine according to Claim 26 or of a container according to Claim 27 and comprising a block of reagent enclosed in a fluid-tight casing (60), this block comprising cavities (63, 64) emerging through the fluid-tight casing (60), characterized in that said cavities (63, 64) are closed in a fluid-tight manner by temporary obturations (62).
EP94912588A 1993-04-07 1994-04-05 Chemical reactor, refrigerating machine and container provided therewith, and reagent cartridge therefor Expired - Lifetime EP0692086B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9304141 1993-04-07
FR9304141A FR2703763B1 (en) 1993-04-07 1993-04-07 Chemical reactor, refrigeration machine and container thus equipped, and related reagent cartridge.
PCT/FR1994/000377 WO1994023253A1 (en) 1993-04-07 1994-04-05 Chemical reactor, refrigerating machine and container provided therewith, and reagent cartridge therefor

Publications (2)

Publication Number Publication Date
EP0692086A1 EP0692086A1 (en) 1996-01-17
EP0692086B1 true EP0692086B1 (en) 1998-07-01

Family

ID=9445857

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94912588A Expired - Lifetime EP0692086B1 (en) 1993-04-07 1994-04-05 Chemical reactor, refrigerating machine and container provided therewith, and reagent cartridge therefor

Country Status (11)

Country Link
US (1) US5661986A (en)
EP (1) EP0692086B1 (en)
JP (1) JPH08508335A (en)
AT (1) ATE167930T1 (en)
AU (1) AU6506994A (en)
CA (1) CA2159901C (en)
DE (1) DE69411377T2 (en)
ES (1) ES2120033T3 (en)
FR (1) FR2703763B1 (en)
SG (1) SG52474A1 (en)
WO (1) WO1994023253A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014898A1 (en) * 1993-11-29 1995-06-01 Mayekawa Mfg. Co., Ltd. Adsorption type cooling apparatus, method of controlling cold output of same, and fin type adsorbent heat exchanger for use in same
MX9701840A (en) * 1994-09-12 1997-06-28 Electrolux Leisure Appliances Sorption cooling unit.
FR2736421B1 (en) * 1995-07-07 1997-09-26 Manufactures De Vetements Paul METHOD FOR MANUFACTURING A UNIT CONTAINING A SOLID ACTIVE MATERIAL USEFUL FOR THE PRODUCTION OF COLD, UNIT OBTAINED AND REFRIGERANT DEVICE COMPRISING SUCH A UNIT
US5916259A (en) 1995-09-20 1999-06-29 Sun Microsystems, Inc. Coaxial waveguide applicator for an electromagnetic wave-activated sorption system
US5855119A (en) * 1995-09-20 1999-01-05 Sun Microsystems, Inc. Method and apparatus for cooling electrical components
US6244056B1 (en) 1995-09-20 2001-06-12 Sun Microsystems, Inc. Controlled production of ammonia and other gases
US5873258A (en) 1995-09-20 1999-02-23 Sun Microsystems, Inc Sorption refrigeration appliance
DE69622175T2 (en) * 1995-09-20 2003-03-13 Sun Microsystems Inc COOLING SYSTEM USING SORPTION PAIR
US5842356A (en) * 1995-09-20 1998-12-01 Sun Microsystems, Inc. Electromagnetic wave-activated sorption refrigeration system
FR2748093B1 (en) * 1996-04-25 1998-06-12 Elf Aquitaine THERMOCHEMICAL DEVICE TO PRODUCE COLD AND / OR HEAT
US7065981B2 (en) * 1997-07-14 2006-06-27 Dometic Ag Sorption unit for an air conditioning apparatus
FR2774460B1 (en) * 1998-02-03 2000-03-24 Elf Aquitaine METHOD FOR MANAGING A THERMOCHEMICAL REACTION OR SOLID-GAS ADSORPTION
US6224842B1 (en) 1999-05-04 2001-05-01 Rocky Research Heat and mass transfer apparatus and method for solid-vapor sorption systems
US6823931B1 (en) * 1999-12-17 2004-11-30 Energy Conversion Devices, Inc. Hydrogen cooled hydride storage unit incorporating porous encapsulant material to prevent alloy entrainment
US7003979B1 (en) 2000-03-13 2006-02-28 Sun Microsystems, Inc. Method and apparatus for making a sorber
ES2190839B1 (en) * 2000-04-07 2004-09-16 Universidad De Vigo ANTI-RETURN DEVICE FOR VERTICAL TUBULAR BUBBLE ABSORBERS.
EP1297287B1 (en) * 2000-07-06 2007-01-24 Thermagen S.A. Adsorption refrigerating device
FR2811412B1 (en) * 2000-07-06 2002-08-23 Thermagen ADSORPTION REFRIGERATION DEVICE
FR2816698B1 (en) * 2000-11-13 2004-05-28 Pierre Jeuch ADSORPTION REFRIGERATION DEVICE
SE527721C2 (en) * 2003-12-08 2006-05-23 Climatewell Ab Chemical heat pump operating according to the hybrid principle
FR2873793B1 (en) * 2004-07-30 2006-12-29 Alcali Ind Sa THERMOCHEMICAL REACTOR FOR REFRIGERATION AND / OR HEATING APPARATUS
AU2005336050B2 (en) 2005-08-31 2011-01-06 Coldway Thermochemical reactor for a cooling and/or heating apparatus
AU2011256173B2 (en) * 2010-05-19 2014-10-09 Joseph Company International, Inc. Keg apparatus for self cooling and self dispensing liquids
FR3131614A1 (en) * 2022-01-06 2023-07-07 Sofrigam Safety elements for a thermal machine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1854589A (en) * 1921-06-08 1932-04-19 Frigidaire Corp Gas or liquid storing material
US1881568A (en) * 1930-01-31 1932-10-11 Frigidaire Corp Refrigerating apparatus
GB417044A (en) * 1932-12-23 1934-09-24 Wulff Berzelius Normelli Periodical absorption refrigerating apparatus
US2384460A (en) * 1941-10-21 1945-09-11 Kleen Refrigerator Inc Boiler-absorber
US2338712A (en) * 1942-01-19 1944-01-11 Kleen Nils Erland Af Boiler-absorber assembly
US2649700A (en) * 1949-05-21 1953-08-25 Hoover Co Absorption-refrigerating apparatus
FR1029877A (en) * 1950-12-19 1953-06-08 S E R A M Absorption refrigerator
DE3016290A1 (en) * 1979-04-30 1980-11-20 Hans Ivar Wallsten STABLE SHAPED MOLDINGS AND PROCESS FOR THEIR PRODUCTION
DE3125276C2 (en) * 1981-06-25 1983-06-16 Mannesmann AG, 4000 Düsseldorf Metal hydride storage
DE3347700C2 (en) * 1983-12-31 1994-07-07 Zeolith Tech Zeolite molding with high heat conduction and process for its production
GB2159133B (en) * 1984-05-24 1988-01-06 Central Electr Generat Board Hydrogen absorber body
JPS61134593A (en) * 1984-11-30 1986-06-21 Agency Of Ind Science & Technol Heat exchange device using hydrogen occlusion alloy
DE3610332A1 (en) * 1985-03-30 1986-10-09 Kabushiki Kaisha Toshiba, Kawasaki, Kanagawa REGENERATIVE HEATER

Also Published As

Publication number Publication date
SG52474A1 (en) 1998-09-28
FR2703763B1 (en) 1995-06-23
FR2703763A1 (en) 1994-10-14
DE69411377T2 (en) 1999-01-28
CA2159901A1 (en) 1994-10-13
EP0692086A1 (en) 1996-01-17
JPH08508335A (en) 1996-09-03
US5661986A (en) 1997-09-02
ES2120033T3 (en) 1998-10-16
DE69411377D1 (en) 1998-08-06
AU6506994A (en) 1994-10-24
ATE167930T1 (en) 1998-07-15
CA2159901C (en) 2002-10-01
WO1994023253A1 (en) 1994-10-13

Similar Documents

Publication Publication Date Title
EP0692086B1 (en) Chemical reactor, refrigerating machine and container provided therewith, and reagent cartridge therefor
EP1621828B1 (en) Thermochemical reactor for a refrigerating and/or a heating apparatus
EP0838013B1 (en) Solid-sorbent boiler-absorber apparatus, method for making same and refrigerating device using said apparatus
EP0622593A1 (en) Cooling and heating device using a solid sorbent
FR2950045A1 (en) STORAGE AND STORAGE TANK FOR HYDROGEN AND / OR HEAT
EP2306084B1 (en) Lighting and/or signalling device for an automobile
FR2727247A1 (en) COOLING DEVICE FOR A BATTERY CONSISTING OF SEVERAL ELEMENTS
CA2619680C (en) Thermochemical reactor for a cooling and/or heating apparatus
CA1219224A (en) Refrigeration device, and cooling element including said device
EP0564342A1 (en) Tube bundles for heat exchange and container for production and storage of ice, with at least one bundle
BE1023605B1 (en) METHOD AND APPARATUS FOR COMPRESSING AND DRYING GAS
FR2468085A1 (en) SORPTION REFRIGERATING APPARATUS, METHOD FOR OPERATING THIS APPLIANCE AND USE THEREOF
FR2666875A1 (en) Refrigeration machine with adsorption/desorption on zeolite using exchangers made of profiled aluminium sections
EP0229410A1 (en) Refrigeration machine
EP2981781B1 (en) Heat pipe comprising a cut-off gas plug
EP0836059A1 (en) Cold pump
EP1608920B1 (en) Method and device for rapid and high- power cold production
CA2815332A1 (en) Thermochemical system having a housing made of a composite material
WO2004011860A2 (en) Method for producing cold and installation therefor
WO1998023906A1 (en) Heating and cooling pump
EP0726432A2 (en) Controlled temperature two-phase heat exchanger
WO2020079360A1 (en) Thermochemical reactor and associated process for producing thermal energy
JPS59146902A (en) Metallic hydride reaction vessel
FR2675247A1 (en) Method for dehumidifying air and device for implementing the method
BE592956A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE DK ES GB NL SE

17Q First examination report despatched

Effective date: 19970115

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE DK ES GB NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980701

REF Corresponds to:

Ref document number: 167930

Country of ref document: AT

Date of ref document: 19980715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69411377

Country of ref document: DE

Date of ref document: 19980806

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981001

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2120033

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010420

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010430

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090423

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101021

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69411377

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69411377

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031