Connect public, paid and private patent data with Google Patents Public Datasets

Vascular graft

Info

Publication number
EP0686379B2
Authority
EP
Grant status
Grant
Patent type
Prior art keywords
frame
graft
liner
members
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19950108462
Other languages
German (de)
French (fr)
Other versions
EP0686379B1 (en )
EP0686379A3 (en )
EP0686379A2 (en )
Inventor
Thomas J. Fogerty
Jay A. Lenker
Kirsten Freislinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiovascular Concepts Inc
Original Assignee
Cardiovascular Concepts Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/954Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/848Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/065Y-shaped blood vessels
    • A61F2002/067Y-shaped blood vessels modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9505Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument
    • A61F2002/9511Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument the retaining means being filaments or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9522Means for mounting a stent onto the placement instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9534Instruments specially adapted for placement or removal of stents or stent-grafts for repositioning of stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • A61F2210/0019Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at only one temperature whilst inside or touching the human body, e.g. constrained in a non-operative shape during surgery, another temperature only occurring before the operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0058Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0019Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in hardness, e.g. Vickers, Shore, Brinell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0029Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in bending or flexure capacity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0048Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in mechanical expandability, e.g. in mechanical, self- or balloon expandability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • [0001]
    The present invention relates to a vascular graft. More particularly, the present invention relates to a low profile, compressible vascular graft structure for the treatment of abdominal and other aneurysms.
  • [0002]
    Vascular aneurysms are the result of abnormal dilation of a blood vessel, usually resulting from disease and/or genetic predisposition which can weaken the arterial wall and allow it to expand. While aneurysms can occur in any blood vessel, most occur in the aorta and peripheral arteries, with the majority of aortic aneurysms occurring in the abdominal aorta, usually beginning below the renal arteries and often extending distally into one or both of the iliac arteries.
  • [0003]
    Aortic aneurysms are most commonly treated in open surgical procedures where the diseased vessel segment is bypassed and repaired with an artificial vascular graft. While considered to be an effective surgical technique, particularly considering the alternative of a usually fatal ruptured abdominal aortic aneurysm, conventional vascular graft surgery suffers from a number of disadvantages. The surgical procedure is complex and require experienced surgeons and well equipped surgical facilities. Even with the best surgeons and equipment, however, patients being treated frequently are elderly and weakened from cardiovascular and other diseases, reducing the number of eligible patients. Even for eligible patients prior to rupture, conventional aneurysm repair has a relatively high mortality rate, usually from 3% to 10%. Morbidity related to the conventional surgery includes myocardial infarction, renal failure, impotence, paralysis, and other conditions. Additionally, even with successful surgery, recovery takes several weeks, and often requires a lengthy hospital stay.
  • [0004]
    In order to overcome some or all of these drawbacks, endovascular graft placement for the treatment of aneurysms has been proposed. Although very promising, many of the proposed methods and apparatus suffer from other problems. Often times the proposed graft structures will have exposed anchors or frame which can be thrombogenic. It is also difficult to provide graft structures which remain sealed to the blood vessel lumen to prevent the leakage or bypass of blood into the weakened aneurysm, especially when subjected to external deforming forces which result from vessel expansion and contraction as the heart beats. Many vascular graft structures have difficulty in conforming to the internal arterial wall, particularly since the wall can have a highly non-uniform surface as a result of atherosclerosis and calcification and is expanding and contracting with the patient's heartbeat and blood flow. Additionally, many previous vascular graft structures are difficult to position and anchor within the target region of the vessel.
  • [0005]
    For these reasons, it would be desirable if the graft structures were easy to place in the target region, displayed little or no thrombogenicity, provided a firm seal to the vascular wall to prevent leakage and blood bypass, and were able to conform to uniform and non-uniform blood vessel walls, even while the wall is expanding and contracting with the patient's heartbeat.
  • 2. Description in the Background Art
  • [0006]
    Vascular grafts and devices for their transluminal placement are described in U.S. Patent Nos. 5,219,355; 5,211,658, 5,104,399; 5,078,726; 4,820,298; 4,787,899; 4,617,932; 4,562,596; 4,577,631; and 4,140,126; and European Patent Publications 508 473; 466 518; and 461 791.
  • [0007]
    Expandable and self-expanding vascular stents are described in U.S. Patent Nos. 5,147,370; 4,994,071; and 4,776,337; European patent Publications 575 719; 556 850; 540 290; 536 610; and 481 365; and German patent Publication DE 42 19 949.
  • [0008]
    EP-A 0 556 850 against which the two-part form of claims 1 and 2 is delimited, describes a particular stent structure made of zig-zag wire that is connected at adjacent apices to form a continuous helix. The stent structure is compressible and self-expandable to a pre-compressed configuration and may be placed on the exterior or interior of a graft, to which it is fixed by hoop members.
  • [0009]
    EP-A-0 540 290 discloses an expandable stent consisting of a plurality of radially expandable cylindrical elements, each made from a ribbon-like material and interconnected by at least one interconnective element. EP-A - 551179 discloses a bypass graft comprising separate tubular members cast into the expandable graft material.
  • [0010]
    A flexible vascular stent structure having counter wound helical elements, some of which are separated at particular locations to enhance flexibility, is commercially available from Angiomed, Karlsruhe, Germany, as described in a brochure entitled Memotherm lliaca Stents.
  • [0011]
    Catheters for placing vascular stents are described in U.S. Patent Nos. 5,192,297; 5,092,877; 5,089,005; 5,037,427; 4,969,890; and 4,886,062.
  • [0012]
    Vascular grafts intended for open surgical implantation are described in U.S. Patent Nos. 5,236,447; 5,084,065; 4,842,575; 3,945,052; and 3,657,744; and PCT applications WO 88/00313 and WO 80/02641; and SU 1697787.
  • [0013]
    Nickel titanium alloys and their use in medical devices are described in U.S. Patent Nos. 4,665,906 and 4,505,767.
  • SUMMARY OF THE INVENTION
  • [0014]
    The present invention comprises a vascular graft for the treatment of disease conditions, particularly aneurysms according to claim 1 or 2.
  • [0015]
    In accordance with preferred embodiments the vascular grafts comprise a radially or laterally compressible, perforate tubular frame having a proximal end, a distal end, and an axial lumen between said ends. An interior liner, typically a fabric, polymeric sheet, membrane, or the like, covers all or most of the surface of the lumen of the tubular frame, extending from a near-proximal location to a near-distal location. The liner is attached to the frame at at least one end, as well as at a plurality of locations between said ends. Optionally, a second liner may be provided over at least a portion of the exterior of the frame to cover both sides of the frame. Such exterior coverage provides a circumferential seal against the inner wall of the blood vessel lumen in order to inhibit leakage of blood flow between the graft and the luminal wall into the aneurysm or stenosis which is being treated.
  • [0016]
    The grafts of the present invention will find particular use in the treatment of vascular conditions, such as abdominal and other aneurysms, vascular stenoses, and other conditions which require creation of an artificial vessel lumen. For the treatment of vascular stenoses, the graft may serve as a stent to maintain vessel patency in a manner similar to that described in the above-described U.S. and foreign patent documents relating to stents. Other intraluminal uses of the present invention include stenting of the ureter, urethra, biliary tract, and the like, and may also be used for the creation of temporary or long term lumens, such as the formation of a fistula.
  • [0017]
    Such graft structures provide a number of advantages over previously proposed designs, particularly for vascular uses. By covering the lumen of the tubular frame, thrombogenicity of the graft resulting from exposed frame elements is greatly reduced or eliminated. Such reduction of thrombogenicity is achieved while maintaining the benefits of having a frame structure extending over the graft. Such an external frame helps anchor the graft in place and maintain patency and evenness of the graft lumen, both of which are advantages over graft structures which are anchored and supported only at each end. The preferred vascular grafts of the present invention are also self-expanding and easy to place. The self-expanding nature of such a frame also counteracts external deforming forces that may result from the continuous physiologic expansion and contraction of the blood vessel lumen. Moreover, the lack of cleats, tines, or other penetrating elements on the graft allows the graft to more closely conform to the surrounding vessel wall and facilitates retrieval and/or repositioning of the graft, as will be described in more detail hereinafter. Additionally, a resilient tubular frame structure permits the graft to conform to even irregular regions of the blood vessel wall as the wall is expanding and contracting as a result of the pumping of the patient's heart.
  • [0018]
    The tubular frame preferably comprises a plurality of radially compressible band or ring structures, each of which have a relaxed (i.e., non-compressed) diameter which is greater than the diameter of the blood vessel to be treated. Adjacent compressible band members are independent of each other. Independent band members will be held together by their attachment to the interior and/or exterior liner(s).
  • [0019]
    Alternatively, the tubular frame may comprise a plurality of laterally compressible axial members, with adjacent axial members not being directly connected to each other. The axial members will usually comprise a multiplicity of repeating structural units, e.g., diamond-shaped elements, which are axially connected. The axial members will be attached to the inner liner, either by stitching or by capturing the axial members in pockets formed between the inner liner and an outer liner disposed over the frame. The pockets may be formed by attaching the inner and outer liners to each other along axial lines between adjacent axial members.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0020]
    • Fig. 1 is a side view of a vascular graft.
    • Fig. 1 A is a side view of a first embodiment of a vascular graft constructed in accordance with the principles of the present invention.
    • Fig. 1B is a side view of a second embodiment of a vascular graft constructed in accordance with the principles of the present invention.
  • DESCRIPTION OF THE SPECIFIC EMBODIMENT
  • [0021]
    The present invention provides a vascular graft for transluminal placement, particularly within the vascular system for treatment of aneurysms and other vascular conditions, but also in other body lumens, such as ureter, urethra, biliary tract, gastrointestinal tract, and the like, for the treatment of other conditions which benefit from the introduction of a reinforcing or protective structure in the lumen. The vascular graft can also find use in the creation of artificial lumens through solid tissue and structures. The vascular grafts will be placed endovascularly. As used herein, "endovascularly" will mean placement by percutaneous or cutdown transluminal procedures using a catheter over a guidewire under fluoroscopic guidance. The catheters and guidewires may be introduced through conventional access sites to the vascular system, such as through the brachial and subclavian arteries for access to the aorta and through the femoral arteries for access to the aorta or to peripheral and branch blood vessels.
  • [0022]
    A vascular graft according to the present invention will comprise a radially compressible perforate tubular frame and an inner or interior liner attached within a central lumen defined by the frame and optionally a second or outer liner formed over the exterior of the frame. The radially compressible frame can take a variety of forms, usually comprising or consisting of a plurality of independent structural elements, such as rings, bands, helical elements, serpentine elements, axial struts, parallel bars, and the like, that can be compressed from a relaxed, large diameter configuration to a small diameter configuration to facilitate introduction, as discussed below. It is necessary, of course, that the liner(s) remain attached to the frame both in its radially compressed configuration and in its expanded, relaxed configuration.
  • [0023]
    A preferred configuration for the tubular frame comprises a plurality of radially compressible band members, where adjacent band members are not directly connected to each other. Instead, the bands are connected only to the liner(s) which maintain the axial integrity of the graft. Preferably, the independent bands are stitched or sealed between interior and exterior liners, as will be described in more detail below.
  • [0024]
    In an alternative configuration, the perforate tubular frame comprises a plurality of laterally compressible axial members which are attached directly, e.g., by stitching, or indirectly, e.g., by lamination, to the inner liner. The axial members may be a multiplicity of repeating structural elements, such as diamonds. By positioning the axial members in pockets formed between an inner liner and an outer liner, the axial elements will be able to flex independently while providing the desired radial compressibility and self-expansion characteristics for the graft.
  • [0025]
    The dimensions of the tubular graft will depend on the intended use. Typically, the graft will have a length in the range from about 50 mm to 500 mm, preferably from about 80 mm to 200 mm for vascular applications. The relaxed diameter will usually be in the range from about 4 mm to 45 mm, preferably being in the range from about 5 mm to 25 mm for vascular applications. The graft will be radially compressible to a diameter in the range from 3 mm to 9 mm, preferably from 4 mm to 6 mm for vascular applications.
  • [0026]
    The liner(s) will be composed of conventional biological graft materials, such as polyesters, polytetrafluoroethylenes (PTFE's), polyurethanes, and the like, usually being in the form of woven fabrics, nonwoven fabrics, polymeric sheets, membranes, and the like. A presently preferred fabric liner material is a plain woven polyester, such as type 56 Dacron® yarn (Dupont, Wilmington, Delaware), having a weight of 40 denier, woven at 27 filaments with 178 warp yarns per circumferential inch, and 78 yarns per inch in the fill direction.
  • [0027]
    The liner will be attached to the interior lumen of the tubular frame and will cover most or all of the interior surface of the lumen. For example, the liner may be stitched or otherwise secured to the tubular frame along a plurality of circumferentially spaced-apart axial lines. Such attachment permits the liner to fold along a plurality of axial fold lines when the frame is radially compressed. The liner will further be able to open and conform to the luminal wall of the tubular frame as the frame expands. Alternatively, when inner and outer liners are used, the liners may be stitched, heat welded, or ultrasonically welded together to sandwich the tubular frame therebetween. In an exemplary embodiment where a plurality of independent band members are disposed between interior and exterior liners, the liners are secured together along circumferential lines between adjacent band members to form pockets for holding the band members. In a second exemplary embodiment where a plurality of independent axial members are disposed between interior and exterior liners, the liners are secured together along axial lines to form pockets for holding the axial members.
  • [0028]
    The liner will preferably be circumferentially sealed against the tubular frame at at least one end, preferably at both ends in the case of straight (non-bifurcated) grafts. It is also preferred in some cases that the distal and proximal end of the perforate tubular frame be exposed, i.e., not covered by the liner material, typically over a length in the range from about 1 mm to 25 mm. Frame which is not covered by the liner permits blood perfusion through the perforations and into branch arteries such as the renal arteries in the case of abdominal aorta grafts, while providing additional area for anchoring the frame against the blood vessel lumen. In an exemplary embodiment, the liner will extend through the frame and over the exterior surface near either or both ends to provide a more effective seal against the adjacent blood vessel wall.
  • [0029]
    The radially compressible perforate tubular frame will be composed of a resilient material, usually metal, often times a heat and/or shape memory alloy, such as nickel titanium alloys which are commercially available under the trade name Nitinol®. The frames may also be composed of other highly elastic metals, such as MP-35 N, Elgiloy, 316 L stainless steel, and the like. In the case of Nitinol® and other memory alloys, the phase transition between austenitic and martensitic states may occur between an introduction temperature, e.g., room temperature (approximately 22°C), and body temperature (37°C), to minimize stress on the unexpanded frame and enhance radial expansion of the frame from its radially compressed condition. Expansion can also be achieved based on the highly elastic nature of the alloy, rather than true shape recovery based on phase change.
  • [0030]
    In some cases, it may be desirable to form a tubular frame having different elastic or other mechanical properties at different regions along its length. For example, it is possible to heat treat different regions of the tubular frame so that some regions possess elastic properties while others become malleable so that they may be deformed by external force. For example, by providing at least one malleable end portion and an elastic (radially compressible) middle portion, the graft can be firmly expanded and implanted by internal balloon expansion force (to anchor the end(s) in the inner wall of the blood vessel) while the middle will remain open due to the elastic nature of the tubular member. Malleable end portions are a particular advantage since they can be expanded with a sufficient force, and re-expanded if necessary, to assure a good seal with the blood vessel wall. Alternatively, the malleable ends could be formed from a different material than that of the middle portion of the tubular frame. The use of different materials would be particularly convenient when the frame is formed from a plurality of independent bands, where one or more band members at either or both ends could be formed of a malleable metal. Usually, such malleable end(s) will extend over a distance in the range from 5 mm to 50 mm, preferably from 5 mm to 20 mm.
  • [0031]
    Malleable portions or segments can also be formed in other parts of the tubular frame. For example, some circumferentially spaced-apart segments of the tubular frame could be malleable while the remaining circumferential segments would be elastic. The frame would thus remain elastic but have an added malleability to permit expansion by applying an internal expansion force. Such a construction would be advantageous since it would allow the diameter of the graft or stent structure to be expanded if the initial diameter (which resulted entirely from elastic expansion) were not large enough for any reason. The proportion of elastic material to malleable material in the tubular frame can be selected to provide a desired balance between the extend of initial, elastic opening and the availability of additional, malleable opening. Such construction can be achieved by selective heat treatment of portions of a frame composed of a single alloy material, e.g. nickel titanium alloy, or by forming circumferential segments of the frame from different materials having different elastic/malleable properties. In particular, individual laterally compressible axial members 204 (as described in connection with Fig. 1 B) could be formed from materials having different elastic/malleable properties.
  • [0032]
    Referring now to Fig. 1, an exemplary graft structure 10 will be described, which is similar in construction to the frame of a graft according to the invention, except that adjacent band members are connected to each other while according to the invention adjacent band or linear members are not directly connected to each other. The graft structure 10 includes a fabric liner 12 and a radially compressible perforate tubular frame 14. The frame is illustrated in its expanded (relaxed) configuration in each of these figures, but may be radially compressed by applying a radially inward compressive force, usually by placing the graft 10 in an outer sheath, as will be described in more detail hereinafter.
  • [0033]
    The tubular frame 14 comprises a plurality of radially compressible band members 11, each of which comprises a zig-zag or Z-shaped element which forms a continuous circular ring. Each band member 11 will typically have a width w in the range from 2 mm to 15 mm, and the tubular frame will comprise from 1 to 30 individual band members. Adjacent band members 11 are preferably spaced-apart from each other by a short distance d and are joined by bridge elements 13. Flexibility is enhanced by providing only two diametrically opposed bridge elements 13 between each adjacent pair of band members 11. As will be described further with reference to Fig. 1A, flexibility can be further enhanced by leaving the band members connected only by the liner.
  • [0034]
    Usually, the perforate tubular frame 14 will be left open at each end, e.g., at least a portion of the last band member 11 will remain uncovered by the liner 12. The liner 12 will be stitched or otherwise secured to the band members 11, preferably at the junctions or nodes when the element reverses direction to form the Z-pattern (although the stitching should not cross over between the band members in a way that would restrict flexibility). The liner 12 will usually pass outward from the inner lumen of the tubular frame 14 to the exterior of the frame through the gap between adjacent band members, as illustrated in Fig. 1. The portion of liner 12 on the exterior of the tubular frame 14 helps seal the end(s) of the graft 10 against the wall of the blood vessel or other body lumen in which it is disposed.
  • [0035]
    The expansion is shown at 30°, but will frequently extend up to 60° or higher in use.
  • [0036]
    A preferred method for forming the tubular frame 14 is as follows. A tube of the desired elastic material, such as nickel titanium alloy having a phase transformation temperature significantly below 37°C. preferably between 30°C and 32°C, is obtained. The tube will have dimensions roughly equal to the desired dimensions of the frame when radially compressed. The tube may be drawn, rolled, or otherwise treated to achieve the desired wall thickness, diameter, and the like. Suitable wall thicknesses are in the range of about 0.1 mm to 0.5 mm. A pattern of axial slots is then formed in the tube. The slots may be formed by electrical discharge machining (EDM), photochemical etching, laser cutting, machining or other conventional techniques. After the slots have been formed, the tube is mechanically expanded to its desired final (relaxed) diameter and heat treated at a suitable temperature to set the tube in the desired expanded state. Sharp edges are removed by conventional techniques, such as deburring, abrasive extrusion, or the like. The result of the expansion is the tubular frame illustrated in Fig. 1.
  • [0037]
    Preferably, each end of the liner 12 will be circumferentially sealed at or near the distal and proximal ends of the tubular graft. As illustrated in Fig. 1A, this can be achieved by folding over the end of the liner 12 onto the external surface of the graft 10. Conveniently, this can be done through the gaps which are present between adjacent band members 14. Where the junctions 13 remain, the liner 12 can be carefully stitched onto the underlying surface of the frame, as shown at 18 in Fig. 1A. Other techniques for circumferentially sealing the liner include heat or ultrasonic welding of the liner, laminating an outer gasket, sewing an outer reinforcement member, or the like.
  • [0038]
    Referring now to Fig. 1A, an exemplary embodiment 100 of a vascular graft constructed in accordance with the principles of the present invention will be described. The graft 100 comprises a perforate tubular frame 102 which includes a plurality of independent (non-connected) band members 104 separated from each other by gaps 106. The perforate tubular frame 102 is similar in construction to frame 14 of graft 10, except that adjacent band members 104 are not directly connected to each other. Band numbers 104 will be connected only by an inner liner 108 and an outer liner 110, where the inner and outer liners together encase or sandwich the otherwise free-floating band members 104. In order to secure the band members 104 in place, and secure the liners to the perforate tubular frame 102, the inner and outer liners are joined together along circumferential lines 112, preferably located in the gaps 106 between adjacent band members 104. The liners may be joined together by stitching, heat welding, ultrasonic welding, or the like. In the exemplary embodiment, the liners 108 and 110 are formed from polymeric sheet material and are joined together by ultrasonic welding. The band members 104 at each end of the graft 100 will have to be further secured to the liners 108 and 110. For example, they could be stitched, welded, or otherwise joined to the liners to hold them in place. The dimensions, materials, and other aspects of the graft 100 will be generally the same as those described previously for graft 10.
  • [0039]
    Referring now to Fig. 1B, an alternative exemplary embodiment 200 of the vascular graft of the present invention is illustrated. The graft 200 comprises a perforate tubular frame 202 including a plurality of laterally compressible axial members 204. Each axial member 204 comprises a plurality of diamond-shaped structural elements which are connected to each other in a linear fashion. It will be appreciated that each diamond-shaped structural element is laterally compressible so that the frame 202 as a whole may be radially compressed from a reduced-diameter configuration to an expanded-diameter configuration. As illustrated in Fig. 1 B, the frame is in a partially compressed configuration. The axial members 202 will be captured between an inner liner 206 and an outer liner 208. The inner liner 206 and outer liner 208 will be secured to each other along a plurality of axial lines 210 disposed between adjacent axial members 204. In this way, each axial member 204 will be captured within a pocket formed between the inner liner 206 and outer liner 208. As with the other embodiment, the ends of the frame may extend beyond the liners to provide for improved anchoring and perfusion on either side of the graft.

Claims (6)

  1. A vascular graft comprising:
    a perforate self-expanding frame (102) having a proximal end, a distal end, and a lumen therebetween, and
    an inner liner (108) extending from a near-proximal location on the lumen to a near-distal location on the lumen, wherein the liner (108) covers the lumen of the tubular frame (102) over the entire distance from said near-proximal location to said near-distal location, characterized in that said frame (102) has a resilient tubular frame structure including a plurality of adjacent radially compressible band members (104) not directly connected to each other, and wherein the band members (104) comprising a zig-zag or Z-shaped element which forms a continuous circular ring are secured independently to the inner liner (108) which thereby maintains the axial integrity of the graft.
  2. A vascular graft comprising:
    a perforate self-expanding frame (202) having a proximal end, a distal end, and a lumen therebetween, and
    an inner liner (206) extending from a near-proximal location on the lumen to a near-distal location on the lumen, wherein the liner (206) covers the lumen of the tubular frame (202) over the entire distance from said near-proximal location to said near-distal location, characterized in that said frame (202) has a resilient tubular frame structure including a plurality of adjacent laterally compressible axial members (204) not directly connected to each other and being separated from each other by gaps (106), and wherein the axial members (204) comprise a multiplicity of repeating structural units, which are axially connected, whereby the axial members (204) are secured independently to the inner liner (206) which thereby maintains the radial integrity of the graft.
  3. A vascular graft as in claim 2, wherein the axial members (204) each comprise a plurality of diamond-shaped elements.
  4. A vascular graft as in one of the claims 1 to 3, wherein the liner (108, 206) is circumferentially sealed to the perforate tubular frame (102, 202) at at least one of said near-proximal and near-distal locations, and is spaced-inward from an end of the perforate tubular frame (102, 202) by a distance in the range from 1 mm to 20 mm, wherein at least one terminal portion of the perforate tubular frame (102, 202) remains uncovered.
  5. A vascular graft as in one of the claims 1 to 4, wherein the independent band members (104) or the axial members (204) are stitched to the liner (108, 206).
  6. A vascular graft as in one of the claims 1 to 5, wherein the band members (104) or the axial members (204) are secured to the inner liner (108, 206) by an outer liner (110, 208) sealed to the inner liner (108, 206).
EP19950108462 1994-06-08 1995-06-02 Vascular graft Expired - Lifetime EP0686379B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US25568194 true 1994-06-08 1994-06-08
US255681 1994-06-08

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19990119747 EP1010406B1 (en) 1994-06-08 1995-06-02 Endoluminal graft
DE1995222101 DE29522101U1 (en) 1994-06-08 1995-06-02 An endoluminal prosthesis
EP19970108268 EP0792627B2 (en) 1994-06-08 1995-06-02 System for forming a bifurcated graft

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP19990119747 Division EP1010406B1 (en) 1994-06-08 1995-06-02 Endoluminal graft
EP19970108268 Division EP0792627B2 (en) 1994-06-08 1995-06-02 System for forming a bifurcated graft

Publications (4)

Publication Number Publication Date
EP0686379A2 true EP0686379A2 (en) 1995-12-13
EP0686379A3 true EP0686379A3 (en) 1996-03-06
EP0686379B1 EP0686379B1 (en) 2000-08-09
EP0686379B2 true EP0686379B2 (en) 2007-03-28

Family

ID=22969434

Family Applications (3)

Application Number Title Priority Date Filing Date
EP19950108462 Expired - Lifetime EP0686379B2 (en) 1994-06-08 1995-06-02 Vascular graft
EP19990119747 Expired - Lifetime EP1010406B1 (en) 1994-06-08 1995-06-02 Endoluminal graft
EP19970108268 Expired - Lifetime EP0792627B2 (en) 1994-06-08 1995-06-02 System for forming a bifurcated graft

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP19990119747 Expired - Lifetime EP1010406B1 (en) 1994-06-08 1995-06-02 Endoluminal graft
EP19970108268 Expired - Lifetime EP0792627B2 (en) 1994-06-08 1995-06-02 System for forming a bifurcated graft

Country Status (4)

Country Link
US (3) US8206427B1 (en)
JP (1) JPH0852165A (en)
DE (7) DE69518275D1 (en)
EP (3) EP0686379B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873906A (en) 1994-09-08 1999-02-23 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US6001123A (en) 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US6340368B1 (en) 1998-10-23 2002-01-22 Medtronic Inc. Implantable device with radiopaque ends
US6361557B1 (en) 1999-02-05 2002-03-26 Medtronic Ave, Inc. Staplebutton radiopaque marker
US6371969B1 (en) 1997-05-08 2002-04-16 Scimed Life Systems, Inc. Distal protection device and method
US6478813B1 (en) 1997-08-01 2002-11-12 Peter T. Keith Method for joining grafts in a common body passageway
US6482227B1 (en) 1998-03-30 2002-11-19 Cordis Corporation Stent graft having improved attachment within a body vessel
US6626938B1 (en) 2000-11-16 2003-09-30 Cordis Corporation Stent graft having a pleated graft member
US6663652B2 (en) 1997-03-06 2003-12-16 John M. K. Daniel Distal protection device and method
US6663651B2 (en) 2001-01-16 2003-12-16 Incept Llc Systems and methods for vascular filter retrieval
US6663667B2 (en) 1999-12-29 2003-12-16 Edwards Lifesciences Corporation Towel graft means for enhancing tissue ingrowth in vascular grafts
US6689158B1 (en) 1993-09-30 2004-02-10 Endogad Research Pty Limited Intraluminal graft
US7762403B2 (en) 2003-02-24 2010-07-27 Boston Scientific Scimed, Inc. Flexible tube for cartridge filter
US7780720B2 (en) 1994-02-09 2010-08-24 Scimed Life Systems, Inc. Bifurcated endoluminal prosthesis
US8317854B1 (en) 1994-06-08 2012-11-27 Medtronic Vascular, Inc. Apparatus and methods for endoluminal graft placement
USRE43902E1 (en) 1999-07-30 2013-01-01 Incept, Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US8343211B2 (en) 2005-12-14 2013-01-01 Boston Scientific Scimed, Inc. Connectors for bifurcated stent
US8414635B2 (en) 1999-02-01 2013-04-09 Idev Technologies, Inc. Plain woven stents
US8419788B2 (en) 2006-10-22 2013-04-16 Idev Technologies, Inc. Secured strand end devices
US8435284B2 (en) 2005-12-14 2013-05-07 Boston Scientific Scimed, Inc. Telescoping bifurcated stent
US8449597B2 (en) 1995-03-01 2013-05-28 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US8486104B2 (en) 1997-09-30 2013-07-16 Stryker Corporation Mechanical clot treatment device with distal filter
US8632579B2 (en) 2001-02-26 2014-01-21 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US8641748B2 (en) 2002-02-28 2014-02-04 Bay Street Medical, Inc. Guidewire loaded stent for delivery through a catheter
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement

Families Citing this family (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1006440A3 (en) * 1992-12-21 1994-08-30 Dereume Jean Pierre Georges Em Luminal endoprosthesis AND METHOD OF PREPARATION.
US5913897A (en) * 1993-09-16 1999-06-22 Cordis Corporation Endoprosthesis having multiple bridging junctions and procedure
US5639278A (en) * 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5855598A (en) * 1993-10-21 1999-01-05 Corvita Corporation Expandable supportive branched endoluminal grafts
US8709067B2 (en) * 1994-02-09 2014-04-29 Lifeshield Sciences, LLC Bifurcated endoluminal prosthesis
US6039749A (en) 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
EP0712614B1 (en) * 1994-11-15 2003-04-02 Advanced Cardiovascular Systems, Inc. Intraluminal stent for attaching a graft
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US6264684B1 (en) 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
FR2737404B1 (en) * 1995-08-03 1997-09-19 Braun Celsa Sa An implantable prosthesis in a conduit human or animal, such as a wall expander, or an aneurism prosthesis
US6193745B1 (en) 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
US6099558A (en) * 1995-10-10 2000-08-08 Edwards Lifesciences Corp. Intraluminal grafting of a bifuricated artery
US6576009B2 (en) 1995-12-01 2003-06-10 Medtronic Ave, Inc. Bifurcated intraluminal prostheses construction and methods
WO1997021402A1 (en) 1995-12-14 1997-06-19 Prograft Medical, Inc. Stent-graft deployment apparatus and method
FR2742994B1 (en) * 1995-12-28 1998-04-03 Sgro Jean-Claude Set of surgical treatment of an intracorporeal lumen
EP0955954B1 (en) * 1996-01-05 2005-03-16 Medtronic, Inc. Expansible endoluminal prostheses
US5843117A (en) * 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same
US5824042A (en) 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
WO1997039699A1 (en) * 1996-04-24 1997-10-30 Legona Anstalt Endoprothesis intended to be set in place into a body channel
FR2747912B1 (en) * 1996-04-24 1999-01-22 Legona Anstalt Intracorporeal endoprosthesis destiny has to be set up in a body channel
BE1010183A3 (en) 1996-04-25 1998-02-03 Dereume Jean Pierre Georges Em Luminal endoprosthesis FOR BRANCHING CHANNELS OF A HUMAN OR ANIMAL BODY AND MANUFACTURING METHOD THEREOF.
US6770092B2 (en) 1996-05-03 2004-08-03 Medinol Ltd. Method of delivering a bifurcated stent
US6440165B1 (en) 1996-05-03 2002-08-27 Medinol, Ltd. Bifurcated stent with improved side branch aperture and method of making same
US7641685B2 (en) 1996-05-03 2010-01-05 Medinol Ltd. System and method for delivering a bifurcated stent
US6251133B1 (en) 1996-05-03 2001-06-26 Medinol Ltd. Bifurcated stent with improved side branch aperture and method of making same
US5755734A (en) * 1996-05-03 1998-05-26 Medinol Ltd. Bifurcated stent and method of making same
FR2749160B1 (en) 1996-05-28 1999-05-21 Patrice Bergeron modular bifurcated vascular prosthesis
US5843161A (en) * 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
FR2750853B1 (en) * 1996-07-10 1998-12-18 Braun Celsa Sa Medical prosthesis, in particular aneurysms, perfected connection between the sheath and its structure
US5968068A (en) * 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
WO1998019630A3 (en) * 1996-11-07 1998-10-08 Vascular Science Inc Tubular medical graft connectors
WO1998020810A1 (en) * 1996-11-12 1998-05-22 Medtronic, Inc. Flexible, radially expansible luminal prostheses
US6015431A (en) * 1996-12-23 2000-01-18 Prograft Medical, Inc. Endolumenal stent-graft with leak-resistant seal
US6551350B1 (en) * 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
JP4057238B2 (en) * 1998-02-02 2008-03-05 バード・ペリフェラル・バスキュラー・インコーポレーテツド Encapsulated endoluminal stent - graft preparation
US6096073A (en) * 1997-02-25 2000-08-01 Scimed Life Systems, Inc. Method of deploying a stent at a lesion site located at a bifurcation in a parent vessel
DK0971646T3 (en) * 1997-04-10 2005-01-17 Cook Inc Endovascular graft to repair
US5972017A (en) * 1997-04-23 1999-10-26 Vascular Science Inc. Method of installing tubular medical graft connectors
US6676682B1 (en) 1997-05-08 2004-01-13 Scimed Life Systems, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
EP0884029B1 (en) 1997-06-13 2004-12-22 Gary J. Becker Expandable intraluminal endoprosthesis
WO1999001088A1 (en) * 1997-07-04 1999-01-14 Alain Fouere Flexible and expansible internal vascular prosthesis for surgical use
US6306164B1 (en) * 1997-09-05 2001-10-23 C. R. Bard, Inc. Short body endoprosthesis
US5984955A (en) * 1997-09-11 1999-11-16 Wisselink; Willem System and method for endoluminal grafting of bifurcated or branched vessels
DE19746882A1 (en) * 1997-10-23 1999-04-29 Angiomed Ag Expandable stent for tubular anatomical structures such as bile-ducts
US6331191B1 (en) 1997-11-25 2001-12-18 Trivascular Inc. Layered endovascular graft
US6342067B1 (en) 1998-01-09 2002-01-29 Nitinol Development Corporation Intravascular stent having curved bridges for connecting adjacent hoops
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6099497A (en) 1998-03-05 2000-08-08 Scimed Life Systems, Inc. Dilatation and stent delivery system for bifurcation lesions
US5935162A (en) * 1998-03-16 1999-08-10 Medtronic, Inc. Wire-tubular hybrid stent
US6488701B1 (en) 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US6099559A (en) * 1998-05-28 2000-08-08 Medtronic Ave, Inc. Endoluminal support assembly with capped ends
US6143002A (en) * 1998-08-04 2000-11-07 Scimed Life Systems, Inc. System for delivering stents to bifurcation lesions
US6143022A (en) * 1998-08-24 2000-11-07 Medtronic Ave, Inc. Stent-graft assembly with dual configuration graft component and method of manufacture
US6514281B1 (en) 1998-09-04 2003-02-04 Scimed Life Systems, Inc. System for delivering bifurcation stents
US6071307A (en) * 1998-09-30 2000-06-06 Baxter International Inc. Endoluminal grafts having continuously curvilinear wireforms
US6368345B1 (en) 1998-09-30 2002-04-09 Edwards Lifesciences Corporation Methods and apparatus for intraluminal placement of a bifurcated intraluminal garafat
US6849088B2 (en) 1998-09-30 2005-02-01 Edwards Lifesciences Corporation Aorto uni-iliac graft
US6325820B1 (en) * 1998-11-16 2001-12-04 Endotex Interventional Systems, Inc. Coiled-sheet stent-graft with exo-skeleton
US6071287A (en) * 1998-12-23 2000-06-06 Medtronic, Inc. Introducer for single operator stent delivery system
WO2000042946A1 (en) * 1999-01-22 2000-07-27 Al Saadon Khalid Expandable intravascular tubular stents
DE60037691T2 (en) * 1999-01-22 2009-01-02 Gore Enterprise Holdings, Inc., Newark A method for compressing an endoprosthesis
DE60027999T2 (en) 1999-01-22 2007-04-26 Gore Enterprise Holdings, Inc., Newark coated endoprosthesis
US6673102B1 (en) 1999-01-22 2004-01-06 Gore Enterprises Holdings, Inc. Covered endoprosthesis and delivery system
US6398803B1 (en) 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US6558414B2 (en) * 1999-02-02 2003-05-06 Impra, Inc. Partial encapsulation of stents using strips and bands
US6171327B1 (en) 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
GB2347861B (en) * 1999-03-13 2003-11-26 Biointeractions Ltd Biocompatible endoprostheses
DE29908768U1 (en) * 1999-05-19 1999-08-12 Starck Bernd Highly flexible coating for stents and / or stent-Crafts and / or stent-vessel prostheses
US6652570B2 (en) * 1999-07-02 2003-11-25 Scimed Life Systems, Inc. Composite vascular graft
US20030150821A1 (en) 1999-07-16 2003-08-14 Bates Mark C. Emboli filtration system and methods of use
US6616679B1 (en) 1999-07-30 2003-09-09 Incept, Llc Rapid exchange vascular device for emboli and thrombus removal and methods of use
US6620182B1 (en) 1999-07-30 2003-09-16 Incept Llc Vascular filter having articulation region and methods of use in the ascending aorta
US6589263B1 (en) 1999-07-30 2003-07-08 Incept Llc Vascular device having one or more articulation regions and methods of use
US6530939B1 (en) 1999-07-30 2003-03-11 Incept, Llc Vascular device having articulation region and methods of use
USRE43882E1 (en) 1999-07-30 2012-12-25 Incept, Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US6371970B1 (en) 1999-07-30 2002-04-16 Incept Llc Vascular filter having articulation region and methods of use in the ascending aorta
US6142987A (en) 1999-08-03 2000-11-07 Scimed Life Systems, Inc. Guided filter with support wire and methods of use
US6235044B1 (en) 1999-08-04 2001-05-22 Scimed Life Systems, Inc. Percutaneous catheter and guidewire for filtering during ablation of mycardial or vascular tissue
US6168579B1 (en) 1999-08-04 2001-01-02 Scimed Life Systems, Inc. Filter flush system and methods of use
US6596021B1 (en) 1999-10-26 2003-07-22 Biotronik Mess -Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin Stent
US6217589B1 (en) 1999-10-27 2001-04-17 Scimed Life Systems, Inc. Retrieval device made of precursor alloy cable and method of manufacturing
CA2389554C (en) 1999-10-29 2008-09-09 Angiomed Gmbh & Co. Medizintechnik Kg Method of making a stent
US6371971B1 (en) 1999-11-15 2002-04-16 Scimed Life Systems, Inc. Guidewire filter and methods of use
KR100319663B1 (en) * 1999-12-07 2002-01-05 Stent
US6344056B1 (en) 1999-12-29 2002-02-05 Edwards Lifesciences Corp. Vascular grafts for bridging a vessel side branch
US6296661B1 (en) 2000-02-01 2001-10-02 Luis A. Davila Self-expanding stent-graft
US6245100B1 (en) 2000-02-01 2001-06-12 Cordis Corporation Method for making a self-expanding stent-graft
US6540768B1 (en) 2000-02-09 2003-04-01 Cordis Corporation Vascular filter system
DE60101455T2 (en) 2000-03-03 2004-09-23 Cook Inc., Bloomington Endovascular stent device having
WO2001089421A3 (en) * 2000-05-22 2002-04-18 Orbus Medical Technologies Inc Self-expanding stent
US6485501B1 (en) 2000-08-11 2002-11-26 Cordis Corporation Vascular filter system with guidewire and capture mechanism
US6616681B2 (en) 2000-10-05 2003-09-09 Scimed Life Systems, Inc. Filter delivery and retrieval device
US6908477B2 (en) 2000-10-13 2005-06-21 Rex Medical, L.P. Methods of implanting covered stents with side branch
WO2003017870A1 (en) 2000-12-11 2003-03-06 Orbus Medical Technologies Inc. Stent having helical elements
US6689151B2 (en) 2001-01-25 2004-02-10 Scimed Life Systems, Inc. Variable wall thickness for delivery sheath housing
WO2002067815A1 (en) 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent
US7799064B2 (en) 2001-02-26 2010-09-21 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US6537295B2 (en) 2001-03-06 2003-03-25 Scimed Life Systems, Inc. Wire and lock mechanism
US7645273B2 (en) 2001-03-14 2010-01-12 Evr Medical S.A.R.L. Vascular catheter guide wire carrier
US20050021123A1 (en) 2001-04-30 2005-01-27 Jurgen Dorn Variable speed self-expanding stent delivery system and luer locking connector
WO2002091956A1 (en) * 2001-05-16 2002-11-21 Dias Maues, Christiane Stent comprising a drug release coating thereon and delivering system thereof
US20030023263A1 (en) 2001-07-24 2003-01-30 Incept Llc Apparatus and methods for aspirating emboli
US20030023261A1 (en) 2001-07-30 2003-01-30 Scimed Life Systems Inc. Chronic total occlusion device with variable stiffness shaft
US6755847B2 (en) 2001-10-05 2004-06-29 Scimed Life Systems, Inc. Emboli capturing device and method of manufacture therefor
US6887257B2 (en) 2001-10-19 2005-05-03 Incept Llc Vascular embolic filter exchange devices and methods of use thereof
JP4350515B2 (en) 2001-11-09 2009-10-21 ルビコン・メデイカル・インコーポレイテツド Stent delivery system
US6793666B2 (en) 2001-12-18 2004-09-21 Scimed Life Systems, Inc. Distal protection mechanically attached filter cartridge
US20100016943A1 (en) 2001-12-20 2010-01-21 Trivascular2, Inc. Method of delivering advanced endovascular graft
US8647359B2 (en) 2002-01-10 2014-02-11 Boston Scientific Scimed, Inc. Distal protection filter
US7288111B1 (en) 2002-03-26 2007-10-30 Thoratec Corporation Flexible stent and method of making the same
US8070769B2 (en) 2002-05-06 2011-12-06 Boston Scientific Scimed, Inc. Inverted embolic protection filter
US7060082B2 (en) 2002-05-06 2006-06-13 Scimed Life Systems, Inc. Perfusion guidewire in combination with a distal filter
US7959584B2 (en) 2002-05-29 2011-06-14 Boston Scientific Scimed, Inc. Dedicated distal protection guidewires
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
US8468678B2 (en) 2002-10-02 2013-06-25 Boston Scientific Scimed, Inc. Expandable retrieval device
US7998163B2 (en) 2002-10-03 2011-08-16 Boston Scientific Scimed, Inc. Expandable retrieval device
US20040093056A1 (en) 2002-10-26 2004-05-13 Johnson Lianw M. Medical appliance delivery apparatus and method of use
US7875068B2 (en) 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US7637942B2 (en) 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
CA2512203C (en) * 2002-12-02 2012-10-23 Gi Dynamics, Inc. Bariatric sleeve
US7608114B2 (en) 2002-12-02 2009-10-27 Gi Dynamics, Inc. Bariatric sleeve
US7025791B2 (en) 2002-12-02 2006-04-11 Gi Dynamics, Inc. Bariatric sleeve
US7625389B2 (en) 2002-12-30 2009-12-01 Boston Scientific Scimed, Inc. Embolic protection device
US7740644B2 (en) 2003-02-24 2010-06-22 Boston Scientific Scimed, Inc. Embolic protection filtering device that can be adapted to be advanced over a guidewire
US7637934B2 (en) 2003-03-31 2009-12-29 Merit Medical Systems, Inc. Medical appliance optical delivery and deployment apparatus and method
US7670366B2 (en) 2003-04-08 2010-03-02 Cook Incorporated Intraluminal support device with graft
US7780611B2 (en) 2003-05-01 2010-08-24 Boston Scientific Scimed, Inc. Medical instrument with controlled torque transmission
US8337519B2 (en) 2003-07-10 2012-12-25 Boston Scientific Scimed, Inc. Embolic protection filtering device
US9301829B2 (en) 2003-07-30 2016-04-05 Boston Scientific Scimed, Inc. Embolic protection aspirator
US8535344B2 (en) 2003-09-12 2013-09-17 Rubicon Medical, Inc. Methods, systems, and devices for providing embolic protection and removing embolic material
EP1708641A1 (en) 2003-12-09 2006-10-11 GI Dynamics, Inc. Intestinal sleeve
US7651514B2 (en) 2003-12-11 2010-01-26 Boston Scientific Scimed, Inc. Nose rider improvement for filter exchange and methods of use
WO2006071244A1 (en) * 2004-12-29 2006-07-06 Boston Scientific Limited Medical devices including metallic films and methods for making the same
US8998973B2 (en) 2004-03-02 2015-04-07 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8591568B2 (en) 2004-03-02 2013-11-26 Boston Scientific Scimed, Inc. Medical devices including metallic films and methods for making same
US8241315B2 (en) 2004-06-24 2012-08-14 Boston Scientific Scimed, Inc. Apparatus and method for treating occluded vasculature
US7794472B2 (en) 2004-08-11 2010-09-14 Boston Scientific Scimed, Inc. Single wire intravascular filter
US7780721B2 (en) 2004-09-01 2010-08-24 C. R. Bard, Inc. Stent and method for manufacturing the stent
US7621904B2 (en) 2004-10-21 2009-11-24 Boston Scientific Scimed, Inc. Catheter with a pre-shaped distal tip
US8262720B2 (en) 2004-12-02 2012-09-11 Nitinol Development Corporation Prosthesis comprising dual tapered stent
US8038696B2 (en) 2004-12-06 2011-10-18 Boston Scientific Scimed, Inc. Sheath for use with an embolic protection filter
US7901447B2 (en) 2004-12-29 2011-03-08 Boston Scientific Scimed, Inc. Medical devices including a metallic film and at least one filament
US8992592B2 (en) 2004-12-29 2015-03-31 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8632580B2 (en) 2004-12-29 2014-01-21 Boston Scientific Scimed, Inc. Flexible medical devices including metallic films
US8287583B2 (en) * 2005-01-10 2012-10-16 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
US8480629B2 (en) 2005-01-28 2013-07-09 Boston Scientific Scimed, Inc. Universal utility board for use with medical devices and methods of use
JP4917089B2 (en) 2005-05-09 2012-04-18 アンギオメット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー メディツィンテヒニク コマンデイトゲゼルシャフト Implant delivery device
US7854760B2 (en) 2005-05-16 2010-12-21 Boston Scientific Scimed, Inc. Medical devices including metallic films
JP2009504345A (en) 2005-08-17 2009-02-05 シー・アール・バード・インコーポレーテッドC R Bard Incorporated Variable speed stent delivery system
US8092520B2 (en) 2005-11-10 2012-01-10 CardiAQ Technologies, Inc. Vascular prosthesis connecting stent
EP2727564A1 (en) 2006-01-13 2014-05-07 C. R. Bard, Inc. Stent delivery system
US9456911B2 (en) 2006-02-14 2016-10-04 Angiomed Gmbh & Co. Medizintechnik Highly flexible stent and method of manufacture
GB0615658D0 (en) 2006-08-07 2006-09-13 Angiomed Ag Hand-held actuator device
US8333799B2 (en) 2007-02-12 2012-12-18 C. R. Bard, Inc. Highly flexible stent and method of manufacture
US8328865B2 (en) 2007-02-12 2012-12-11 C. R. Bard, Inc. Highly flexible stent and method of manufacture
GB0713497D0 (en) 2007-07-11 2007-08-22 Angiomed Ag Device for catheter sheath retraction
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US9180030B2 (en) 2007-12-26 2015-11-10 Cook Medical Technologies Llc Low profile non-symmetrical stent
US9226813B2 (en) 2007-12-26 2016-01-05 Cook Medical Technologies Llc Low profile non-symmetrical stent
US8574284B2 (en) 2007-12-26 2013-11-05 Cook Medical Technologies Llc Low profile non-symmetrical bare alignment stents with graft
US9757263B2 (en) 2009-11-18 2017-09-12 Cook Medical Technologies Llc Stent graft and introducer assembly
US8876876B2 (en) 2008-06-06 2014-11-04 Back Bay Medical Inc. Prosthesis and delivery system
EP2328513B1 (en) * 2008-06-30 2017-05-31 Bolton Medical Inc. Abdominal aortic aneurysms systems
EP2520320B1 (en) 2008-07-01 2016-11-02 Endologix, Inc. Catheter system
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
CN102292053A (en) 2008-09-29 2011-12-21 卡迪尔克阀门技术公司 Heart valve
WO2010040009A1 (en) 2008-10-01 2010-04-08 Cardiaq Valve Technologies, Inc. Delivery system for vascular implant
US8444669B2 (en) 2008-12-15 2013-05-21 Boston Scientific Scimed, Inc. Embolic filter delivery system and method
EP2419050B1 (en) 2009-04-15 2017-06-28 Edwards Lifesciences CardiAQ LLC Vascular implant and delivery system
WO2010124095A1 (en) * 2009-04-23 2010-10-28 Samuels Shaun L W Endovascular router device and method
CA2771120C (en) * 2009-09-10 2017-07-11 Boston Scientific Scimed, Inc. Endoprosthesis with filament repositioning or retrieval member and guard structure
GB2475494B (en) 2009-11-18 2011-11-23 Cook William Europ Stent graft and introducer assembly
US9717611B2 (en) 2009-11-19 2017-08-01 Cook Medical Technologies Llc Stent graft and introducer assembly
US8475513B2 (en) 2009-12-02 2013-07-02 Nedunchezian Sithian Stent graft apparatus and method
JP5952744B2 (en) * 2010-02-09 2016-07-13 クック・メディカル・テクノロジーズ・リミテッド・ライアビリティ・カンパニーCook Medical Technologies Llc Thoracic aortic stent graft
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US9198787B2 (en) * 2010-12-31 2015-12-01 Cook Medical Technologies Llc Conformable prosthesis delivery system and method for deployment thereof
CN103561807B (en) 2011-03-01 2015-11-25 恩朵罗杰克斯股份有限公司 The catheter system and method of use
US8821478B2 (en) 2011-03-04 2014-09-02 Boston Scientific Scimed, Inc. Catheter with variable stiffness
US9114000B2 (en) * 2011-03-14 2015-08-25 Cook Medical Technologies Llc Apparatus and methods to enhance bonding in endoluminal prostheses
GB201109317D0 (en) 2011-06-03 2011-07-20 Vascutek Ltd Stent element
GB201109315D0 (en) 2011-06-03 2011-07-20 Vascutek Ltd Prosthesis
GB201109316D0 (en) 2011-06-03 2011-07-20 Vascutek Ltd Apparatus for implanting a device
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US20140005764A1 (en) * 2012-06-30 2014-01-02 Cordis Corporation Sealing mechanism for expandable vascular device
WO2014107748A3 (en) * 2013-01-04 2014-08-21 W.L. Gore & Associates, Inc. Implantable intralumenal device
US9387106B2 (en) * 2013-02-28 2016-07-12 Medtronic Vascular, Inc. Medical device delivery systems and methods of use thereof
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9439751B2 (en) 2013-03-15 2016-09-13 Bolton Medical, Inc. Hemostasis valve and delivery systems
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
WO2015042467A1 (en) * 2013-09-19 2015-03-26 Manhole, Inc. Systems and methods for deploying a luminal prostheses over a carina
USD755384S1 (en) * 2014-03-05 2016-05-03 Edwards Lifesciences Cardiaq Llc Stent
KR20150144717A (en) 2014-06-17 2015-12-28 사회복지법인 삼성생명공익재단 Percutaneous access catheter for insert of drainage tube

Family Cites Families (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1766921U (en) 1957-03-25 1958-05-14 Claire Josephine Agne Perreard Pen.
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3878565A (en) 1971-07-14 1975-04-22 Providence Hospital Vascular prosthesis with external pile surface
US3945052A (en) 1972-05-01 1976-03-23 Meadox Medicals, Inc. Synthetic vascular graft and method for manufacturing the same
US3868956A (en) 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US3890977A (en) 1974-03-01 1975-06-24 Bruce C Wilson Kinetic memory electrodes, catheters and cannulae
US3996938A (en) 1975-07-10 1976-12-14 Clark Iii William T Expanding mesh catheter
FR2333487B1 (en) 1975-12-02 1978-05-19 Rhone Poulenc Ind
GB1600000A (en) 1977-01-24 1981-10-14 Raychem Ltd Memory metal member
US4140126A (en) 1977-02-18 1979-02-20 Choudhury M Hasan Method for performing aneurysm repair
FR2409747B1 (en) 1977-11-28 1981-12-24 Rey Pierre
JPS6037734B2 (en) 1978-10-12 1985-08-28 Sumitomo Electric Industries
US4276874A (en) 1978-11-15 1981-07-07 Datascope Corp. Elongatable balloon catheter
US4214587A (en) 1979-02-12 1980-07-29 Sakura Chester Y Jr Anastomosis device and method
NL8020201A (en) 1979-06-06 1981-03-31 Staffen Bowald Christer Busch Vascular Prosthesis.
US4310354A (en) 1980-01-10 1982-01-12 Special Metals Corporation Process for producing a shape memory effect alloy having a desired transition temperature
DE3163505D1 (en) 1980-08-28 1984-06-14 Astra Meditec Ab Vascular prosthesis and method of producing it
US4416028A (en) 1981-01-22 1983-11-22 Ingvar Eriksson Blood vessel prosthesis
US4604762A (en) 1981-02-13 1986-08-12 Thoratec Laboratories Corporation Arterial graft prosthesis
NL8220336A (en) 1981-09-16 1984-01-02 Wallsten Hans Ivar Device for use in blood vessels or other difficult to reach places, and its use.
US4425908A (en) 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4545082A (en) 1982-03-25 1985-10-08 Vascutek Limited Vascular prosthesis
DE3342798T (en) 1982-04-30 1985-01-10
US4512338A (en) 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
FR2540723B1 (en) 1983-02-10 1985-05-17 Grasset Joseph
US4503569A (en) 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US5067957A (en) 1983-10-14 1991-11-26 Raychem Corporation Method of inserting medical devices incorporating SIM alloy elements
CA1246956A (en) 1983-10-14 1988-12-20 James Jervis Shape memory alloys
US4505767A (en) 1983-10-14 1985-03-19 Raychem Corporation Nickel/titanium/vanadium shape memory alloy
US5190546A (en) 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US4665906A (en) 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4560374A (en) 1983-10-17 1985-12-24 Hammerslag Julius G Method for repairing stenotic vessels
US5693083A (en) 1983-12-09 1997-12-02 Endovascular Technologies, Inc. Thoracic graft and delivery catheter
US5669936A (en) 1983-12-09 1997-09-23 Endovascular Technologies, Inc. Endovascular grafting system and method for use therewith
US5275622A (en) 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US5104399A (en) 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
US4842575A (en) 1984-01-30 1989-06-27 Meadox Medicals, Inc. Method for forming impregnated synthetic vascular grafts
US4562596A (en) * 1984-04-25 1986-01-07 Elliot Kornberg Aortic graft, device and method for performing an intraluminal abdominal aortic aneurysm repair
US4617932A (en) 1984-04-25 1986-10-21 Elliot Kornberg Device and method for performing an intraluminal abdominal aortic aneurysm repair
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4728328A (en) 1984-10-19 1988-03-01 Research Corporation Cuffed tubular organic prostheses
US4577631A (en) * 1984-11-16 1986-03-25 Kreamer Jeffry W Aneurysm repair apparatus and method
ES549567D0 (en) 1984-12-05 1987-05-01 Medinvent Sa A device for implanting, by insertion into a hard Lugarde access, a substantially tubular radially expandable prothesis and
US4629458A (en) 1985-02-26 1986-12-16 Cordis Corporation Reinforcing structure for cardiovascular graft
US4923464A (en) 1985-09-03 1990-05-08 Becton, Dickinson And Company Percutaneously deliverable intravascular reconstruction prosthesis
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
US4681110A (en) 1985-12-02 1987-07-21 Wiktor Dominik M Catheter arrangement having a blood vessel liner, and method of using it
US4665918A (en) 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
US4649922A (en) 1986-01-23 1987-03-17 Wiktor Donimik M Catheter arrangement having a variable diameter tip and spring prosthesis
WO1987004935A1 (en) 1986-02-24 1987-08-27 Fischell Robert An intravascular stent and percutaneous insertion system
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
GB2189150B (en) 1986-04-21 1990-02-14 Medinvent Sa Prosthesis and process for its manufacture
US4772264A (en) 1986-06-23 1988-09-20 Regents Of The University Of Minnesota Catheter introduction set
US4867173A (en) 1986-06-30 1989-09-19 Meadox Surgimed A/S Steerable guidewire
EP0273960B1 (en) 1986-07-09 1991-02-27 Den Norske Stats Oljeselskap A.S. Device with a valve function
US4938220A (en) 1986-08-01 1990-07-03 Advanced Cardiovascular Systems, Inc. Catheter with split tip marker and method of manufacture
US4719924A (en) 1986-09-09 1988-01-19 C. R. Bard, Inc. Small diameter steerable guidewire with adjustable tip
US4793348A (en) 1986-11-15 1988-12-27 Palmaz Julio C Balloon expandable vena cava filter to prevent migration of lower extremity venous clots into the pulmonary circulation
US4893623A (en) 1986-12-09 1990-01-16 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US4762128A (en) 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US4813434A (en) 1987-02-17 1989-03-21 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4815478A (en) 1987-02-17 1989-03-28 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4757827A (en) 1987-02-17 1988-07-19 Versaflex Delivery Systems Inc. Steerable guidewire with deflectable tip
WO1988006026A3 (en) 1987-02-17 1988-10-06 Alberto Arpesani Internal prosthesis for the substitution of a part of the human body particularly in vascular surgery
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US5041126A (en) 1987-03-13 1991-08-20 Cook Incorporated Endovascular stent and delivery system
JPH0351430B2 (en) 1987-03-25 1991-08-06 Terumo Corp
US4872874A (en) 1987-05-29 1989-10-10 Taheri Syde A Method and apparatus for transarterial aortic graft insertion and implantation
US4969458A (en) 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
JPH088933B2 (en) 1987-07-10 1996-01-31 日本ゼオン株式会社 Catheter - Tel
JPH0344541B2 (en) 1987-08-13 1991-07-08 Terumo Corp
WO1989003197A1 (en) 1987-10-08 1989-04-20 Terumo Kabushiki Kaisha Instrument and apparatus for securing inner diameter of lumen of tubular organ
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5273042A (en) 1987-10-28 1993-12-28 Medical Parameters, Inc. Guidewire advancement method
US4820298A (en) 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
US4872455A (en) 1987-11-25 1989-10-10 Corvita Corporation Anastomosis trimming device and method of using the same
US5266073A (en) 1987-12-08 1993-11-30 Wall W Henry Angioplasty stent
US5192307A (en) 1987-12-08 1993-03-09 Wall W Henry Angioplasty stent
FR2627982B1 (en) 1988-03-02 1995-01-27 Artemis Tubular endoprosthesis for anatomical conduits, and instrument and method for its implementation
US4830003A (en) 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
US4886065A (en) 1988-08-08 1989-12-12 California Institute Of Technology In vivo electrode implanting system
US5092877A (en) 1988-09-01 1992-03-03 Corvita Corporation Radially expandable endoprosthesis
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US4990151A (en) 1988-09-28 1991-02-05 Medinvent S.A. Device for transluminal implantation or extraction
US4898577A (en) 1988-09-28 1990-02-06 Advanced Cardiovascular Systems, Inc. Guiding cathether with controllable distal tip
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US4913701A (en) 1988-10-06 1990-04-03 Numed, Inc. Balloon catheter and method of manufacturing the same
US5019085A (en) 1988-10-25 1991-05-28 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
US4913141A (en) 1988-10-25 1990-04-03 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US5480382A (en) 1989-01-09 1996-01-02 Pilot Cardiovascular Systems, Inc. Steerable medical device
US5078726A (en) 1989-02-01 1992-01-07 Kreamer Jeffry W Graft stent and method of repairing blood vessels
US5163958A (en) 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
US5235446A (en) 1989-02-09 1993-08-10 Sharp Kabushiki Kaisha Projection type liquid crystal display apparatus with pixels of one panel
US4994071A (en) 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5116318A (en) 1989-06-06 1992-05-26 Cordis Corporation Dilatation balloon within an elastic sleeve
US5037392A (en) 1989-06-06 1991-08-06 Cordis Corporation Stent-implanting balloon assembly
DE3918736C2 (en) 1989-06-08 1998-05-14 Christian Dr Vallbracht Plastic coated metal mesh stents
US5015253A (en) 1989-06-15 1991-05-14 Cordis Corporation Non-woven endoprosthesis
US5207695A (en) 1989-06-19 1993-05-04 Trout Iii Hugh H Aortic graft, implantation device, and method for repairing aortic aneurysm
US5084065A (en) 1989-07-10 1992-01-28 Corvita Corporation Reinforced graft assembly
US5292331A (en) 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
CA2026604A1 (en) 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
US5035706A (en) 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
GB8927282D0 (en) 1989-12-01 1990-01-31 Univ Strathclyde Vascular surgical devices
US5108416A (en) 1990-02-13 1992-04-28 C. R. Bard, Inc. Stent introducer system
JPH067843B2 (en) 1990-02-15 1994-02-02 寛治 井上 Frame with artificial blood vessels
US5057092A (en) 1990-04-04 1991-10-15 Webster Wilton W Jr Braided catheter with low modulus warp
EP0525110B1 (en) 1990-04-19 1997-06-04 InStent Inc. Device for the treatment of constricted vessels
US5344426A (en) 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5242399A (en) 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5158548A (en) 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5078720A (en) 1990-05-02 1992-01-07 American Medical Systems, Inc. Stent placement instrument and method
US5078736A (en) 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5095911A (en) 1990-05-18 1992-03-17 Cardiovascular Imaging Systems, Inc. Guidewire with imaging capability
US5085635A (en) 1990-05-18 1992-02-04 Cragg Andrew H Valved-tip angiographic catheter
US5578071A (en) 1990-06-11 1996-11-26 Parodi; Juan C. Aortic graft
EP0461791B1 (en) * 1990-06-11 1997-01-02 Hector D. Barone Aortic graft and apparatus for repairing an abdominal aortic aneurysm
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5236447A (en) 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5433200A (en) 1990-07-09 1995-07-18 Lake Region Manufacturing, Inc. Low profile, coated, steerable guide wire
US5098440A (en) 1990-08-14 1992-03-24 Cordis Corporation Object retrieval method and apparatus
US5122154A (en) * 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5178630A (en) 1990-08-28 1993-01-12 Meadox Medicals, Inc. Ravel-resistant, self-supporting woven graft
US5344425A (en) 1990-09-14 1994-09-06 Interface Biomedical Laboratories, Corp. Intravascular stent and method for conditioning the surfaces thereof
CA2052354C (en) 1990-10-03 1999-08-17 Hector Daniel Barone Balloon device for implanting an aortic intraluminal prosthesis for repairing aneurysms
ES2085435T3 (en) 1990-10-09 1996-06-01 Cook Inc Percutaneous dilator device.
US5507771A (en) 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
DE9014230U1 (en) 1990-10-13 1991-11-21 Angiomed Ag, 7500 Karlsruhe, De
US5354309A (en) 1991-10-11 1994-10-11 Angiomed Ag Apparatus for widening a stenosis in a body cavity
CA2079944A1 (en) 1991-10-11 1993-04-12 Wolfram Schnepp-Pesch Apparatus for widening a stenosis in a body cavity
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
EP0506918B1 (en) 1990-10-18 1996-01-03 SONG, Ho Young Self-expanding endovascular stent
DE69124395T2 (en) 1990-11-09 1997-08-28 Boston Scient Corp Guidewire for crossing occlusions in blood vessels
US5161547A (en) 1990-11-28 1992-11-10 Numed, Inc. Method of forming an intravascular radially expandable stent
DE69122369D1 (en) 1990-12-29 1996-10-31 Mudr Milan Krajicek Csc Three-layer vascular prosthesis
US5356423A (en) 1991-01-04 1994-10-18 American Medical Systems, Inc. Resectable self-expanding stent
CA2060067A1 (en) 1991-01-28 1992-07-29 Lilip Lau Stent delivery system
US5135536A (en) 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
CA2065634C (en) 1991-04-11 1997-06-03 Alec A. Piplani Endovascular graft having bifurcation and apparatus and method for deploying the same
US5628783A (en) 1991-04-11 1997-05-13 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system and method
US5190058A (en) 1991-05-22 1993-03-02 Medtronic, Inc. Method of using a temporary stent catheter
US5304200A (en) 1991-05-29 1994-04-19 Cordis Corporation Welded radially expandable endoprosthesis and the like
US5147370A (en) 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits
US5464408A (en) 1991-06-14 1995-11-07 Duc; Jerome Transluminal implantation or extraction device
WO1992022254A1 (en) 1991-06-17 1992-12-23 Wilson-Cook Medical, Inc. Endoscopic extraction device having composite wire construction
FR2678508B1 (en) * 1991-07-04 1998-01-30 Celsa Lg Device for reinforcing the body vessels.
US5356433A (en) 1991-08-13 1994-10-18 Cordis Corporation Biocompatible metal surfaces
US5183085A (en) 1991-09-27 1993-02-02 Hans Timmermans Method and apparatus for compressing a stent prior to insertion
US5443498A (en) 1991-10-01 1995-08-22 Cook Incorporated Vascular stent and method of making and implanting a vacsular stent
US5314472A (en) 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
US5464450A (en) 1991-10-04 1995-11-07 Scimed Lifesystems Inc. Biodegradable drug delivery vascular stent
US5151105A (en) 1991-10-07 1992-09-29 Kwan Gett Clifford Collapsible vessel sleeve implant
US5290305A (en) * 1991-10-11 1994-03-01 Kanji Inoue Appliance collapsible for insertion into human organs and capable of resilient restoration
EP0536610B1 (en) 1991-10-11 1997-09-03 ANGIOMED GmbH & Co. Medizintechnik KG Stenosis dilatation device
US5282860A (en) 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
EP0539237A1 (en) * 1991-10-25 1993-04-28 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm and method for implanting
US5387235A (en) 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5456713A (en) 1991-10-25 1995-10-10 Cook Incorporated Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting
CA2079417C (en) 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
US5211658A (en) 1991-11-05 1993-05-18 New England Deaconess Hospital Corporation Method and device for performing endovascular repair of aneurysms
ES2085595T3 (en) 1991-11-08 1996-06-01 Meadox Medicals Inc Transluminal endoprosthesis implantation.
US5269757A (en) 1991-12-02 1993-12-14 C. R. Bard, Inc. Catheter with integral steerable guidewire having linear to rotary movement
US5192297A (en) 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
US5336164A (en) 1992-01-06 1994-08-09 The Pennsylvania Research Corporation Intravascular membrane lung apparatus
US5316023A (en) * 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5405377A (en) 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
DE69333482D1 (en) 1992-02-21 2004-05-13 Boston Scient Ltd Catheter for image formation by means of ultrasound
US5282823A (en) 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
EP0566245B1 (en) 1992-03-19 1999-10-06 Medtronic, Inc. Intraluminal stent
DE69318614T2 (en) 1992-03-25 1998-11-05 Cook Inc Means for widening of blood vessels
US5370683A (en) 1992-03-25 1994-12-06 Cook Incorporated Vascular stent
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
FR2689388B1 (en) 1992-04-07 1999-07-16 Celsa Lg blood filter perfects possibly resorbable.
US5246452A (en) 1992-04-13 1993-09-21 Impra, Inc. Vascular graft with removable sheath
US5354308A (en) 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5366504A (en) 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5383928A (en) 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
EP0575719A1 (en) 1992-06-20 1993-12-29 Angiomed Ag Apparatus for the correction of the position of a stent
FR2693366B1 (en) 1992-07-09 1994-09-02 Celsa Lg Device forming a vascular prosthesis used for the treatment of aneurysms.
US5272971A (en) 1992-08-14 1993-12-28 Electro Sprayer Systems, Inc. Ink temperature control system for waterless lithographic printing
US5382261A (en) 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5409019A (en) 1992-10-30 1995-04-25 Wilk; Peter J. Coronary artery by-pass method
US5429144A (en) 1992-10-30 1995-07-04 Wilk; Peter J. Coronary artery by-pass method
EP0596145B1 (en) 1992-10-31 1996-05-08 Schneider (Europe) Ag Disposition for implanting a self-expanding endoprothesis
US5370618A (en) 1992-11-20 1994-12-06 World Medical Manufacturing Corporation Pulmonary artery polyurethane balloon catheter
US5383926A (en) 1992-11-23 1995-01-24 Children's Medical Center Corporation Re-expandable endoprosthesis
BE1006440A3 (en) * 1992-12-21 1994-08-30 Dereume Jean Pierre Georges Em Luminal endoprosthesis AND METHOD OF PREPARATION.
US5707386A (en) * 1993-02-04 1998-01-13 Angiomed Gmbh & Company Medizintechnik Kg Stent and method of making a stent
US5365943A (en) 1993-03-12 1994-11-22 C. R. Bard, Inc. Anatomically matched steerable PTCA guidewire
DE69419804D1 (en) * 1993-04-22 1999-09-09 Bard Inc C R Fixed vascular prosthesis
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
US5464449A (en) 1993-07-08 1995-11-07 Thomas J. Fogarty Internal graft prosthesis and delivery system
US5392778A (en) 1993-08-11 1995-02-28 B. Braun Medical, Inc. Guidewire torque device for single-hand manipulation
US5735892A (en) * 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
WO1995008966A1 (en) * 1993-09-30 1995-04-06 White Geoffrey H Intraluminal graft
WO1995009586A1 (en) * 1993-10-01 1995-04-13 Emory University Self-expanding intraluminal composite prosthesis
US5632772A (en) 1993-10-21 1997-05-27 Corvita Corporation Expandable supportive branched endoluminal grafts
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5389106A (en) 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
DE69419877T2 (en) 1993-11-04 1999-12-16 Bard Inc C R Fixed vascular prosthesis
WO1995013033A1 (en) 1993-11-08 1995-05-18 Lazarus Harrison M Intraluminal vascular graft and method
US5443497A (en) 1993-11-22 1995-08-22 The Johns Hopkins University Percutaneous prosthetic by-pass graft and method of use
US5342371A (en) 1993-11-24 1994-08-30 Cook Incorporated Helical surgical snare
US5607444A (en) 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
US5487385A (en) 1993-12-03 1996-01-30 Avitall; Boaz Atrial mapping and ablation catheter system
DE9319267U1 (en) * 1993-12-15 1994-02-24 Vorwerk Dierk Dr Aortenendoprothese
FR2714816B1 (en) 1994-01-12 1996-02-16 Braun Celsa Sa implantable vascular prosthesis in a living organism for the treatment of aneurysms.
US5403341A (en) 1994-01-24 1995-04-04 Solar; Ronald J. Parallel flow endovascular stent and deployment apparatus therefore
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US6165213A (en) 1994-02-09 2000-12-26 Boston Scientific Technology, Inc. System and method for assembling an endoluminal prosthesis
US5733303A (en) 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5415664A (en) 1994-03-30 1995-05-16 Corvita Corporation Method and apparatus for introducing a stent or a stent-graft
US5478349A (en) 1994-04-28 1995-12-26 Boston Scientific Corporation Placement of endoprostheses and stents
US5496344A (en) 1994-05-03 1996-03-05 Kanesaka; Nozomu Dilator for a ballon catheter
EP0686379B2 (en) 1994-06-08 2007-03-28 Cardiovascular Concepts, Inc. Vascular graft
US5683451A (en) 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
US5824041A (en) 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US5575817A (en) 1994-08-19 1996-11-19 Martin; Eric C. Aorto femoral bifurcation graft and method of implantation
US5609605A (en) 1994-08-25 1997-03-11 Ethicon, Inc. Combination arterial stent
US5634475A (en) 1994-09-01 1997-06-03 Datascope Investment Corp. Guidewire delivery assist device and system
US5653743A (en) 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
US5562727A (en) 1994-10-07 1996-10-08 Aeroquip Corporation Intraluminal graft and method for insertion thereof
US5507769A (en) * 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
US5522882A (en) 1994-10-21 1996-06-04 Impra, Inc. Method and apparatus for balloon expandable stent-graft delivery
US5613980A (en) 1994-12-22 1997-03-25 Chauhan; Tusharsindhu C. Bifurcated catheter system and method
NL9500094A (en) 1995-01-19 1996-09-02 Industrial Res Bv Y-shaped stent and method of the locations thereof.
JPH08299287A (en) 1995-01-30 1996-11-19 Cardiovascular Concepts Inc Lesion measurement catheter and use of the same
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US5709713A (en) 1995-03-31 1998-01-20 Cardiovascular Concepts, Inc. Radially expansible vascular prosthesis having reversible and other locking structures
US5752522A (en) 1995-05-04 1998-05-19 Cardiovascular Concepts, Inc. Lesion diameter measurement catheter and method
US5562678A (en) 1995-06-02 1996-10-08 Cook Pacemaker Corporation Needle's eye snare
US5693029A (en) 1995-07-10 1997-12-02 World Medical Manufacturing Corporation Pro-cell intra-cavity therapeutic agent delivery device
US6099558A (en) 1995-10-10 2000-08-08 Edwards Lifesciences Corp. Intraluminal grafting of a bifuricated artery
US5591195A (en) 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US5824042A (en) 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
US5788668A (en) 1996-05-09 1998-08-04 World Medical Manufacturing Corporation Vibrational enhancement of intravenous gas exchanging devices and long-term intravenous devices
US5709701A (en) 1996-05-30 1998-01-20 Parodi; Juan C. Apparatus for implanting a prothesis within a body passageway
US5617878A (en) 1996-05-31 1997-04-08 Taheri; Syde A. Stent and method for treatment of aortic occlusive disease
US5676697A (en) 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm
US5968068A (en) 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
US5713913A (en) 1996-11-12 1998-02-03 Interventional Technologies Inc. Device and method for transecting a coronary artery
US6551350B1 (en) * 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US5851210A (en) 1997-03-21 1998-12-22 Torossian; Richard Stent delivery system and method
US5824055A (en) 1997-03-25 1998-10-20 Endotex Interventional Systems, Inc. Stent graft delivery system and methods of use
US6554798B1 (en) 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8052742B2 (en) 1993-09-30 2011-11-08 Gore Enterprise Holding, Inc. Intraluminal graft
US6689158B1 (en) 1993-09-30 2004-02-10 Endogad Research Pty Limited Intraluminal graft
US7901449B2 (en) 1994-02-09 2011-03-08 Scimed Life Systems, Inc. Bifurcated endoluminal prosthesis
US7780720B2 (en) 1994-02-09 2010-08-24 Scimed Life Systems, Inc. Bifurcated endoluminal prosthesis
US6001123A (en) 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
US6017362A (en) 1994-04-01 2000-01-25 Gore Enterprise Holdings, Inc. Folding self-expandable intravascular stent
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US8317854B1 (en) 1994-06-08 2012-11-27 Medtronic Vascular, Inc. Apparatus and methods for endoluminal graft placement
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US5873906A (en) 1994-09-08 1999-02-23 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5919225A (en) 1994-09-08 1999-07-06 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US6613072B2 (en) 1994-09-08 2003-09-02 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US8728147B2 (en) 1995-03-01 2014-05-20 Boston Scientific Limited Longitudinally flexible expandable stent
US8449597B2 (en) 1995-03-01 2013-05-28 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US6663652B2 (en) 1997-03-06 2003-12-16 John M. K. Daniel Distal protection device and method
US6371969B1 (en) 1997-05-08 2002-04-16 Scimed Life Systems, Inc. Distal protection device and method
US6478813B1 (en) 1997-08-01 2002-11-12 Peter T. Keith Method for joining grafts in a common body passageway
US8486104B2 (en) 1997-09-30 2013-07-16 Stryker Corporation Mechanical clot treatment device with distal filter
US6482227B1 (en) 1998-03-30 2002-11-19 Cordis Corporation Stent graft having improved attachment within a body vessel
US6340368B1 (en) 1998-10-23 2002-01-22 Medtronic Inc. Implantable device with radiopaque ends
US8876880B2 (en) 1999-02-01 2014-11-04 Board Of Regents, The University Of Texas System Plain woven stents
US8414635B2 (en) 1999-02-01 2013-04-09 Idev Technologies, Inc. Plain woven stents
US8974516B2 (en) 1999-02-01 2015-03-10 Board Of Regents, The University Of Texas System Plain woven stents
US6361557B1 (en) 1999-02-05 2002-03-26 Medtronic Ave, Inc. Staplebutton radiopaque marker
USRE43902E1 (en) 1999-07-30 2013-01-01 Incept, Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US6663667B2 (en) 1999-12-29 2003-12-16 Edwards Lifesciences Corporation Towel graft means for enhancing tissue ingrowth in vascular grafts
US6626938B1 (en) 2000-11-16 2003-09-30 Cordis Corporation Stent graft having a pleated graft member
US6663651B2 (en) 2001-01-16 2003-12-16 Incept Llc Systems and methods for vascular filter retrieval
US8632579B2 (en) 2001-02-26 2014-01-21 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US9114038B2 (en) 2002-02-28 2015-08-25 Back Bay Medical Inc. Method of delivering a stent
US8641748B2 (en) 2002-02-28 2014-02-04 Bay Street Medical, Inc. Guidewire loaded stent for delivery through a catheter
US8696728B2 (en) 2002-02-28 2014-04-15 Bay Street Medical, Inc. Guidewire loaded stent for delivery through a catheter
US7762403B2 (en) 2003-02-24 2010-07-27 Boston Scientific Scimed, Inc. Flexible tube for cartridge filter
US8435284B2 (en) 2005-12-14 2013-05-07 Boston Scientific Scimed, Inc. Telescoping bifurcated stent
US8343211B2 (en) 2005-12-14 2013-01-01 Boston Scientific Scimed, Inc. Connectors for bifurcated stent
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US8966733B2 (en) 2006-10-22 2015-03-03 Idev Technologies, Inc. Secured strand end devices
US9585776B2 (en) 2006-10-22 2017-03-07 Idev Technologies, Inc. Secured strand end devices
US8419788B2 (en) 2006-10-22 2013-04-16 Idev Technologies, Inc. Secured strand end devices
US9149374B2 (en) 2006-10-22 2015-10-06 Idev Technologies, Inc. Methods for manufacturing secured strand end devices
US9408729B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US9408730B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US8739382B2 (en) 2006-10-22 2014-06-03 Idev Technologies, Inc. Secured strand end devices

Also Published As

Publication number Publication date Type
US8317854B1 (en) 2012-11-27 grant
DE69518435D1 (en) 2000-09-21 grant
EP1010406A3 (en) 2000-08-16 application
DE69518435T3 (en) 2004-07-22 grant
JPH0852165A (en) 1996-02-27 application
EP0792627A3 (en) 1997-11-12 application
EP0792627A2 (en) 1997-09-03 application
DE69533993T2 (en) 2006-04-27 grant
EP0686379B1 (en) 2000-08-09 grant
EP1010406B1 (en) 2005-02-02 grant
EP1010406A2 (en) 2000-06-21 application
US8206427B1 (en) 2012-06-26 grant
DE69518275T2 (en) 2001-03-15 grant
EP0792627B2 (en) 2003-10-29 grant
EP0686379A3 (en) 1996-03-06 application
EP0686379A2 (en) 1995-12-13 application
DE69518275T3 (en) 2007-10-18 grant
DE69518435T2 (en) 2001-03-29 grant
EP0792627B1 (en) 2000-08-16 grant
DE69533993D1 (en) 2005-03-10 grant
DE29522101U1 (en) 1999-12-09 grant
DE69518275D1 (en) 2000-09-14 grant
US20170056156A1 (en) 2017-03-02 application

Similar Documents

Publication Publication Date Title
US5755773A (en) Endoluminal prosthetic bifurcation shunt
US6312459B1 (en) Stent design for use in small vessels
US6673103B1 (en) Mesh and stent for increased flexibility
US6540774B1 (en) Stent design with end rings having enhanced strength and radiopacity
US6066169A (en) Expandable stent having articulated connecting rods
US6187036B1 (en) Endoluminal vascular prosthesis
US6322585B1 (en) Coiled-sheet stent-graft with slidable exo-skeleton
US6860900B2 (en) Stent and stent-graft for treating branched vessels
US6911040B2 (en) Covered segmented stent
US6290720B1 (en) Stretchable anti-buckling coiled-sheet stent
US6048360A (en) Methods of making and using coiled sheet graft for single and bifurcated lumens
US6790222B2 (en) Endovascular graft system
US5782907A (en) Involuted spring stent and graft assembly and method of use
US6245100B1 (en) Method for making a self-expanding stent-graft
US5749921A (en) Apparatus and methods for compression of endoluminal prostheses
US5861025A (en) Tubular expandable member for an intraluminal endoprosthesis, intraluminal endoprosthesis, and method of production
US6315791B1 (en) Self-expanding prothesis
US6387122B1 (en) Intraluminal stent and graft
US6296661B1 (en) Self-expanding stent-graft
US6890350B1 (en) Combination self-expandable, balloon-expandable endoluminal device
US20020040236A1 (en) Procedures for introducing stents and stent-grafts
US20020173840A1 (en) Bifurcated stent
US6361557B1 (en) Staplebutton radiopaque marker
US20020052644A1 (en) Implantable vascular graft
US20030045923A1 (en) Hybrid balloon expandable/self expanding stent

Legal Events

Date Code Title Description
AK Designated contracting states:

Kind code of ref document: A2

Designated state(s): DE FR

AK Designated contracting states:

Kind code of ref document: A3

Designated state(s): DE FR

17P Request for examination filed

Effective date: 19960808

17Q First examination report

Effective date: 19970131

DX Miscellaneous: (deleted)
AK Designated contracting states:

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 69518275

Country of ref document: DE

Date of ref document: 20000914

ET Fr: translation filed
26 Opposition filed

Opponent name: EDWARDS LIFESCIENCES CORPORATION, LAW DEPARTMENT

Effective date: 20010509

AK Designated contracting states:

Kind code of ref document: B2

Designated state(s): DE FR

27A Maintained as amended

Effective date: 20070328

ET3 Fr: translation filed ** decision concerning opposition
PGFP Postgrant: annual fees paid to national office

Ref country code: DE

Payment date: 20140627

Year of fee payment: 20

PGFP Postgrant: annual fees paid to national office

Ref country code: FR

Payment date: 20140617

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69518275

Country of ref document: DE