EP0683239B1 - Superalliage à base de nickel résistant à l'oxydation - Google Patents

Superalliage à base de nickel résistant à l'oxydation Download PDF

Info

Publication number
EP0683239B1
EP0683239B1 EP94303644A EP94303644A EP0683239B1 EP 0683239 B1 EP0683239 B1 EP 0683239B1 EP 94303644 A EP94303644 A EP 94303644A EP 94303644 A EP94303644 A EP 94303644A EP 0683239 B1 EP0683239 B1 EP 0683239B1
Authority
EP
European Patent Office
Prior art keywords
weight percent
superalloy
nickel
weight
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94303644A
Other languages
German (de)
English (en)
Other versions
EP0683239A1 (fr
Inventor
William J. Gostic
Paul P. Norris Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to EP94303644A priority Critical patent/EP0683239B1/fr
Priority to DE1994616110 priority patent/DE69416110T2/de
Priority to JP12211394A priority patent/JP3474634B2/ja
Publication of EP0683239A1 publication Critical patent/EP0683239A1/fr
Application granted granted Critical
Publication of EP0683239B1 publication Critical patent/EP0683239B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Definitions

  • the present invention relates to nickel superalloys and methods for making nickel superalloys having high oxidation resistance and containing controlled amounts of boron and zirconium.
  • Such nickel superalloys are suitable for use in articles requiring good strength and superior oxidation resistance at high temperatures, including jet engine combustors, nozzles, and low turbine components.
  • a variety of nickel based superalloys are known in the art.
  • Superalloys are those alloys which maintain high strength at high temperatures. Examples of nickel based superalloys can be found in U.S. Patent Nos. 3,322,534 (Shaw et al.), 3,526,499 (Quigg et al.), 3,653,987 (Boesch), 3,667,938 (Boesch), 3,832,167 (Shaw et al.), and 4,719,080 (Duhl et al.).
  • nickel based superalloys include B1900+Hf and Mar-M 247, the nominal compositions of which are, in weight percent, B-l900+HF Mar-M-247 Nickel Balance Balance Chromium 8.0 8.4 Cobalt 10.0 10.0 Carbon 0.11 0.15 Titanium 1.0 1.1 Aluminum 6.0 5.5 Molybdenum 6.0 0.65 Tungsten - 10.0 Boron 0.015 0.015 Hafnium 1.15 1.4 Tantalum 4.25 3.1 Zirconium 0.08 0.055 Due to their ability to maintain good mechanical strength at high temperatures, these alloys are especially useful as a material for making components of jet engines.
  • Boron is typically added in the range of 0.010 to 0.020 weight percent to conventionally cast superalloys for the enhancement of grain boundary strength and ductility.
  • Zirconium is typically added in the range of 0.03 to 0.13 weight percent for further grain boundary property enhancement.
  • Yttrium can be added to nickel superalloys to enhance their oxidation resistance.
  • US-A-3526499 discloses a nickel base superalloy with 0.01-0. 5 weight percent zirconium and 0.005-0.200 weight percent boron.
  • JP-A-6041664 discloses a heat-resistant nickel superalloy with a maximum of 0.5 weight percent zirconium and a maximum of 0.01 weight percent boron.
  • SU-A-360389 discloses a nickel cathode alloy containing 0.05-0.5 weight percent zirconium and 0.005-0.2 weight percent boron.
  • the nickel superalloys of the prior art which demonstrate excellent oxidation resistance at high temperature are too brittle.
  • nickel superalloys which have excellent oxidation resistance at high temperatures while at the same time possessing good ductility.
  • turbine components in jet engines which have good strength and excellent oxidation resistance within the temperature range of 760°C (1400°F) to 1038°C (1900°F).
  • a polycrystalline nickel-based superalloy comprising 0.25 to 0.40 weight percent zirconium, 0.004 to 0.010 weight percent boron, 5.0 to 8.0 weight percent aluminium, 5.0 to 12.0 weight percent chromium, 0.75 to 2.0 weight percent hafnium, 0 to 10.0 weight percent cobalt; and optionally further comprising the following elements in the following weight percent ranges: 0 to 12 weight percent tungsten, 0 to 12 weight percent molybdenum, 0 to 12 weight percent tantalum, 0 to 2 weight percent titanium, 0 to 2 weight percent niobium, and 0.06 to 0.20 weight percent carbon; and optionally comprising the following additive materials containing from zero up to the maximum percent by weight indicated amounts: manganese (0.20), phosphorus (0.015) sulfur (0.015), silicon (0.10), iron (0.25), bismuth (0.00005, 0.5ppm), lead (0.0002, 2ppm), selenium (0.0001, lppm
  • the alloys of the present invention have demonstrated excellent oxidation resistance up to 1093°C (2000°F), and in preferable instances up to 1204°C (2200°F).
  • the nickel superalloys of the present invention have demonstrated good strength within the temperature range of 760°C (1400°F) to 1038°C (1900°F).
  • the excellent oxidation resistance of the superalloys of the present invention make them suitable for use in high temperature applications such as in a jet engine combustor, nozzle and low turbine components.
  • the superalloys of the present invention contain between 5.0 and 8.0 weight percent aluminum in order to form an effective barrier layer which impedes oxidation of the superalloy. Having zirconium present in the superalloy promotes formation of the alumina barrier layer.
  • Burner rig oxidation testing revealed the detrimental effect of boron on high temperature (1093°C-1204°C (2000-2200°F)) oxidation resistance. Removing boron from the nickel superalloy solved the oxidation problem, but the resulting alloy had unacceptable ductility. Adding low levels of boron (0.002 to 0.010 weight percent) provided acceptable oxidation behavior, but ductility was marginal at best. The addition of yttrium also presented embrittlement problems due to the formation of surface oxide particles during casting, which result from the reaction between yttrium and the casting ceramics. Through further experimentation, it was discovered that the combination of zirconium and boron at the levels designated in this specification can greatly enhance the oxidation resistance of conventionally cast nickel superalloys, while maintaining grain boundary properties and avoiding inclusion formation during casting.
  • the nickel superalloy of the present invention includes and has been found to work when elements are added in the following weight percentages: Element Percentage Chromium 5.0 - 12.0 Hafnium 0.75 - 2.0 Cobalt O - 10.0
  • alloy elements can be added for alloy strengthening: Element Percentage Tungsten 0 - 12 Molybdenum 0 - 12 Tantalum 0 - 12 Titanium 0 - 2 Columbium (Niobium) 0 - 2 Carbon 0.06 - 0.20
  • the elements manganese, phosphorus, sulfur, silicon, iron, bismuth, lead, selenium, tellurium, and thallium are preferably controlled to low levels in order to prevent degradation to the properties of the superalloy.
  • the superalloy is comprised of the following elements given in weight percentages: Element Percentage min max Carbon 0.08 0.13 Chromium 9.50 10.50 Molybdenum 1.75 2.25 Tungsten 3.00 3.40 Aluminum 6.50 6.70 Tantalum 3.90 4.30 Hafnium 1.05 1.25 Boron 0.004 0.010 zirconium 0.25 0.35 Nickel remainder
  • the superalloy of the present invention may contain additive materials, such as the following, up to the indicated percent by weight maximum amounts: manganese (0.20), phosphorus (0.015), sulfur (0.015), silicon (0.10), iron (0.25), bismuth (0.00005, 0.5 ppm), lead (0.0002, 2 ppm), selenium (0.0001, 1 ppm), tellurium (0.00005, 0.5 ppm), and thallium (0.00005, 0.5 ppm).
  • additive materials such as the following, up to the indicated percent by weight maximum amounts: manganese (0.20), phosphorus (0.015), sulfur (0.015), silicon (0.10), iron (0.25), bismuth (0.00005, 0.5 ppm), lead (0.0002, 2 ppm), selenium (0.0001, 1 ppm), tellurium (0.00005, 0.5 ppm), and thallium (0.00005, 0.5 ppm).
  • articles are fabricated by taking an ingot of the requisite composition, which has been cast from a single furnace charge under vacuum, and vacuum remelting and recasting using investment casting procedures that are conventionally used for nickel based alloys.
  • Conventional investment casting procedures for superalloys, procedures for forming ingots of superalloys, and other general information regarding superalloys can be found in Superalloys II , Sims et al., eds., John Wiley & Sons, New York, 1987.
  • alloying elements in their commercially pure form are added to the master heat during ingot formation.
  • the alloying elements contain less than maximum ("max") specified amounts of the following additive materials set forth above: Mn, P, S, Si, Fe, Ti, Cb (Nb), Bi, Pb, Se, Te, and T1.
  • a nickel superalloy was made having the composition shown in Table I.
  • the invention showed superior ductility compared to a compositionally similar nickel alloy whose boron and zirconium content falls outside the critical range defined in the present invention as demonstrated below in Table II.
  • superalloys of the present invention have a mean tensile elongation of three ASTM E 8 tests at 649°C (1200°F) exceeding 3.0%. In a preferred embodiment, mean tensile elongation of three ASTM E 8 tests at 649°F (1200°F) exceeds 5.0%.
  • Burner rig oxidation testing demonstrated that the alloy of the present invention had superior oxidation resistance compared to the conventional nickel superalloys Bl900+HF and Mar-M-247 (see Table I and Figures 1 and 2). After 70 cycles of 1204°C (2200°F) burner rig oxidation, the alloy of this invention lost only about 2% of its weight, as compared to 55% for B1900+HF and 75% for Mar-M-247.
  • a liquid fuel burner is controlled by fuel pressure to maintain the temperature of interest.
  • the specimens are typically cylindrical rods (12mm (0.47") diameter x 82.5mm (3.25") long in this case). Individual specimens can be tested. Multiple specimens are tested in a rotating spindle. Specimen weight and diameter are measured at intervals during the test to monitor the loss of material via oxide spallation. Oxidation rate is proportional to weight loss (greater weight corresponds to greater oxidation rate).
  • a second method of testing oxidation resistance can also be used to characterize the nickel superalloys of the present invention.
  • coupons of a superalloy are suspended from a wire and placed into a furnace maintained at 1149°C +/- 14°C (2100 0 F +/- 25 0 F), while exposed to ambient air.
  • alloy samples are 12.7 x 19mm +/- 3mm (0.50 X 0.75 in. +/-0.12 in.) by 1.02mm +/- 0.25mm (0.040 in. +/- 0.010-in.). Prior to the initial insertion into the furnace, corners and edges on the sample are rounded. Samples are heated in cycles of 24 +/- 4 hours.
  • a nickel superalloy component of the present invention is heated to 1079 ⁇ 14°C (1975 ⁇ 25°F) in air for 4 hours and air cooled at a minimum of 22°C/min (40°F/min). The component is then heated to 871 ⁇ 14°C (1600 ⁇ 25°F) for 16 hours and then air cooled at a minimum of 22°C/min (40°F/min). This heat treatment serves to improve the tensile and creep properties of the superalloy component.
  • the polycrystalline nickel superalloy of the present invention is equiaxed; in another embodiment, the polycrystalline nickel superalloy of the present invention is columnar.
  • the nickel superalloy of the present invention which is shown in Table I has been successfully used as a component of a float wall combustor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (15)

  1. Super alliage polycristallin à base de nickel, comprenant de 0,25 à 0,40 % en poids de zirconium, de 0,004 à 0,010 % en poids de bore, de 5,0 à 8,0 % en poids d'aluminium, de 5,0 à 12,0 % en poids de chrome, de 0,75 à 2,0 % en poids de hafnium, de 0 à 10,0 % en poids de cobalt ; et contenant éventuellement en outre les éléments suivants, en les pourcentages pondéraux suivants : de 0 à 12 % en poids de tungstène, de 0 à 12 % en poids de molybdène, de 0 à 12 % en poids de tantale, de 0 à 2 % en poids de titane, de 0 à 2 % en poids de niobium et de 0,06 à 0,20 % en poids de carbone ; et comprenant optionnellement les matériaux additifs ci-après, en des quantités comprises entre 0 et le pourcentage pondéral maximal indiqué : manganèse (0,20), phosphore (0,015), soufre (0,015), silicium (0,10), fer (0,25), bismuth (0,00005, 0,5 ppm), plomb (0,0002, 2 ppm), sélénium (0,0001, 1 ppm), tellure (0,00005, 0,5 ppm) et thallium (0,00005, 0,5 ppm) ; le reste du super alliage étant constitué de nickel.
  2. Alliage selon la revendication 1, dans lequel les grains sont équiaxes.
  3. Alliage selon la revendication 1, dans lequel les grains sont colonnaires.
  4. Alliage selon la revendication 1, 2 ou 3, dans lequel, après exposition à des conditions sévères d'oxydation, une couche d'alumine se forme sur la surface de l'alliage, ladite couche étant capable de réduire la vitesse d'oxydation dudit super alliage.
  5. Alliage selon l'une quelconque des revendications précédentes, dans lequel le manganèse, le phosphore, le soufre, le silicium, le fer, le bismuth, le plomb, le sélénium, le tellure et le thallium sont présents en des quantités suffisamment petites pour empêcher une diminution exagérée de la ductilité dudit super alliage, telle que mesurée par l'allongement à la traction dudit super alliage.
  6. Alliage selon l'une quelconque des revendications précédentes, dans lequel ledit alliage contient 0,007 % en poids de bore, ou moins.
  7. Alliage selon l'une quelconque des revendications précédentes, comprenant les éléments en les pourcentages pondéraux suivants : Elément Pourcentage min max Carbone 0,08 0,13 Chrome 9,50 10,50 Molybdène 1,75 2,25 Tungstène 3,00 3,40 Aluminium 6,50 6,70 Tantale 3,90 4,30 Hafnium 1,05 1,25 Bore 0,004 0,010 Zirconium 0,25 0,35 Nickel le reste.
  8. Super alliage selon l'une quelconque des revendications précédentes, dans lequel l'allongement moyen à la traction de trois essais ASTM E 8 à 649°C (1200°F) dépasse 3,0 %, et la perte de poids résultant d'un essai d'une éprouvette dudit super alliage ayant des dimensions de 12,7 x 19 mm +/- 3 mm (0,50 x 0,75 in. +/- 0,12 in.) sur 1,02 mm +/- 0,25 mm (0,040 in. +/- 0,010 in.) à 1149°C (2100°F) dans des conditions cycliques de 24 +/- 4 heures dans l'air ambiant pendant 300 heures, ne dépasse pas 10 % du poids initial de l'éprouvette.
  9. Super alliage selon l'une quelconque des revendications précédentes, dans lequel l'allongement moyen a la traction de trois essais ASTM E 8 à 649°C (1200°F) dépense 5,0 %, et la perte de poids résultant d'un essai d'une éprouvette dudit super alliage ayant des dimensions de 12,7 x 19 mm +/- 3 mm (0,50 x 0,75 in. +/- 0,12 in.) sur 1,02 mm +/- 0,25 mm (0,040 in. +/- 0,010 in.) à 1149°C (2100°F) dans des conditions cycliques de 24 +/- 4 heures dans l'air ambiant pendant 300 heures, ne dépasse pas 5,0 % du poids initial de l'éprouvette.
  10. Composant de moteur à réaction, comprenant le super alliage de nickel selon l'une quelconque des revendications précédentes.
  11. Composant selon la revendication 10, choisi dans le groupe comprenant les composants de la chambre de combustion, des tuyères et des turbines basses.
  12. Procédé de fabrication d'un super alliage polycristallin en nickel, ayant une grande résistance à l'oxydation, qui comprend l'étape consistant à incorporer de 0,25 à 0,40 % en poids de zirconium, de 0,004 à 0,010 % en poids de bore, de 5,0 à 8,0 % en poids d'aluminium, de 5,0 à 12,0 % en poids de chrome, de 0,75 à 2,0 % en poids de hafnium, de 0 à 10,0 % en poids de cobalt ; et contenant éventuellement en outre les éléments suivants, en les pourcentages pondéraux suivants : de 0 à 12 % en poids de tungstène, de 0 à 12 % en poids de molybdène, de 0 à 12 % en poids de tantale, de 0 à 2 % en poids de titane, de 0 à 2 % en poids de niobium et de 0,06 à 0,20 % en poids de carbone ; et comprenant optionnellement les matériaux additifs ci-après, en des quantités comprises entre 0 et le pourcentage pondéral maximal indiqué : manganèse (0,20), phosphore (0,015), soufre (0,015), silicium (0,10), fer (0,25), bismuth (0,00005, 0,5 ppm), plomb (0,0002, 2 ppm), sélénium (0,0001, 1 ppm), tellure (0,00005, 0,5 ppm) et thallium (0,00005, 0,5 ppm) ; le reste du super alliage étant constitué de nickel.
  13. Procédé de fabrication de composants de moteurs à réaction, comprenant l'étape consistant à couler un super alliage de nickel, ledit super alliage comprenant de 0,25 à 0,40 % en poids de zirconium, de 0,004 à 0,010 % en poids de bore, de 5,0 à 8,0 % en poids d'aluminium, de 5,0 à 12,0 % en poids de chrome, de 0,75 à 2,0 % en poids de hafnium, de 0 à 10,0 % en poids de cobalt ; et contenant éventuellement en outre les éléments suivants, en les pourcentages pondéraux suivants : de 0 à 12 % en poids de tungstène, de 0 à 12 % en poids de molybdène, de 0 à 12 % en poids de tantale, de 0 à 2 % en poids de titane, de 0 à 2 % en poids de niobium et de 0,06 à 0,20 % en poids de carbone ; et comprenant optionnellement les matériaux additifs ci-après, en des quantités comprises entre 0 et le pourcentage pondéral maximal indiqué : manganèse (0,20), phosphore (0,015), soufre (0,015), silicium (0,10), fer (0,25), bismuth (0,00005, 0,5 ppm), plomb (0,0002, 2 ppm), sélénium (0,0001, 1 ppm), tellure (0,00005, 0,5 ppm) et thallium (0,00005, 0,5 ppm) ; le reste du super alliage étant constitué de nickel.
  14. Procédé selon la revendication 13, dans lequel ledit super alliage a été coulé à partir d'une unique charge de four sous vide.
  15. Procédé selon la revendication 14, dans lequel un lingot dudit super alliage est refondu sous vide, puis est coulé par des techniques de coulée de précision pour alliages de nickel.
EP94303644A 1994-05-20 1994-05-20 Superalliage à base de nickel résistant à l'oxydation Expired - Lifetime EP0683239B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94303644A EP0683239B1 (fr) 1994-05-20 1994-05-20 Superalliage à base de nickel résistant à l'oxydation
DE1994616110 DE69416110T2 (de) 1994-05-20 1994-05-20 Oxidationsbeständige Superlegierung auf Nickelbasis
JP12211394A JP3474634B2 (ja) 1994-05-20 1994-06-03 多結晶質ニッケル超合金及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP94303644A EP0683239B1 (fr) 1994-05-20 1994-05-20 Superalliage à base de nickel résistant à l'oxydation
JP12211394A JP3474634B2 (ja) 1994-05-20 1994-06-03 多結晶質ニッケル超合金及びその製造方法

Publications (2)

Publication Number Publication Date
EP0683239A1 EP0683239A1 (fr) 1995-11-22
EP0683239B1 true EP0683239B1 (fr) 1999-01-20

Family

ID=26137119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94303644A Expired - Lifetime EP0683239B1 (fr) 1994-05-20 1994-05-20 Superalliage à base de nickel résistant à l'oxydation

Country Status (2)

Country Link
EP (1) EP0683239B1 (fr)
JP (1) JP3474634B2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2145968A1 (fr) 2008-07-14 2010-01-20 Siemens Aktiengesellschaft Superalliage renforcé d'amorce de gamme à base de nickel
US8858873B2 (en) * 2012-11-13 2014-10-14 Honeywell International Inc. Nickel-based superalloys for use on turbine blades
US20150247220A1 (en) 2014-02-28 2015-09-03 General Electric Company Article and method for forming article
US10933469B2 (en) 2018-09-10 2021-03-02 Honeywell International Inc. Method of forming an abrasive nickel-based alloy on a turbine blade tip

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526499A (en) * 1967-08-22 1970-09-01 Trw Inc Nickel base alloy having improved stress rupture properties
US3776704A (en) * 1968-03-01 1973-12-04 Int Nickel Co Dispersion-strengthened superalloys
US4082581A (en) * 1973-08-09 1978-04-04 Chrysler Corporation Nickel-base superalloy
US4046560A (en) * 1975-12-30 1977-09-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nickel base alloy
US4719080A (en) * 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
JPH0641664A (ja) * 1992-05-28 1994-02-15 Daido Steel Co Ltd 耐熱弾性機械要素及びその製造方法

Also Published As

Publication number Publication date
JP3474634B2 (ja) 2003-12-08
EP0683239A1 (fr) 1995-11-22
JPH07331365A (ja) 1995-12-19

Similar Documents

Publication Publication Date Title
KR0126120B1 (ko) 터빈 엔진용 단결정 니켈기저 초합금
JP2753148B2 (ja) ニッケル基単結晶超合金
JP5177559B2 (ja) Ni基単結晶超合金
CA1315572C (fr) Materiaux monocristallins a phase stable
CA1090168A (fr) Alliages a base de cobalt resistant a l'oxydation
EP2305845B1 (fr) SUPERALLIAGE MONOCRISTALLIN À BASE DE Ni ET ÉLÉMENT D ALLIAGE L UTILISANT EN TANT QUE BASE
EP1431405B1 (fr) Article revêtu comprenant un alliage à base de nickel
EP1433865A1 (fr) Superalliage à haute résistance à base de nickel et aubes de turbine à gaz
CN111051548B (zh) 可沉淀硬化的钴-镍基高温合金和由其制造的制品
EP1930455A1 (fr) Superalliage a base de nickel ne presentant pas de tendance a l' oxydation
KR20040007212A (ko) 니켈계 초합금 및 그로부터 제조된 터빈 구성요소
CA1301488C (fr) Superalliage a base de nickel monocristal, pour la fabrication de pieces de turbine
EP0074603B1 (fr) Tuyère de turbine à gaz, présentant une excellente résistance à la fatigue thermique
JPH0411614B2 (fr)
US20090308507A1 (en) Ni-BASED COMPOUND SUPERALLOY HAVING EXCELLENT OXIDATION RESISTANCE, METHOD FOR MANUFACTURING THE SAME, AND HEAT-RESISTANT STRUCTURAL MATERIAL
EP0683239B1 (fr) Superalliage à base de nickel résistant à l'oxydation
US11898228B2 (en) Alloy
RU2196185C2 (ru) Сплав на основе никеля и изготовленное из него изделие
JPH06264169A (ja) 高耐熱および耐食性Ni−Cr合金
CN113195758B (zh) 镍类合金的新用途
KR100336803B1 (ko) 우수한 내산화성을 가지는 다결정질 니켈초합금
US20010013383A1 (en) Trinickel aluminide-base heat-resistant alloy
US3718461A (en) Cobalt-base alloys
JPH0741893A (ja) 耐硫酸塩腐食性に優れたNi基合金
US3854941A (en) High temperature alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19960115

17Q First examination report despatched

Effective date: 19960910

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 69416110

Country of ref document: DE

Date of ref document: 19990304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990421

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100525

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130515

Year of fee payment: 20

Ref country code: GB

Payment date: 20130515

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69416110

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69416110

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140521