EP0689187B1 - Réseau de transducteur ultrasonores de diagnostic avec focalisation en élévation - Google Patents

Réseau de transducteur ultrasonores de diagnostic avec focalisation en élévation Download PDF

Info

Publication number
EP0689187B1
EP0689187B1 EP95304427A EP95304427A EP0689187B1 EP 0689187 B1 EP0689187 B1 EP 0689187B1 EP 95304427 A EP95304427 A EP 95304427A EP 95304427 A EP95304427 A EP 95304427A EP 0689187 B1 EP0689187 B1 EP 0689187B1
Authority
EP
European Patent Office
Prior art keywords
array
elements
subelements
longitudinal axis
ultrasonic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95304427A
Other languages
German (de)
English (en)
Other versions
EP0689187A1 (fr
Inventor
Jacques Souquet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Technology Laboratories Inc
Original Assignee
Advanced Technology Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Technology Laboratories Inc filed Critical Advanced Technology Laboratories Inc
Publication of EP0689187A1 publication Critical patent/EP0689187A1/fr
Application granted granted Critical
Publication of EP0689187B1 publication Critical patent/EP0689187B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/32Sound-focusing or directing, e.g. scanning characterised by the shape of the source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Definitions

  • This invention relates to improvements in transducer arrays used for ultrasonic diagnostic imaging, and in particular to ultrasonic transducer arrays which are focused in the elevation direction.
  • transducer arrays in which a group of individual elements are electronically actuated and sampled to steer and focus a beam of ultrasonic energy, is well known.
  • the elements of an array may comprise rings which are concentrically arranged to form an annular array.
  • the present invention relates to linear arrays in which the elements are physically arranged in a straight line, conventionally used for linear array or phased array imaging.
  • the linear array may also be curved in the dimension of the imaging plane so that the beams are concurrently mechanically spread in a fan shaped imaging plane. These linear arrays are ideal for scanning and forming images in a planar region in front of the array.
  • the longitudinal disposition of the array elements permits the beam of the array to be electronically focused into a narrow beam in the plane of the image.
  • the single row of elements of the array does not enable electronic focusing in the transverse, thickness dimension of the plane, which is often desirable in order to obtain high resolution of a thin image "slice".
  • the conventional technique for restricting the beam to a thin image plane is to mechanically focus the beam in this transverse, or elevational, dimension, either by contouring the elements in this dimension or lensing each element. More recently it has been shown that elevational focusing can be achieved by controlling the piezoelectric properties of the elements in this dimension.
  • Second, third, and additional rows of elements may be arranged along side and parallel to the first longitudinal row of elements. This forms individual rows of elements in the elevational direction and the timed actuation and sampling of these elements enables the electronic focusing of the beam in the elevational dimension. But it may be seen that the electronic approach greatly increases the complexity of the ultrasound system.
  • the number of elements of the array will triple or better: a 128 element array becomes a two dimensional array of 384 or more elements. There is a corresponding increase in the number of transmitters and receivers required to operate the two dimensional array, which will greatly increase the cost of the system.
  • US-A-5 099 459 describes an alternative lensing technique in which the transducer subelements have different heights and are dispersed into rows of unequal length such that the arrangement causes the transducer to accurately approximate a Fresnel lens.
  • a transducer array for focusing of the ultrasonic beam in the elevational direction.
  • the transducer array comprises a composite structure of elements of piezoelectric material and a bonding matrix of non piezoelectric material.
  • the electro-mechanical coupling coefficients of the elements of piezoelectric material are controlled by controlling their respective aspect ratios in a manner such that elements along the longitudinal centerline of the array exhibit greater electromechanical coupling than do elements toward the longitudinal edges of the array. Control of the aspect ratios of the piezoelectric elements in the composite structure thereby affords a focusing of the acoustic beam in the elevational direction.
  • the acoustic aperture of the transducer array is expanded longitudinally as the array is focused at increasing depths. As the aperture expands longitudinally by the addition of an increased number of active elements, the aperture is correspondingly expanded in the elevation direction. In a preferred embodiment, the expansion causes the acoustic aperture to be wider at the longitudinal ends of the array than in the center, and with the most longitudinal elements to be formed of laterally separated but electronically common subelements.
  • FIGURE 1 a conventional linear array 10 of piezoelectric transducer elements is shown.
  • the array 10 is comprised of a plurality of individual transducer elements labeled e 1 , e 2 , e 3 , and so forth in the drawing.
  • the drawing also indicates two orientations of the array, the longitudinal direction shown by arrow L, and the elevational direction shown by arrow E.
  • the plane in which the array operates projects outward from the center of the face of the array, in parallel with the longitudinal arrow L.
  • the transmitted beam emitted in the operating plane can be focused in the longitudinal direction by actuating elements in a group of elements at nearly simultaneous but slightly different times. Through such timed ultrasonic transmission the emitted beam can be focused to a desired point or steered in a desired direction.
  • FIGURE 2 shows a plan view of the transmitting surface of a transducer array 12 similar to the array of FIGURE 1, but with each element subdiced.
  • a side view of the array of FIGURE 2 is provided in FIGURE 2A, which further shows the reference potential electrode 14 on the emitting surfaces of the elements and the actuating electrodes 15, 17, 19 on the opposing surfaces of each pair of subdiced elements.
  • each element corresponding to e 1 , e 2 , etc. of FIGURE 1 has been subdiced into two subelements, such as e 1A and e 1B ; e 2A and e 2B ; and so forth.
  • each subdiced element is half that of each original full element, which changes the aspect ratio of each discrete element.
  • the aspect ratio change of significance to the performance of each element is the ratio of the transmitting surface width, indicated by W in FIGURE 2A, to the thickness of the element between the electrodes, indicated by the arrow marked T in FIGURE 2A. It is this ratio which determines the electro-mechanical coupling coefficient of the element, which is the magnitude of acoustic energy that will result from a given quantum of actuating energy.
  • the transfer of electrical energy into mechanical acoustic energy is improved, as measured by an enhancement of the electro-mechanical coupling coefficient of the element.
  • the subdiced elements e 1A and e 1B would more efficiently convert electrical energy into acoustic energy than would the corresponding element e 1 of FIGURE 1.
  • the array 12 is operated by actuating the subdiced pairs together, which is the reason that the energizing electrodes 15, 17, 19 bridge pairs of subdiced elements.
  • the electro-mechanical coupling coefficient of elements of a transducer array of composite material is varied in the elevational direction in order to achieve a transmitted energy profile which is focused in the elevation direction.
  • a composite transducer is one in which piezoelectric material is suspended in a non piezoelectric matrix.
  • a transducer array 16 which illustrates the application of these principles is shown in FIGURES 3 and 4. In the plan view of the transmitting surface of the array 16 of FIGURE 3, the array 16 is comprised of a number of elements e 1 , e 2 , and so forth. Each element is subdiced in the elevational direction into four subelements.
  • Element e 1 is subdiced in four subelements e 1A , e 1B , e 1C , and e 1D . As in the case of array 12, this subdicing improves the electro-mechanical coupling coefficient of the element e 1 in comparison with operation of the element as a single, unitary structure.
  • the manner in which the aspect ratio of a transducer element is varied to achieve a desired change in the electro-mechanical coupling coefficient is material dependent. This means that a particular aspect ratio change of an element of one material may affect the coupling coefficient differently than that of another material, when an element of the other material is subjected to the same aspect ratio change.
  • the central subelement has dimensions indicated as 5-2.
  • the central subelement is five units wide in the elevational direction and two units across its longitudinal direction
  • the subelements on either side of the central subelement have dimensions indicated as 4-2, which in this embodiment designates a width of four units in the elevational direction and two units across the longitudinal direction.
  • the subelements extending outward from the center have dimensions which continue to decline in this manner: 3-2, 2-2, and 1-2. It is seen that the aspect ratio of the subelements changes from the central subelement 5-2 to the edge subelements 1-2. The change is symmetrical about the central subelement.
  • FIGURE 4 shows, all of these subelements have the same thickness T.
  • the aspect ratios change from the central subelement outward.
  • the changing aspect ratios affect a decline in the electro-mechanical coupling coefficients of the subelements from the central subelement through those at the edges in the elevational direction.
  • FIGURE 4 also shows that the actuating electrodes 21, 23, 26, 24, and 22 are all connected in common by a wire 28 soldered to each subelement.
  • An electrical pulse applied to wire 28 will cause the central subelement (5-2) to transmit a greater intensity of acoustic energy that any other subelement, and the quantum of acoustic energy emitted by the subelements declines as one proceeds to the edges (1-1).
  • the profile of the transmitted energy will be concentrated at the elevational center of the element as indicated by large arrow C in comparison with smaller arrows S at the sides of the element, thereby effecting a focusing of the transmitted energy in the elevational direction.
  • the focusing is achieved by the above described selection of the aspect ratios of the subelements.
  • Each actuating electrode 21-26 extends across all four of subdiced elements e1A-e1D in the longitudinal direction. All of the subelements of element el are thus actuated in unison.
  • the subdicing in the elevational direction effects an efficient transfer of electrical actuating energy into acoustic energy, and the varying aspect ratios of the subelements from the center outward focuses the energy in the elevational direction.
  • the voids 20 between the subelements can be air filled, or filled with a non piezoelectric bonding compound such as epoxy to retain the subelements in the matrix.
  • FIGURE 4 also shows the array backed by a backing of filler material 18 as a damping material.
  • FIGURE 5 illustrates a second embodiment of the present invention which adds several further concepts to achieve elevational focusing.
  • FIGURE 5 shows an array 30 comprised of subarrays 32-40.
  • a central subarray 32 is flanked on either side in the longitudinal direction by pairs of subarrays 34a-34b and 36a-36b.
  • the central subarray 32 has a greater aspect ratio than any of the flanking subarrays, with the flanking subarrays extending further out in the elevational direction.
  • the flanking subarray pairs are separated from each other.
  • the subarrays 34a-34b and 36a-36b are flanked in the longitudinal direction by two additional pairs of subarrays, 38a-38b and 40a-40b.
  • the subarrays in each of these pairs are separated by an even greater distance in the elevational direction than are the inner pairs 34a-34b and 36a-36b.
  • the array 30 is operated by actuating different subarray combinations depending upon the depth of field at which the acoustic beam is to be focused.
  • the aperture of the array is expanded as acoustic waves are transmitted to increasing depths.
  • the subarray 32 is operated alone, without use of any of the other subarrays.
  • the flanking subarrays 34a-34b and 36a-36b are used in concert with the central subarray.
  • the addition of these flanking subarrays expands the active aperture of the array and are used together with the central array to focus and steer the transmitted beam in the longitudinal direction through the timed actuation of the individual elements in the subarrays. Elevational focusing is achieved in two ways.
  • the greater aspect ratio and electro-mechanical coupling coefficient of the elements of the central subarray 32 cause the central subarray to emit greater acoustic energy than the flanking subarrays for the same level of actuating energy.
  • the separation of corresponding subarrays in the flanking pairs, in combination with a proper excitation time delay contribute components of acoustic energy which focus the acoustic beam in the elevational direction toward the longitudinal center of the array.
  • the aperture of the array 30 is thereby expanded to its maximum in the longitudinal direction.
  • the outermost subarrays 38a-38b and 40a-40b contribute the same elevational focusing effect as the flanking subarrays 34a-34b and 36a-36b, but to an even greater degree by virtue of their even greater outward positions in the elevational direction.
  • a beam which is focused in both the longitudinal and elevational directions can be transmitted to the maximum operating depth of field of the array 30.
  • the actuating electrodes of vertically opposing elements of the paired subarrays are connected electrically in common. While the elements of the array may be operated separately at phased actuation times in the longitudinal direction, the corresponding elements of matched subarrays can be actuated in unison to achieve the desired focusing effect in the elevational direction.
  • FIGURE 6 A variation of the array 30 of FIGURE 5 is shown in the embodiment of FIGURES 6 and 7.
  • the outline 42 represents a bar of piezoelectric material which has been diced as indicated by the lines within the outline, but with only the shaded subelements being connected to actuating electrodes and operable.
  • a central subarray e c extends from element e 7 through element e 16 . The central subarray ec is operated when the array transmits acoustic energy in the near field. As the depth of field increases, the longitudinally flanking subelements are added, beginning with subelements e 6A and e 6B , and e 17A and e 17B .
  • the central subarray elements have a greater aspect ratio than do the paired subelements to provide greater intensity at the center of the array.
  • the outward angular inclination of the pairs of separated subelements gives a gradual increase in the elevational focusing effect of the subelement pairs as the aperture is expanded with increasing depth of field.
  • the transmit plane 60 is normal to the transmitting face of the array and aligned with its central longitudinal axis.
  • a center line CL of the plane 60 extends from the center of the central subarray e c .
  • the array 42 is focused at a point F and all of the elements of the array are utilized. To focus the transmitted beam longitudinally, the outermost elements are actuated first, and the sequence of actuation proceeds inwardly until the elements in the center of the array are actuated last.
  • Elevational focusing which focuses the transmitted beam toward the plane 60, is achieved by the separation of the upwardly extending subelements 52 and their opposition by the downwardly extending subelements 54, and the corresponding separation of subelements 56 and 58.
  • the dashed lines from the corners of the array indicate the effect of this elevational focusing.
  • FIGURE 8 illustrates exemplary acoustic beam profiles for the embodiments of FIGURES 5-7.
  • the transducer array is viewed edge on, with the transmitted beams extending to the right.
  • the central elements e c are used alone to focus a beam P 1 at a near field focal point F 1 .
  • the elements e c in this drawing correspond to the central subarray 32 in FIGURE 5 or the central elements e c in FIGURE 6.
  • the central elements e c are used together with the outwardly extending paired elements e nA and e nB to produce a beam P 2 which is focused at a point F 2 .
  • the array has good elevational focus characteristics in both the near and the far field.
  • FIGURES 6 and 7, like that of FIGURE 5, vertically aligned elements are electrically connected together and operated in unison. If desired, however, the actuating electrodes of the vertically aligned elements can be electrically separated and the elements actuated independently of each other. This would provide the opportunity for deriving additional operational benefits from the array. Referring to FIGURE 7 for instance, it would then be possible to actuate the upward extending subelements 52, 56 at a slightly different time than the corresponding downward extending subelements 54, 58. This would cause acoustic energy from the respective extending lines of subelements to arrive at the focal point and return from a target at the focal point at slightly different times and phase relationships.
  • timing and phase differences would constitute a spatial compounding of the acoustic beam that would disrupt the usual interaction of acoustic waves that leads to development of the familiar speckle pattern in ultrasonic images.
  • This mode of operation of the array would enable formation of ultrasonic images with reduced speckle content in comparison with simultaneous operation of the opposing subelements.
  • FIGURE 5A is an edge-on view of the array of FIGURE 5.
  • the subarrays 32, 34 and 36, and 38 and 40 exhibit different thicknesses, providing the respective subarrays with different frequency responses.
  • the central subarray has the highest frequency response, the subarrays on either side have a lower frequency response, and the outermost subarrays have the lowest frequency response.
  • the subarrays with the lower frequencies become active, transmitting and receiving ultrasonic signals.
  • the resulting electrical signals from all active subarrays are combined to form a beam, the differing received signal frequencies are compounded, providing reduced speckle content in the resultant beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Claims (21)

  1. Groupement linéaire d'éléments de transducteur à ultrasons (e1, e2, e3...) qui transmet des faisceaux acoustiques dans un plan s'étendant à partir d'un axe longitudinal central (L) dudit groupement, incluant une pluralité d'éléments uniformes groupés sur toute l'ouverture dans le sens longitudinal comprenant des sous-éléments (e1A, e1B..., e2A, e2B...) groupés dans le sens d'élévation (E) et présentant des rapports largeur-hauteur variables de telle sorte que les coefficients de couplage électromécanique des sous-éléments varient en fonction de leur distance par rapport audit axe longitudinal central, de telle sorte qu'un faisceau acoustique qui varie en intensité dans le sens d'élévation peut être produit par ledit groupement.
  2. Groupement d'éléments de transducteur à ultrasons suivant la revendication 1, dans lequel les éléments présentent des coefficients de couplage électromécanique uniformes dans ledit sens longitudinal, et dans lequel lesdits rapports largeur-hauteur desdits sous-éléments varient de telle sorte que les sous-éléments les plus proches dudit axe longitudinal central présentent un coefficient de couplage électromécanique supérieur à celui des sous-éléments qui sont plus éloignés dudit axe longitudinal central.
  3. Groupement d'éléments de transducteur à ultrasons suivant la revendication 2, dans lequel l'ensemble des sous-éléments qui sont groupés dans une ligne donnée dans le sens d'élévation présentent une épaisseur commune, une largeur commune dans ledit sens longitudinal et des longueurs variables dans le sens d'élévation.
  4. Groupement d'éléments de transducteur à ultrasons suivant la revendication 3, dans lequel chaque élément dudit groupement comprend une pluralité desdites lignes de sous-éléments qui sont groupés dans le sens d'élévation.
  5. Groupement d'éléments de transducteur à ultrasons suivant l'une quelconque des revendications 1 à 4, dans lequel ledit groupement comprend un groupement composite dans lequel lesdits sous-éléments comprennent un matériau céramique piézoélectrique et les interstices entre lesdits sous-éléments sont remplis d'un matériau non piézoélectrique.
  6. Groupement d'éléments de transducteur à ultrasons suivant la revendication 5, dans lequel ledit matériau non piézoélectrique comprend un matériau époxy.
  7. Groupement d'éléments de transducteur à ultrasons suivant l'une quelconque des revendications 2 à 6, dans lequel lesdits éléments sont identiques dans ledit sens longitudinal, et dans lequel les coefficients de couplage électromécanique d'une ligne de sous-éléments groupés dans le sens d'élévation varient en fonction de leur distance par rapport audit axe longitudinal central, les sous-éléments situés plus près dudit axe longitudinal central présentant un coefficient de couplage électromécanique supérieur à celui des sous-éléments qui sont plus éloignés dudit axe longitudinal central, de telle sorte qu'un faisceau acoustique qui présente une intensité supérieure au centre d'élévation dudit groupement à celle aux bords d'élévation peut être produit par ledit groupement.
  8. Groupement d'éléments de transducteur à ultrasons suivant la revendication 7, dans lequel l'ensemble des sous-éléments d'un élément dudit groupement comprennent des premières et deuxièmes électrodes situées sur des surfaces opposées desdits sous-éléments, lesdites premières électrodes sont électriquement couplées en commun et lesdites deuxièmes électrodes sont électriquement couplées en commun.
  9. Groupement d'éléments de transducteur à ultrasons suivant la revendication 8, dans lequel lesdites premières électrodes sont situées sur les surfaces de transmission desdits sous-éléments et sont couplées à un potentiel de référence, et lesdites deuxièmes électrodes sont situées sur les surfaces opposées desdits sous-éléments et sont couplées à un potentiel d'activation commuté.
  10. Groupement d'éléments de transducteur à ultrasons groupés dans le sens longitudinal dudit groupement qui transmet des faisceaux acoustiques dans un plan s'étendant à partir d'un axe longitudinal central dudit groupement, comprenant :
    un premier groupe (32) d'éléments situés autour du centre longitudinal dudit groupement et pouvant fonctionner pour la transmission d'énergie acoustique dans les champs proche et lointain, et
    des deuxième et troisième (34,36, 38,40) groupes d'éléments situés sur des côtés opposés dudit premier groupe d'éléments dans le sens longitudinal, les éléments desdits deuxième et troisième groupes s'étendant sur une distance plus grande dans le sens d'élévation dudit axe longitudinal central que ceux dudit premier groupe d'éléments, où lesdits deuxième et troisième groupes d'éléments peuvent fonctionner de concert avec ledit premier groupe d'éléments pour fournir une focalisation en élévation dans le champ lointain.
  11. Groupement d'éléments de transducteur à ultrasons suivant la revendication 10, dans lequel chacun desdits deuxième et troisième groupes d'éléments comprend des premier et deuxième groupes (34a-34b ; 36a-36b ; 38a-38b ; 40a-40b) de sous-éléments qui sont opposés les uns aux autres dans le sens d'élévation et sont séparés les uns des autres sur le plan acoustique .
  12. Groupement d'éléments de transducteur à ultrasons suivant la revendication 11, dans lequel des sous-éléments en opposition desdits premier et deuxième groupes de sous-éléments sont activés en commun.
  13. Groupement d'éléments de transducteur à ultrasons suivant la revendication 12, dans lequel lesdits éléments et sous-éléments peuvent être activés séparément les uns des autres dans le sens longitudinal pour guider et focaliser ledit faisceau dans le sens longitudinal dudit plan.
  14. Groupement d'éléments de transducteur à ultrasons suivant la revendication 11, dans lequel les éléments dudit premier groupe présentent une longueur supérieure dans le sens d'élévation à celle desdits sous-éléments desdits premier et deuxième groupes de sous-éléments.
  15. Groupement d'éléments de transducteur à ultrasons suivant la revendication 11, dans lequel ledit premier groupe de sous-éléments (34a-38a ; 36a, 40a) de chacun desdits deuxième et troisième groupes d'éléments se trouve autour d'un deuxième axe longitudinal dudit groupement qui est décalé sur un côté dudit axe longitudinal central (L) dans le sens d'élévation (E), et ledit deuxième groupe de sous-éléments (34b,38b ; 36b,40b) de chacun desdits deuxième et troisième groupes d'éléments se trouve autour d'un troisième axe longitudinal dudit groupement qui est décalé sur le côté opposé dudit axe longitudinal central (L) dans le sens d'élévation (E) par rapport à celui dudit deuxième axe longitudinal.
  16. Groupement d'éléments de transducteur à ultrasons suivant la revendication 15, dans lequel lesdits deuxième et troisième axes longitudinaux sont symétriquement décalés dudit axe longitudinal central.
  17. Groupement d'éléments de transducteur à ultrasons suivant la revendication 15, comprenant en outre des quatrième et cinquième groupes d'éléments situés sur des côtés opposés desdits deuxième et troisième groupes d'éléments, respectivement, chacun desdits quatrième et cinquième groupes comprenant des premier et deuxième groupes de sous-éléments qui sont opposés les uns aux autres dans le sens d'élévation, de telle sorte que ledit premier groupe de sous-éléments de chacun desdits quatrième et cinquième groupes d'éléments se trouve autour d'un quatrième axe longitudinal dudit groupement qui est décalé sur un côté dudit axe longitudinal central dans le sens d'élévation à un degré supérieur audit deuxième axe longitudinal, et ledit deuxième groupe de sous-éléments de chacun desdits quatrième et cinquième groupes d'éléments se trouve autour d'un cinquième axe longitudinal dudit groupement qui est décalé sur le côté opposé dudit axe longitudinal central dans le sens d'élévation par rapport à celui dudit quatrième axe longitudinal à un degré supérieur audit troisième axe longitudinal.
  18. Groupement d'éléments de transducteur à ultrasons suivant la revendication 11, dans lequel les sous-éléments de chacun desdits groupes de sous-éléments se trouvent le long d'une ligne respective dans le plan dudit groupement qui forme un angle à l'extérieur dans le sens longitudinal par rapport à un côté longitudinal dudit premier groupe d'éléments et formant un angle à une distance croissante dudit axe longitudinal central à mesure qu'il s'étend à l'extérieur dudit premier groupe d'éléments.
  19. Groupement d'éléments de transducteur à ultrasons suivant la revendication 11, dans lequel lesdits éléments et sous-éléments peuvent être activés séparément les uns des autres dans le sens longitudinal et dans le sens d'élévation pour guider et focaliser ledit faisceau dans le sens longitudinal dudit plan et pour composer dans l'espace l'énergie acoustique transmise.
  20. Groupement d'éléments de transducteur à ultrasons suivant la revendication 10, dans lequel ledit premier groupe d'éléments (32) présente une réponse en fréquence supérieure auxdits deuxième (34,36) et troisième (38,40) groupes d'éléments, de telle sorte que des signaux de contenu fréquentiel différent sont reçus par différents groupes d'éléments dans le champ lointain.
  21. Groupement d'éléments de transducteur à ultrasons suivant la revendication 20, dans lequel ledit premier groupe d'éléments (32) présente une épaisseur moindre dans la dimension de transmission que lesdits deuxième (34,36) et troisième (38,40) groupes d'éléments.
EP95304427A 1994-06-24 1995-06-23 Réseau de transducteur ultrasonores de diagnostic avec focalisation en élévation Expired - Lifetime EP0689187B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26516994A 1994-06-24 1994-06-24
US265169 1994-06-24

Publications (2)

Publication Number Publication Date
EP0689187A1 EP0689187A1 (fr) 1995-12-27
EP0689187B1 true EP0689187B1 (fr) 2002-01-02

Family

ID=23009312

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95304427A Expired - Lifetime EP0689187B1 (fr) 1994-06-24 1995-06-23 Réseau de transducteur ultrasonores de diagnostic avec focalisation en élévation

Country Status (4)

Country Link
EP (1) EP0689187B1 (fr)
JP (1) JP3618406B2 (fr)
AT (1) ATE211571T1 (fr)
DE (1) DE69524817T2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012131212A1 (fr) * 2011-03-30 2012-10-04 Edap Tms France Procede et appareil de generation d'ondes ultrasonores focalisees a modulation de surface

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19840375C2 (de) 1998-09-04 2003-08-28 Harman Audio Electronic Sys Schallwand
CN1863485B (zh) * 2003-10-02 2010-09-08 株式会社日立医药 超声波探头、超声波成像设备以及超声波成像方法
US7263888B2 (en) * 2003-10-16 2007-09-04 General Electric Company Two dimensional phased arrays for volumetric ultrasonic inspection and methods of use
KR101383298B1 (ko) * 2012-04-25 2014-04-09 삼성전자주식회사 초음파 프로브 장치 및 초음파 프로브 장치의 제조 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881164A (en) * 1973-09-13 1975-04-29 Commw Of Australia Cross array ultrasonic transducer
US3936791A (en) 1973-09-13 1976-02-03 The Commonwealth Of Australia Linear array ultrasonic transducer
GB8912782D0 (en) * 1989-06-02 1989-07-19 Udi Group Ltd An acoustic transducer
US5099459A (en) * 1990-04-05 1992-03-24 General Electric Company Phased array ultrosonic transducer including different sized phezoelectric segments

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012131212A1 (fr) * 2011-03-30 2012-10-04 Edap Tms France Procede et appareil de generation d'ondes ultrasonores focalisees a modulation de surface
FR2973550A1 (fr) * 2011-03-30 2012-10-05 Edap Tms France Procede et appareil de generation d'ondes ultrasonores focalisees a modulation de surface
US9936969B2 (en) 2011-03-30 2018-04-10 Edap Tms France Method and apparatus for generating focused ultrasonic waves with surface modulation

Also Published As

Publication number Publication date
DE69524817T2 (de) 2002-09-05
JPH0866395A (ja) 1996-03-12
ATE211571T1 (de) 2002-01-15
JP3618406B2 (ja) 2005-02-09
DE69524817D1 (de) 2002-02-07
EP0689187A1 (fr) 1995-12-27

Similar Documents

Publication Publication Date Title
US5546946A (en) Ultrasonic diagnostic transducer array with elevation focus
US4425525A (en) Ultrasonic transducer array shading
US5167231A (en) Ultrasonic probe
JP3010054B2 (ja) 超音波変換器の二次元フェーズドアレイ
US6469422B2 (en) Hex packed two dimensional ultrasonic transducer arrays
EP2473111B1 (fr) Sonde à ultrasons présentant un grand champ de vision et procédé de fabrication de celle-ci
US4671293A (en) Biplane phased array for ultrasonic medical imaging
CN1294075C (zh) 微加工的超声换能器阵列
EP0212737B1 (fr) Dispositif d'imagerie ultrasonore
US6691387B2 (en) Method of using a two-dimensional transducer array
US4640291A (en) Bi-plane phased array for ultrasound medical imaging
US5115810A (en) Ultrasonic transducer array
US4371805A (en) Ultrasonic transducer arrangement and method for fabricating same
US5349262A (en) Phased array ultrasound imaging system with dynamic elevation focusing
US4635484A (en) Ultrasonic transducer system
US7311667B2 (en) Multiple pattern transducer array and method of use
US6160340A (en) Multifrequency ultrasonic transducer for 1.5D imaging
US5250869A (en) Ultrasonic transducer
EP0689187B1 (fr) Réseau de transducteur ultrasonores de diagnostic avec focalisation en élévation
US5931785A (en) Ultrasonic transducer having elements arranged in sections of differing effective pitch
JP3944009B2 (ja) 超音波振動子及びその製造方法
JPH0576527A (ja) 超音波探触子及び該探触子に使用する複合圧電振動子の製造方法
JPS6227600B2 (fr)
JPH0241144A (ja) 超音波探触子
JPS63166400A (ja) 超音波探触子

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19960531

17Q First examination report despatched

Effective date: 19990119

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020102

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020102

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20020102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020102

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020102

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020102

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020102

REF Corresponds to:

Ref document number: 211571

Country of ref document: AT

Date of ref document: 20020115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69524817

Country of ref document: DE

Date of ref document: 20020207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020402

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020402

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020402

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020623

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020730

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20021111

26N No opposition filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040628

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040629

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040813

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050623

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060228