EP0680511A1 - Acetyl-coa-carboxylase-gene - Google Patents

Acetyl-coa-carboxylase-gene

Info

Publication number
EP0680511A1
EP0680511A1 EP94905669A EP94905669A EP0680511A1 EP 0680511 A1 EP0680511 A1 EP 0680511A1 EP 94905669 A EP94905669 A EP 94905669A EP 94905669 A EP94905669 A EP 94905669A EP 0680511 A1 EP0680511 A1 EP 0680511A1
Authority
EP
European Patent Office
Prior art keywords
dna sequence
plants
acetyl
dna
coa carboxylase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94905669A
Other languages
German (de)
French (fr)
Inventor
Reinhard TÖPFER
Wolfgang Schulte
Jeff Schell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4317260A external-priority patent/DE4317260A1/en
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of EP0680511A1 publication Critical patent/EP0680511A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition

Definitions

  • the invention relates to a DNA sequence which codes for the acetyl-CoA carboxylase, and the alleles and derivatives of this DNA sequence.
  • acetyl-CoA carboxylase (EC 6.4.1.2) is an important key enzyme in the fatty acid metabolism of prokaryotes and eukaryotes. In a two-step reaction, it catalyzes the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA (AW Alberts and PR Vagelos, The Enzymes (Boyer PD ed), Vol. 6, pp. 37-82, 3rd edition, Academic Press, New York, 1972) according to the following reaction equations:
  • BCCP-COO " + acetyl-CoA transcarboxylase BCCP + malonyl-CoA Acetyl-CoA carboxylase (ACC) has been investigated biochemically, particularly in animal systems and E. coli, and molecular biological studies on a wide variety of organisms have recently been carried out, such as in the rat (F. Lopez-Casillas, DH Bai, X. Luo, IS Kong, MS Hermodson and KH Kim, PNAS 85, pp. 5784-5788 (1988)), the chicken (T. Takai, C. Yokoymama, K. Wada and T. Tanabem J. Biol Soc. 263, pp.
  • the ACC enzyme In bacteria, the ACC enzyme consists of three different polypeptide chains, which consist of three functional units consisting of the biotin carboxylase (BC), the biotin carboxy carrier protein (BCCP) and the carboxyl transferase (CT)
  • BC biotin carboxylase
  • BCCP biotin carboxy carrier protein
  • CT carboxyl transferase
  • the ACC of the rat has a molecular weight of 265 kD (Lopez-Casillas et al, supra), that of the yeast a molecular weight of 251 kD (Al-Feel e_t al, supra) and that of plants varies between 210 and 240 kD (Hellyer et al, supra).
  • Table 1 shows an overview of the homologies of the known ACC enzymes.
  • Table 1 shows the percentages of identical amino acids and the degree of homology in acetyl-CoA carboxylases from chicken, from the rat, from the yeast and from E. coli. It is clearly shown that the ACC enzymes also show a relatively high degree of kinship across the various organisms. Despite the large evolutionary gap between rat and chicken on the one hand and yeast on the other hand there is still about 66% homology across the entire amino acid sequence. If individual areas are selected, homologies of approximately 80% to 100% can be found in some sections (Al-Feel et . Al, supra). The same organizational form of eukaryotic ACCs with regard to the sequence of the domains BC-BCCP-CT is remarkable.
  • EP-A-0 469 810 describes a biotin-containing polypeptide with a molecular weight of 50 kD, which is a subunit of a vegetable acetyl-CoA carboxylase.
  • the 229 bp clone CC 8 in FIG. 8 has no amino acid reading frame which has meaningful homology to one of the known ACC amino acid sequences. This inevitably leads to the conclusion that the antibody used in EP-A-0 469 810 is not specific to ACC or at least one subunit of ACC.
  • This object is achieved with a DNA sequence according to claim 1.
  • the invention relates to a DNA sequence which codes for the acetyl-CoA carboxylase, and the alleles and derivatives of this DNA sequence.
  • the invention further relates to genomic clones which contain a DNA sequence which codes for the acetyl-CoA carboxylase, and the alleles and derivatives of this DNA sequence.
  • the invention also relates to a process for the production of plants, plant parts and plant products, in which a DNA sequence which codes for the acetyl-CoA carboxylase is transmitted by genetic engineering.
  • the invention also relates to the use of this DNA sequence for conferring or transferring herbicide resistance or changing the quality and quantity of vegetable oils and fats.
  • FIG. 1 shows a sequence comparison of the amino acid sequences of biotin-dependent and related enzymes in their BC domain
  • FIG. 2 shows the representation of the DNA or amino acid sequence of the degenerate oligonucleotides 3455 and 3464;
  • 3a shows the DNA sequence and the one derived therefrom
  • Figure 4 shows the restriction maps in the genomic
  • FIG. 5 shows the DNA sequence of the acetyl-CoA carboxylase
  • FIG. 6 shows the functional regions in the DNA sequence from FIG. 5 and the amino acid sequences derived from the DNA sequences in the one-letter code
  • Figure 7 is a schematic representation of the functional
  • FIG. 8 shows a Southern blot hybridization (cross hybridization) of different genomic plant DNA with part of the ACC gene of the genomic clone BnACC8.
  • allelic variants and derivatives of the DNA sequence according to the invention are also covered in the context of the invention, provided that these modified DNA sequences code for acetyl-CoA carboxylase.
  • the allelic variants and derivatives include, for example, deletions, substitutions, insertions, inversions or additions of the DNA sequence according to the invention.
  • the gene for acetyl-CoA carboxylase is present in all plants and can therefore be isolated from them in various ways.
  • the gene can be isolated with the aid of oligonucleotide probes or specific antibodies from genomic plant DNA banks or its cDNA from cDNA banks. Rapeseed (Brassica napus) of the Akela variety has proven to be a particularly suitable plant material.
  • a genome of the rape genome (Brassica napus) of the Akela variety was used as a starting material for the isolation of genomic clones which contain the gene for the ACC, and was set up in a phage.
  • This gene bank was searched for genes for the ACC using a hybridization probe produced by means of PCR (polymerase chain reaction).
  • PCR polymerase chain reaction
  • BnACC8 a genomic clone called BnACC8 was isolated, which contains the complete structural gene (protein coding region (exons and introns)) of the ACC from oilseed rape on a 13.7 kb Xbal fragment. This genomic clone is deposited under the number DSM 7384.
  • genomic clones BnACC3, BnACCIO and BnACCl were isolated, which likewise contain the structural gene of the ACC from rapeseed or at least parts thereof on approximately 20 kb, 15 kb and 15 kb DNA fragments, respectively.
  • the 13.7 kb DNA fragment was subcloned in the form of Xbal / Smal fragments into suitable vectors and sequenced.
  • the amino acid sequences derived from the DNA sequences were compared with the ACC amino acid sequence of the rat from FIG. 2 of the article by F. Lopez-Casillas, supra, by computer analysis. It has been found on the basis of amino acid sequence homologies that the 13.7 kb DNA fragment contains the acetyl-CoA carboxylase gene.
  • an approximately 2 kb DNA fragment of the approximately 20 kb DNA sequence from BnACC3 was sequenced.
  • FIG. 4 shows the restriction maps of the DNA fragments inserted in the genomic clones BnACC3, BnACC8, BnACCIO and BnACCl.
  • BnACC3 and BnACC8 which belong to a class of genes.
  • the areas marked in black indicate areas of DNA that hybridize with the probe used.
  • the DNA fragments are delimited by the interfaces of the cloning vector Lambda FI __ “* TI, which are symbolized by” Y ": Xbal, Sacl, Notl, Sacl and Sall on one side or Sall, Sacl, Notl, Sacl and Xbal on the
  • Y Xbal, Sacl, Notl, Sacl and Sall on one side or Sall, Sacl, Notl, Sacl and Xbal on the sequenced areas of the 13.7 kb DNA fragment from BnACC8 and the approximately 2 kb DNA fragment from BnACC3 were marked by white bars.
  • the complete DNA sequence of the 13.753 kb from the 11.9 kb of the 13.7 kb DNA fragment from BnACC8 and 1904 bp of the approximately 20 kb DNA fragment from BnACC3 is shown in FIG. 5.
  • the DNA sequence at the 5 'end comprises the sequence from BnACC3, starting from the second SalI site and extends at the 3' end with 678 bp beyond the EcoRI site of the BnACC8.
  • the DNA sequence of the 11.9 kb of the 13.7 kb DNA fragment from BnACC ⁇ begins at position 1905 in FIG. 5.
  • the 13.753 kb DNA fragment contains the acetyl-CoA carboxylase structural gene and the promoter, the structural gene already being on the 11.9 kb of the 13.7 kb DNA fragment from BnACC8.
  • FIG. 6 shows the DNA sequence from FIG. 5 with its functional areas. Regulatory elements such as the CAAT box (positions 2283-2286), the TATA box (positions 2416-2419) and a polyadenylation signal (positions 13284-12289) are underlined.
  • the ATG start codon of the ACC is in position 2506 and the associated TGA stop codon in position 13253.
  • the exon / intron boundaries have been highlighted in black.
  • the corresponding amino acid sequences were given for the black highlighted exon regions in the sequence.
  • the exon / intron limits were determined on the basis of the similarity to acetyl-CoA carboxylases from other organisms (rat) (F. Lopez-Casillas, supra), unless these limits have been determined by means of PCR.
  • the first exon of the gene begins at "ATG" as the start codon with an open reading frame.
  • the 5 'non-translated areas are therefore not highlighted in black.
  • the marking of the last exon ends at the corresponding stop codon, so that the 3 'untranslated region is also not marked.
  • BC biotin carboxylase.
  • the DNA sequence according to the invention which codes for the acetyl-CoA carboxylase, the alleles and derivatives of this DNA sequence can be introduced or transferred into plants for the regulation of the fatty acid metabolism (in the form of anti-sense or overexpression) with the aid of genetic engineering methods .
  • Antisense constructions e.g. with sequences from positions 1905 to 3187, 318 ⁇ to ⁇ lO ⁇ and 11039 to 12646 of the DNA sequence according to the invention from FIG. 6 can be used to inhibit the activity of the ACC in a plant. This can be done in particular by checking fragments of the ACC gene by checking fragments of the ACC gene by means of suitable regulatory elements (promoters) in the seed. This can cause a build-up of acetyl-CoA, since this intermediate can no longer flow into the fatty acid metabolism and thus the metabolism e.g. a plant cell influences:
  • a "suicide gene” can thus be produced if an antisense construction leads to the formation of fatty acids in a Cell is omitted. In the fight against plant diseases, a hypersensitive reaction can be triggered in this way.
  • the genes for the synthesis of, for example, polyhydroxybutyrate (PHB) can be stored in particular tissues / organs / cell types of a plant, preferably storage tissues such as seeds ( Endosperm, cotyledon); Root; various types of tubers) can be expressed. If an ACC antisense construction is simultaneously expressed in the same parts of the plant, the unused acetyl-CoA can be used for the synthesis of PHBs.
  • Oligonucleotides can be derived from the DNA sequence according to the invention in order to synthesize a cDNA or pieces of a cDNA. This cDNA or pieces thereof can be used alone or in conjunction with parts of the genomic clone to isolate a complete cDNA. These cDNA or cDNA pieces can also be used for an antisense expression.
  • individual cDNA fragments or the entire cDNA can be used to complement ACC mutants, for example in microorganisms.
  • microorganisms mutants from E. coli fabE; Silbert et. Al. 1976, J. Bacteriol. 126, pages 1351-1354); Harder et al. 1972, PNAS 69, pages 3105-3109 and from yeast (Schweizer et . Al. About i960) under non-permissive conditions functionally complemented by the vegetable ACC and are directly dependent on the vegetable enzyme.
  • yeast yeast
  • the cDNA can also be used to recover larger amounts of the protein or parts of the protein.
  • This manufactured protein can be used for studies on the reaction mechanism and the regulation or to elucidate the three-dimensional structure of the enzyme or parts of the enzyme. The latter point is particularly important for a "protein modeiling", since it allows the adaptation of e.g. Inhibitors allowed in the structure of the protein.
  • the ACC gene sequence, the alleles and derivatives of this sequence are preferably introduced into the plants together with suitable promoters, in particular in recombinant vectors.
  • the DNA sequence according to the invention which codes for the ACC, can be used in particular to achieve herbicide resistance in useful plants, including in particular cereal plants, against certain herbicides.
  • Maize, wheat, barley, rice and rye can be mentioned as preferred plants to be transformed.
  • the genetic engineering introduction of the ACC-DNA sequence, the alleles and derivatives of this sequence can be carried out using conventional transformation techniques.
  • Such techniques include methods such as direct gene transfer, such as microinjection, electroporation, particle gun, viral Vectors and liposome-mediated transfer as well as the transfer of corresponding recombinant Ti plasmids or Ri plasmids and the transformation by plant viruses.
  • the detection of the transformation can be carried out by selection with a suitable herbicide. Furthermore, the detection can be carried out by Southern blots with, for example, intron sequences of the rapeseed ACC DNA as a hybridization probe.
  • the invention thus also relates to plants, plant parts and plant products which have been produced or transformed by one of the above processes.
  • FIG. 1 shows a sequence comparison of the amino acid sequence of biotin-dependent and related enzymes in their BC domain.
  • EACC ACC from E. coli
  • cACC ACC from chicken
  • rPCCof ⁇ subunit of the propionyl-CoA carboxylase from the
  • oligonucleotides were synthesized on an Applied Biosystems DNA synthesizer (Model 380B) and are shown in FIG. 2. Both oligonucleotides are shown in 5 '-3' orientation, so that when comparing with FIG. 1, the amino acid sequence of oligonucleotide 3464 must be read in the opposite direction.
  • oligonucleotides e.g. C or T or A or G in oligonucleotide 3464.
  • I was introduced, which can interact with all nucleotides and is therefore to be regarded as a non-specific base.
  • Avian myeloblostosis virus (AMV) was used to reverse transcriptase for 30 minutes at a temperature of. 37 C performed a cDNA synthesis with the oligonucleotide 3464 as a primer. After inactivity Reverse transcriptase by heating for five minutes at a temperature of 95 C, the PCR reaction with 50 pmol final concentration per primer (3455 and 3464) and four units of Ampli-Ta ⁇ p ⁇ polymerase (Perkin Elmer Cetus) was carried out in the same reaction mixture . The reactions were carried out under the following conditions:
  • Reaction temperatures 3 minutes at a temperature of 92 C for the first denaturation, then 30 temperature cycles with 2 minutes each at a temperature of 92 C for the denaturation, 2 minutes at a temperature of 51 C for annealing the oligonucleotides and 2.5 minutes a temperature of 72 ° C for amplification of the DNA and finally 2.5 minutes at a temperature of 72 ° C to achieve a complete synthesis of the last synthesis products.
  • DNA fragments were amplified by means of PCR reactions after a first-strand cDNA synthesis.
  • the oligonucleotides required for this were synthesized on the basis of a homology comparison inter alia between the ACC from the chicken and from E. coli (FIG. 1). Mathematically, these (degenerate) oligonucleotides should be able to amplify a product of 260 bp length, which codes for 86 amino acids. Amplification products of this magnitude were therefore isolated from the product mixture obtained, cloned in pBluescripr- ⁇ and identified by DNA sequencing.
  • Example 2 Characterization of a genomic clone with a DNA sequence coding for ACC
  • FIG. 4 shows the restriction maps of the genomic clones BnACC3, BnACC ⁇ , BnACCIO and BnACCl.
  • the clone, BnACC ⁇ which belongs to the most frequently represented class, contains a DNA fragment with a size of 13.7 kb. This DNA fragment comprises the complete structural gene of the ACC from rapeseed.
  • the DNA fragment was in the form of Xbal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A DNA-sequence which codes for the acetyl-CoA-carboxylase is disclosed, as well as the alleles and derivates of said DNA-sequence. The acetyl-CoA-carboxylase gene sequence may be used in order to obtain by heterologous expression species of plants, for example cereal plants, which are resistant to herbicides against graminaceous plants, or to modify by homologous or heterologous expression the quality and quantity of vegetable oils and fats.

Description

Acetyl-CoA-Carboxylase-Gen Acetyl-CoA carboxylase gene
Die Erfindung betrifft eine DNA-Sequenz, die für die Acetyl- CoA-Carboxylase kodiert, und die Allele sowie Derivate dieser DNA-Sequenz .The invention relates to a DNA sequence which codes for the acetyl-CoA carboxylase, and the alleles and derivatives of this DNA sequence.
Im Fettsäurestoffwechsel der Prokaryonten und Eukaryonten stellt das Enzym Acetyl-CoA-Carboxylase (EC 6.4.1.2) ein wichtiges Schlüsselenzym dar. Sie katalysiert in einer Zwei- Schritt-Reaktion die ATP-abhängige Carboxylierung von Acetyl- CoA zu Malonyl-CoA (A.W. Alberts und P.R. Vagelos, The Enzymes (Boyer PD ed) , Bd. 6, S. 37-82, 3. Auflage, Academic Press, New York, 1972) gemäß den folgenden Reaktionsgleichungen:The enzyme acetyl-CoA carboxylase (EC 6.4.1.2) is an important key enzyme in the fatty acid metabolism of prokaryotes and eukaryotes. In a two-step reaction, it catalyzes the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA (AW Alberts and PR Vagelos, The Enzymes (Boyer PD ed), Vol. 6, pp. 37-82, 3rd edition, Academic Press, New York, 1972) according to the following reaction equations:
BCCP + HC03 " Biotincarboxylase BCCP-COO- + ADP + PiBCCP + HC0 3 " biotin carboxylase BCCP-COO- + ADP + Pi
BCCP-COO" + Acetyl-CoA Transcarboxylase BCCP + Malonyl-CoA Die Acetyl-CoA-Carboxylase (ACC) wurde biochemisch besonders an tierischen Systemen und E.coli untersucht, wobei in jüngster Zeit auch molekularbiologische Untersuchungen an den verschiedensten Organismen vorgenommen worden sind, wie bei¬ spielsweise bei der Ratte (F. Lopez-Casillas, D.H. Bai, X. Luo, I.S. Kong, M.S. Hermodson und K.H. Kim, PNAS 85, S. 5784-5788 (1988)) , dem Huhn (T. Takai, C. Yokoymama, K. Wada und T. Tanabem J. Biol . Soc. 263, S. 2651-2657, (1988)) , der Hefe (W. Al-Feel, S.S. Chirala und S.J. Wakil, PNAS 89, S. 4534-4538, (1984)) und E.coli (J.-H. Alix, DNA 8: S. 779-789 (1989) ; H. Kondo, K. Shiratuchi, T. Yoshimoto, T. Masuda, A. Kitazono, D. Truru, M. Anai, M. Sekiguchi und T. Tanabe, PNAS 88: S. 9730-9733 (1991) ; S.-J. Li und J.E. Cronan, Jr., J. Biol. Chem. 267, S. 855-863 (1992a)) .BCCP-COO " + acetyl-CoA transcarboxylase BCCP + malonyl-CoA Acetyl-CoA carboxylase (ACC) has been investigated biochemically, particularly in animal systems and E. coli, and molecular biological studies on a wide variety of organisms have recently been carried out, such as in the rat (F. Lopez-Casillas, DH Bai, X. Luo, IS Kong, MS Hermodson and KH Kim, PNAS 85, pp. 5784-5788 (1988)), the chicken (T. Takai, C. Yokoymama, K. Wada and T. Tanabem J. Biol Soc. 263, pp. 2651-2657, (1988)), the yeast (W. Al-Feel, SS Chirala and SJ Wakil, PNAS 89, pp. 4534-4538, (1984)) and E. coli (J -H. Alix, DNA 8: pp. 779-789 (1989); H. Kondo, K. Shiratuchi, T. Yoshimoto, T. Masuda, A. Kitazono, D. Truru, M. Anai, M. Sekiguchi and T. Tanabe, PNAS 88: pp. 9730-9733 (1991); S.-J. Li and JE Cronan, Jr., J. Biol. Chem. 267, pp. 855-863 (1992a)).
Bei Bakterien besteht das ACC-Enzym aus drei verschiedenen Polypetidketten, die aus drei funktioneilen Einheiten be¬ stehend aus der Biotincarboxylase (BC) , dem Biotin Carboxy Carrier Protein (BCCP) und der Carboxyltransferase (CT)In bacteria, the ACC enzyme consists of three different polypeptide chains, which consist of three functional units consisting of the biotin carboxylase (BC), the biotin carboxy carrier protein (BCCP) and the carboxyl transferase (CT)
(H.G. Wood und R.E. Barden, Annu. Rev. Biochem. 46, S. 385-413, (1977)) zusammengesetzt sind. Teile der Amino¬ säuresequenz des E.coli ACC-Enzyms im Bereich der Biotin Domäne wurden von M.R. Sutton, R.R. Fall, A.M. Nervi, A.W. Alberts, P.R. Vagelos und R.A. Bradshaw, J. Biol.Chem. 252, S. 3934-3940 (1977)) identifiziert. Die Gene für das BCCP und die BC aus E.coli (J.-H. Alix, supra) sowie für die CT(H.G. Wood and R.E. Barden, Annu. Rev. Biochem. 46, pp. 385-413, (1977)). Portions of the amino acid sequence of the E. coli ACC enzyme in the region of the biotin domain were used by M.R. Sutton, R.R. Fall, A.M. Nervi, A.W. Alberts, P.R. Vagelos and R.A. Bradshaw, J. Biol. Chem. 252, pp. 3934-3940 (1977)). The genes for the BCCP and the BC from E. coli (J.-H. Alix, supra) as well as for the CT
(S.-J. Li und J.E. Cronan, supra) wurden kürzlich beschrieben. Die von der Nukleinsäuresequenz abgeleiteten Molekulargewichte dieser Proteine betragen 17 kD für das BCCP, 49 kD für die BC und 35 kD für die α-Untereinheit der CT bzw. 33 kD für die ß-Untereinheit der CT. Bei Tieren, Hefe und Pflanzen sind die genannten drei funktioneilen Einheiten bzw. Domänen in einem Polypeptid zu¬ sammengefaßt (D.G. Hardie und P. Cohen, FEBS Letters 91, S. 1-7 (1978) , M. Mishina, R. Roggenkamp und E. Schweizer, Eur. J. Biochem. 111, S. 79-87 (1980), B. Egin-Bühler, R. Loyal und J. Ebel, Arch. Biochem. Biophys. 203, S. 90-100, (1979) , A.R. Slabas und A. Hellyer, Plant Sei 39, S. 177-182, (1985) , Hellyer et al, J.L. Harwood, Ann. Rev. Plant. Physiol . 39, S. 101-138 (1988)) . Die Molekulargewichte einer multi- funktionellen Untereinheit liegen über 200 kD. Die ACC der Ratte besitzt ein Molekulargewicht von 265 kD (Lopez-Casillas et al, supra) , die der Hefe ein Molekulargewicht von 251 kD (Al-Feel e_t al, supra) und die aus Pflanzen schwankt zwischen 210 und 240 kD (Hellyer et al, supra) .(S.-J. Li and JE Cronan, supra) have been described recently. The molecular weights of these proteins derived from the nucleic acid sequence are 17 kD for the BCCP, 49 kD for the BC and 35 kD for the α subunit of the CT and 33 kD for the β subunit of the CT. In animals, yeast and plants, the three functional units or domains mentioned are combined in one polypeptide (DG Hardie and P. Cohen, FEBS Letters 91, pp. 1-7 (1978), M. Mishina, R. Roggenkamp and E. Schweizer, Eur. J. Biochem. 111, pp. 79-87 (1980), B. Egin-Bühler, R. Loyal and J. Ebel, Arch. Biochem. Biophys. 203, pp. 90-100, ( 1979), AR Slabas and A. Hellyer, Plant Sei 39, pp. 177-182, (1985), Hellyer et al, JL Harwood, Ann. Rev. Plant. Physiol. 39, pp. 101-138 (1988)) . The molecular weights of a multifunctional subunit are over 200 kD. The ACC of the rat has a molecular weight of 265 kD (Lopez-Casillas et al, supra), that of the yeast a molecular weight of 251 kD (Al-Feel e_t al, supra) and that of plants varies between 210 and 240 kD (Hellyer et al, supra).
Eine Übersicht über die Homologien der bekannten ACC-Enzyme zeigt Tabelle 1.Table 1 shows an overview of the homologies of the known ACC enzymes.
Tabelle 1Table 1
Tabelle 1 zeigt die Prozentwerte an identischen Aminosäuren bzw. des Homologiegrades bei Acetyl-CoA-Carboxylasen vom Huhn, von der Ratte, von der Hefe und von E.coli. Es zeigt sich ein¬ deutig, daß die ACC-Enzyme auch über die verschiedenen Orga¬ nismen einen relativ hohen Grad an Verwandtschaft zeigen. Trotz des großen evolutionären Abstandes zwischen Ratte/Huhn einerseits und Hefe andererseits bestehen immerhin noch etwa 66 % Homologie über die gesamte Aminosäuresequenz. Greift man einzelne Bereiche heraus, so sind Homologien von etwa 80 % bis zu 100 % in einigen Abschnitten festzustellen (Al-Feel et. al, supra) . Bemerkenswert ist die gleiche Organisationsform eukaryontischer ACCs hinsichtlich der Abfolge der Domänen BC-BCCP-CT. Dies spricht für eine frühzeitige Fusion der einzelnen Gene der Prokaryonten im Zuge der Evolution der Eukaryonten. Die hohe Konservierung der ACCs ist durch die hohe Kreuzreaktivität von Antikörpern zwischen Ratte, Huhn und Hefe experimentell bestätigt (Al-Feel et. al, supra) .Table 1 shows the percentages of identical amino acids and the degree of homology in acetyl-CoA carboxylases from chicken, from the rat, from the yeast and from E. coli. It is clearly shown that the ACC enzymes also show a relatively high degree of kinship across the various organisms. Despite the large evolutionary gap between rat and chicken on the one hand and yeast on the other hand there is still about 66% homology across the entire amino acid sequence. If individual areas are selected, homologies of approximately 80% to 100% can be found in some sections (Al-Feel et . Al, supra). The same organizational form of eukaryotic ACCs with regard to the sequence of the domains BC-BCCP-CT is remarkable. This speaks for an early fusion of the individual genes of the prokaryotes in the course of the evolution of the eukaryotes. The high level of conservation of the ACCs has been experimentally confirmed by the high cross-reactivity of antibodies between rats, chickens and yeast (Al-Feel et . Al, supra).
Die Regulation der Acetyl-CoA-Carboxylase in den verschiedenen Organismen ist noch weitgehend ungeklärt . In Pflanzen hat man bisher die Enzymaktivität an zwei verschiedenen experimen¬ tellen Systemen untersucht, nämlich in Chloroplasten und sich entwickelnden Rapssamen. Es hat sich herausgestellt, daß in sich entwickelnden Rapssamen die Aktivität der ACC vor der Lipideinlagerung induziert wird, dann aber rasch abnimmt, wenn die volle Lipideinlagerung erreicht worden ist (E. Turnham und D.H. Northcote (1983) Biochem. J. 212, S. 223-229) . Das be¬ deutet, daß eine Regulation über das Endprodukt erfolgt. Darüber hinaus scheint die ACC die gesamte de novo-Fettsäure- biosynthese als die Umsatzrate begrenzendes Enzym zu regu¬ lieren (P.D. Simcox, W. Garland, V. De Lica, D.T. Canvin und D.T. Dennis, Can J Bot 57, S. 1008-1014 (1979) ; Turnham und Northcote, supra) . Diese experimentellen Befunde machen die Acetyl-CoA-Carboxylase bei Pflanzen zu einem interessanten Objekt für den Eingriff in den Fettsäurestoffwechsel mit der Perspektive der Ertragserhöhung oder der Änderung des Fett- säuremusters bei geeigneter Überproduktion der ACC im Samen.The regulation of acetyl-CoA carboxylase in the various organisms is still largely unclear. So far, the enzyme activity in plants has been investigated on two different experimental systems, namely in chloroplasts and developing rapeseed. It has been found that in developing rapeseed, the activity of the ACC is induced before lipid storage, but then decreases rapidly when full lipid storage has been achieved (E. Turnham and DH Northcote (1983) Biochem. J. 212, S. 223-229). This means that regulation takes place via the end product. In addition, the ACC seems to regulate the entire de novo fatty acid biosynthesis as an enzyme that limits the turnover rate (PD Simcox, W. Garland, V. De Lica, DT Canvin and DT Dennis, Can J Bot 57, p. 1008- 1014 (1979); Turnham and Northcote, supra). These experimental findings make acetyl-CoA carboxylase in plants an interesting object for intervening in fatty acid metabolism with the perspective of increasing yield or changing the fatty acid pattern with a suitable overproduction of the ACC in the seed.
Untersuchungen über die Wirkungsweise von verschiedenen Her¬ biziden, die zur Bekämpfung von Ungräsern, wie beispielsweise Gramineen, in Beständen dicotyler Kulturpflanzen eingesetzt werden, haben gezeigt, daß bestimme Herbizide durch Hemmung der ACC in den Stoffwechsel von Gramineen eingreifen. Bisher sind Substanzen drei verschiedener Stoffklassen beschrieben worden, die eine herbizide Wirkung durch Interaktion mit der ACC entfalten. So hemmen Derivate der Aryloxyphenoxypropion- säure (z.B. Diclofop, Fenoxaprop, Fluazifop und Haloxyfop) (K. Kobek et al, Z. Naturforschung 43c, S. 47-54 (1988)) , der Cyclohexan-1, 3-dione (z.B. Cycloxydim, Clethodim und Setoxydim) (M. Focke und H.K. Lichtenthaler, Z. Naturforschung 42c, S. 1361-1363 (1987)) oder von PP600 (3-Isopropyl-6- (N- [2, 2-dimethylpropyl] -acetamido-1, 3, 5-triazin-2, 4- (1H, 3H) dion) (K.A. Walker, S.M. Ridley und J.L. Lewis Harwood, Phytochem 29, S. 3743-3747 (1990)) die ACC sensitiver Pflanzen. Wie die inhibitorische Wirkung im Detail erfolgt und warum ACCs von dicotylen Pflanzen nicht gehemmt werden, ist z.Z. noch unklar.Studies on the mode of action of various herbicides used to control grasses, such as gramineae, in stands of dicotyledonous crops have shown that certain herbicides interfere with the metabolism of Gramineae by inhibiting the ACC. So far, substances of three different classes of substances have been described which develop a herbicidal action through interaction with the ACC. For example, derivatives of aryloxyphenoxypropionic acid (eg diclofop, fenoxaprop, fluazifop and haloxyfop) inhibit (K. Kobek et al, Z. Naturforschung 43c, pp. 47-54 (1988)), cyclohexane-1,3-dione (eg cycloxydim , Clethodim and Setoxydim) (M. Focke and HK Lichtenthaler, Z. Naturforschung 42c, pp. 1361-1363 (1987)) or of PP600 (3-isopropyl-6- (N- [2, 2-dimethylpropyl] -acetamido- 1, 3, 5-triazin-2, 4- (1H, 3H) dione) (KA Walker, SM Ridley and JL Lewis Harwood, Phytochem 29, pp. 3743-3747 (1990)) the ACC sensitive plants. Like the inhibitory The effect is in detail and why ACCs are not inhibited by dicotyledonous plants is currently still unclear.
In der EP-A-0 469 810 wird ein biotinhaltiges Polypeptid mit einem Molekulargewicht von 50 kD, welches eine Untereinheit einer pflanzlichen Acetyl-CoA-Carboxylase darstellt, beschrie¬ ben. Es ist jedoch unter anderem festgestellt worden, daß der 229 bp große Klon CC 8 der Figur 8 kein Aminosäure-Leseraster aufweist, das eine aussagekräftige Homologie zu einer der be¬ kannten ACC-Aminosäuresequenzen aufweist. Das läßt unweiger¬ lich den Schluß zu, daß der in der EP-A-0 469 810 verwendete Antikörper nicht spezifisch gegenüber ACC oder zumindest einer Untereinheit von ACC ist .EP-A-0 469 810 describes a biotin-containing polypeptide with a molecular weight of 50 kD, which is a subunit of a vegetable acetyl-CoA carboxylase. However, it has been found, among other things, that the 229 bp clone CC 8 in FIG. 8 has no amino acid reading frame which has meaningful homology to one of the known ACC amino acid sequences. This inevitably leads to the conclusion that the antibody used in EP-A-0 469 810 is not specific to ACC or at least one subunit of ACC.
Es ist Aufgabe der Erfindung, eine DNA-Sequenz zur Verfügung zu stellen, mit der einerseits durch homologe oder heterologe Expression in pflanzlichen Systemen die Qualität und Quantität von pflanzlichen Ölen oder Fetten verändert werden kann und andererseits durch heterologe Expression Herbizidresistenzen in beispielsweise Nutzpflanzen gegenüber den verschiedensten Herbiziden verliehen bzw. übertragen werden kann. Diese Aufgabe wird mit einer DNA-Sequenz gemäß Patentanspruch 1 gelöst.It is an object of the invention to provide a DNA sequence with which, on the one hand, the quality and quantity of vegetable oils or fats can be changed by homologous or heterologous expression in plant systems and, on the other hand, by heterologous expression herbicide resistance in, for example, useful plants to a wide variety of crops Herbicides can be awarded or transferred. This object is achieved with a DNA sequence according to claim 1.
Die Erfindung betrifft eine DNA-Sequenz, die für die Acetyl- CoA-Carboxylase kodiert, und die Allele sowie Derivate dieser DNA-Sequenz .The invention relates to a DNA sequence which codes for the acetyl-CoA carboxylase, and the alleles and derivatives of this DNA sequence.
Die Erfindung betrifft weiterhin genomische Klone, die eine DNA-Sequenz enthalten, die für die Acetyl-CoA-Carboxylase kodiert, und die Allele sowie Derivate dieser DNA-Sequenz.The invention further relates to genomic clones which contain a DNA sequence which codes for the acetyl-CoA carboxylase, and the alleles and derivatives of this DNA sequence.
Die Erfindung betrifft außerdem ein Verfahren zur Herstellung von Pflanzen, Pflanzenteilen und Pflanzenprodukten, bei dem auf gentechnologischem Weg eine DNA-Sequenz, die für die Acetyl-CoA-Carboxylase kodiert, übertragen wird.The invention also relates to a process for the production of plants, plant parts and plant products, in which a DNA sequence which codes for the acetyl-CoA carboxylase is transmitted by genetic engineering.
Die Erfindung betrifft schließlich auch die Verwendung dieser DNA-Sequenz zur Verleihung bzw. Übertragung von Herbizid¬ resistenzen oder Veränderung der Qualität und Quantität von pflanzlichen Ölen und Fetten.Finally, the invention also relates to the use of this DNA sequence for conferring or transferring herbicide resistance or changing the quality and quantity of vegetable oils and fats.
Die Figuren dienen zur Erläuterung der vorliegenden Erfindung. Es zeigen:The figures serve to explain the present invention. Show it:
Figur 1 einen Sequenzvergleich der Aminosäuresequenzen von biotinabhängigen und verwandten Enzymen in ihrer BC-Domäne;FIG. 1 shows a sequence comparison of the amino acid sequences of biotin-dependent and related enzymes in their BC domain;
Figur 2 die Darstellung der DNA- bzw. Aminosäure- sequenz der degenerierten Oligonukleotide 3455 und 3464;FIG. 2 shows the representation of the DNA or amino acid sequence of the degenerate oligonucleotides 3455 and 3464;
Figur 3a die DNA-Sequenz und die daraus abgeleitete3a shows the DNA sequence and the one derived therefrom
Aminosäuresequenz im Ein-Buchstaben-Code des 260 bp PCR-Fragments als spezifische Hybridi- sierungssonde;Amino acid sequence in the one-letter code of the 260 bp PCR fragment as a specific hybrid locating probe;
Figur 3b den Vergleich der Aminosäuresequenz der ACC derFigure 3b the comparison of the amino acid sequence of the ACC
Ratte (obere Zeile) mit der Aminosäuresequenz aus Figur 3a (untere Zeile) ;Rat (top line) with the amino acid sequence from FIG. 3a (bottom line);
Figur 4 die Restriktionskarten der in den genomischenFigure 4 shows the restriction maps in the genomic
Klonen BnACC3, BnACCδ, BnACCIO und BnACCl inserierten DNA-Sequenzen;Cloning BnACC3, BnACCδ, BnACCIO and BnACCl inserted DNA sequences;
Figur 5 die DNA-Sequenz des Acetyl-CoA-Carboxylase-FIG. 5 shows the DNA sequence of the acetyl-CoA carboxylase
Gens;Gene;
Figur 6 die funktioneilen Bereiche in der DNA-Sequenz aus Figur 5 und die aus den DNA-Sequenzen abgeleiteten Aminosäuresequenzen im Ein¬ Buchstaben-Code;FIG. 6 shows the functional regions in the DNA sequence from FIG. 5 and the amino acid sequences derived from the DNA sequences in the one-letter code;
Figur 7 die schematische Darstellung der funktioneilenFigure 7 is a schematic representation of the functional
Bereiche der DNA-Sequenz aus Figur 6; undRegions of the DNA sequence from FIG. 6; and
Figur 8 eine Southernblot-Hybridisierung (Kreuz- hybridisierung) verschiedener genomischer Pflanzen-DNA mit einem Teil des ACC-Gens des genomischen Klons BnACC8.FIG. 8 shows a Southern blot hybridization (cross hybridization) of different genomic plant DNA with part of the ACC gene of the genomic clone BnACC8.
Es ist selbstverständlich, daß im Rahmen der Erfindung auch allelische Varianten und Derivate der erfindungsgemäßen DNA- Sequenz erfaßt sind, unter der Voraussetzung, daß diese modifizierten DNA-Sequenzen für die Acetyl-CoA-Carboxylase kodieren. Zu den allelischen Varianten und Derivaten zählen beispielsweise Deletionen, Substitutionen, Insertionen, Inversionen oder Additionen der erfindungsgemäßen DNA-Sequenz . Das Gen für die Acetyl-CoA-Carboxylase ist in allen Pflanzen vorhanden und daher aus diesen auf verschiedenen Wegen iso¬ lierbar. So läßt sich das Gen beispielsweise mit Hilfe von Oligonukleotidsonden oder spezifischen Antikörpern aus genomischen Pflanzen-DNA-Banken oder dessen cDNA aus cDNA- Banken isolieren. Als besonders geeignetes Pflanzenmaterial hat sich der Raps (Brassica napus) der Sorte Akela erwiesen.It goes without saying that allelic variants and derivatives of the DNA sequence according to the invention are also covered in the context of the invention, provided that these modified DNA sequences code for acetyl-CoA carboxylase. The allelic variants and derivatives include, for example, deletions, substitutions, insertions, inversions or additions of the DNA sequence according to the invention. The gene for acetyl-CoA carboxylase is present in all plants and can therefore be isolated from them in various ways. For example, the gene can be isolated with the aid of oligonucleotide probes or specific antibodies from genomic plant DNA banks or its cDNA from cDNA banks. Rapeseed (Brassica napus) of the Akela variety has proven to be a particularly suitable plant material.
In der vorliegenden Erfindung wurde als Ausgangsmaterial zur Isolation von genomischen Klonen, welche das Gen für die ACC enthalten, eine in einem Phagen angelegte Genbank des Genoms von Raps (Brassica napus) der Sorte Akela verwendet. Diese Genbank wurde mit einer mittels PCR (polymerase chain reaction) hergestellten Hybridisierungssonde nach Genen für die ACC durchsucht. Auf diese Weise wurde ein genomischer Klon mit der Bezeichnung BnACC8 isoliert, welcher das vollständige Strukturgen (Protein kodierende Region (Exons und Introns) ) der ACC aus Raps auf einem 13,7 kb Xbal-Fragment enthält. Dieser genomische Klon ist unter der Nummer DSM 7384 hinter¬ legt.In the present invention, a genome of the rape genome (Brassica napus) of the Akela variety was used as a starting material for the isolation of genomic clones which contain the gene for the ACC, and was set up in a phage. This gene bank was searched for genes for the ACC using a hybridization probe produced by means of PCR (polymerase chain reaction). In this way, a genomic clone called BnACC8 was isolated, which contains the complete structural gene (protein coding region (exons and introns)) of the ACC from oilseed rape on a 13.7 kb Xbal fragment. This genomic clone is deposited under the number DSM 7384.
Des weiteren wurden die genomischen Klone BnACC3, BnACCIO und BnACCl isoliert, die ebenfalls das Strukturgen der ACC aus Raps oder zumindest Teile davon auf jeweils ca. 20 kb, 15 kb bzw. 15 kb DNA-Fragmenten enthalten.Furthermore, the genomic clones BnACC3, BnACCIO and BnACCl were isolated, which likewise contain the structural gene of the ACC from rapeseed or at least parts thereof on approximately 20 kb, 15 kb and 15 kb DNA fragments, respectively.
Das 13,7 kb DNA-Fragment wurde in Form von Xbal/Smal-Fragmen¬ ten in geeignete Vektoren subkloniert und sequenziert. Die aus den DNA-Sequenzen abgeleiteten Aminosäuresequenzen wurden mit der ACC-Aminosäuresequenz der Ratte aus der Figur 2 des Arti¬ kels von F. Lopez-Casillas, supra, per Computeranalyse ver¬ glichen. Es ist auf der Grundlage von Aminosäuresequenzhomo¬ logien festgestellt worden, daß das 13,7 kb DNA-Fragment das Acetyl-CoA-Carboxylase-Gen enthält . Außerdem wurde ein ca. 2 kb DNA-Fragment der ca. 20 kb DNA- Sequenz aus BnACC3 sequenziert .The 13.7 kb DNA fragment was subcloned in the form of Xbal / Smal fragments into suitable vectors and sequenced. The amino acid sequences derived from the DNA sequences were compared with the ACC amino acid sequence of the rat from FIG. 2 of the article by F. Lopez-Casillas, supra, by computer analysis. It has been found on the basis of amino acid sequence homologies that the 13.7 kb DNA fragment contains the acetyl-CoA carboxylase gene. In addition, an approximately 2 kb DNA fragment of the approximately 20 kb DNA sequence from BnACC3 was sequenced.
In der Figur 4 sind die Restriktionskarten der in den genomischen Klonen BnACC3, BnACC8, BnACCIO und BnACCl inserierten DNA-Fragmente gezeigt. Mit Ausnahme der über¬ lappenden Klone BnACC3 und BnACC8, die zu einer Klasse von Genen gehören, wurde jeweils nur ein Vertreter (BnACCIO und BnACCl) zweier weiterer Klassen von genomischen Klonen dar¬ gestellt. Die schwarz markierten Bereiche zeigen DNA-Bereiche an, die mit der eingesetzten Sonde hybridisieren. Begrenzt werden die DNA-Fragmente durch die Schnittstellen des Klonierungsvektors Lambda FI__"*TI, die durch "Y" symbolisiert sind: Xbal, Sacl, Notl, Sacl und Sall auf einer Seite bzw. Sall, Sacl, Notl, Sacl und Xbal auf der anderen Seite. Die sequenzierten Bereiche des 13.7 kb DNA-Fragments aus BnACC8 sowie des ca. 2 kb DNA-Fragments aus BnACC3 wurden durch weiße Balken markiert.FIG. 4 shows the restriction maps of the DNA fragments inserted in the genomic clones BnACC3, BnACC8, BnACCIO and BnACCl. With the exception of the overlapping clones BnACC3 and BnACC8, which belong to a class of genes, only one representative (BnACCIO and BnACCl) of two further classes of genomic clones was shown. The areas marked in black indicate areas of DNA that hybridize with the probe used. The DNA fragments are delimited by the interfaces of the cloning vector Lambda FI __ "* TI, which are symbolized by" Y ": Xbal, Sacl, Notl, Sacl and Sall on one side or Sall, Sacl, Notl, Sacl and Xbal on the The sequenced areas of the 13.7 kb DNA fragment from BnACC8 and the approximately 2 kb DNA fragment from BnACC3 were marked by white bars.
Es wurden 11,9 kb des 13,7 kb DNA-Fragments aus BnACC8 unter Anwendung üblicher Verfahren sequenziert. Des weiteren wurden ca. 2 kb von der zweiten Sall-Schnittstelle des ca. 20 kb DNA- Fragments aus BnACC3 in 3 ' -Richtung bis zur Überlappung mit Klon BnACCδ sequenziert. Beide Klone überlappen sich im 5 ' - Bereich. Durch Sequenzvergleich ergibt sich eine DNA-Sequenz mit einer Länge von 13,753 kb.11.9 kb of the 13.7 kb DNA fragment from BnACC8 were sequenced using conventional methods. Furthermore, approximately 2 kb were sequenced from the second Sall site of the approximately 20 kb DNA fragment from BnACC3 in the 3 'direction until overlapping with clone BnACCδ. Both clones overlap in the 5 'range. Sequence comparison results in a DNA sequence with a length of 13.753 kb.
Die vollständige DNA-Sequenz der 13,753 kb aus den 11,9 kb des 13,7 kb DNA-Fragments aus BnACC8 und 1904 bp des ca. 20 kb DNA-Fragments aus BnACC3 ist in Figur 5 wiedergegeben. Die DNA-Sequenz umfaßt am 5 ' -Ende die Sequenz aus BnACC3 , be¬ ginnend von der zweiten Sall-Schnittstelle und erstreckt sich am 3 ' -Ende mit 678 bp über die EcoRI-Schnittstelle des BnACC8 hinaus. Die DNA-Sequenz der 11,9 kb des 13,7 kb DNA-Fragments aus BnACCδ beginnt an Position 1905 in Fig. 5. In dem 13,753 kb DNA-Fragment ist das Acetyl-CoA-Carboxylase- Strukturgen sowie der Promotor enthalten, wobei sich das Strukturgen bereits auf den 11,9 kb des 13,7 kb DNA-Fragments aus BnACC8 befindet. Hierzu wird auf Figur 6 verwiesen, die die DNA-Sequenz aus Figur 5 mit ihren funktionellen Bereichen zeigt. Regulatorische Elemente, wie die CAAT-Box (Positionen 2283-2286) , die TATA-Box (Positionen 2416-2419) sowie ein Polyadenylierungssignal (Positionen 13284-12289) sind unter¬ strichen. Die ersten etwa 600 bp ab Position 1905 (11,9 kb aus BnACCδ) stellen bereits einen Teil des Promotors dar; die vor¬ ausgehenden 1904 bp enthalten den gesamten Promotor und stammen aus BnACC3. Das ATG-Startcodon der ACC befindet sich in Position 2506 und das dazugehörende TGA-Stopcodon in Position 13253. Die Exon-/Introngrenzen wurden schwarz unter¬ legt.The complete DNA sequence of the 13.753 kb from the 11.9 kb of the 13.7 kb DNA fragment from BnACC8 and 1904 bp of the approximately 20 kb DNA fragment from BnACC3 is shown in FIG. 5. The DNA sequence at the 5 'end comprises the sequence from BnACC3, starting from the second SalI site and extends at the 3' end with 678 bp beyond the EcoRI site of the BnACC8. The DNA sequence of the 11.9 kb of the 13.7 kb DNA fragment from BnACCδ begins at position 1905 in FIG. 5. The 13.753 kb DNA fragment contains the acetyl-CoA carboxylase structural gene and the promoter, the structural gene already being on the 11.9 kb of the 13.7 kb DNA fragment from BnACC8. For this purpose, reference is made to FIG. 6, which shows the DNA sequence from FIG. 5 with its functional areas. Regulatory elements such as the CAAT box (positions 2283-2286), the TATA box (positions 2416-2419) and a polyadenylation signal (positions 13284-12289) are underlined. The first approximately 600 bp from position 1905 (11.9 kb from BnACCδ) already form part of the promoter; the preceding 1904 bp contain the entire promoter and come from BnACC3. The ATG start codon of the ACC is in position 2506 and the associated TGA stop codon in position 13253. The exon / intron boundaries have been highlighted in black.
Bei den schwarz unterlegten Exonbereichen in der Sequenz wurden die entsprechenden Aminosäuresequenzen angegeben. Die Exon-/Introngrenzen wurden aufgrund der Ähnlichkeit zu Acetyl- CoA Carboxylasen aus anderen Organismen (Ratte) (F. Lopez- Casillas, supra) festgelegt, soweit nicht mittels PCR diese Grenzen bestimmt worden sind. Das erste Exon des Gens beginnt bei "ATG" als Startcodon mit einem offenen Leseraster. Die 5'- nichttranslatierten Bereiche sind daher nicht schwarz unter¬ legt . Die Markierung des letzten Exons endet am entsprechenden Stopcodon, so daß der 3 ' -nichttranslatierte Bereich ebenfalls nicht markiert ist .The corresponding amino acid sequences were given for the black highlighted exon regions in the sequence. The exon / intron limits were determined on the basis of the similarity to acetyl-CoA carboxylases from other organisms (rat) (F. Lopez-Casillas, supra), unless these limits have been determined by means of PCR. The first exon of the gene begins at "ATG" as the start codon with an open reading frame. The 5 'non-translated areas are therefore not highlighted in black. The marking of the last exon ends at the corresponding stop codon, so that the 3 'untranslated region is also not marked.
In Figur 7 sind die funktioneilen Bereiche der ACC-Sequenz des Klons BnACCδ schematisch wiedergegeben. Die Exons sind schwarz unterlegt. ATG bedeutet das Startcodon, MKM die konservierte Biotinbindungsstelle und TGA das Stopcodon. Des weiteren las¬ sen sich die drei Domänen eindeutig auf der Sequenz zuordnen: BC = Biotin-Carboxylase.,. BCCP = Biotin-Carboxy-Carrier Pro¬ tein, CT = Carboxyltransferase. Die drei Domänen wurden auf- grund von Homologie zur ACC anderer Organismen festgestellt.The functional regions of the ACC sequence of the clone BnACCδ are shown schematically in FIG. The exons are highlighted in black. ATG means the start codon, MKM the conserved biotin binding site and TGA the stop codon. Furthermore, the three domains can be clearly assigned to the sequence: BC = biotin carboxylase. BCCP = biotin carboxy carrier protein, CT = carboxyl transferase. The three domains were due to homology to the ACC of other organisms.
In Kreuzhybridisierungen mit genomischer DNA von Arabidopsis thaliana, Brassica napus, Avena sativa, Hordeum vulgäre, Oryza sativa, Triticum aestivum und Zea mays wurde festgestellt, daß sich Teile der erfindungsgemäßen ACC-Sequenz zur Isolation von ACC-Genen aus anderen Pflanzen eignen. In Figur δ wurde als DNA-Sonde ein Smal/Sacl-Fragment (siehe Figur 4) aus dem Klon BnACCδ eingesetzt. Die genomischen DNAs der verschiedenen Pflanzen wurden mit Eco RI gespalten und einem Southernblot unterworfen. Die Kreuzreaktivität der Sonde wird bei mono- und dicotylen Pflanzen beobachtet.In cross hybridizations with genomic DNA from Arabidopsis thaliana, Brassica napus, Avena sativa, Hordeum vulgare, Oryza sativa, Triticum aestivum and Zea mays, it was found that parts of the ACC sequence according to the invention are suitable for isolating ACC genes from other plants. In Figure δ a Smal / Sacl fragment (see Figure 4) from the clone BnACCδ was used as the DNA probe. The genomic DNAs of the different plants were digested with Eco RI and subjected to a Southern blot. The cross reactivity of the probe is observed in mono- and dicotyledonous plants.
Die erfindungsgemäße DNA-Sequenz, die für die Acetyl-CoA- Carboxylase kodiert, die Allele und Derivate dieser DNA- Sequenz können mit Hilfe gentechnologischer Verfahren in Pflanzen zur Regulation des Fettsäurestoffwechseis (in Form von anti-sense oder Überexpression) eingeführt bzw. übertragen werden.The DNA sequence according to the invention, which codes for the acetyl-CoA carboxylase, the alleles and derivatives of this DNA sequence can be introduced or transferred into plants for the regulation of the fatty acid metabolism (in the form of anti-sense or overexpression) with the aid of genetic engineering methods .
Antisensekonstruktionen z.B. mit Sequenzen von Positionen 1905 bis 3187, 318δ bis δlOδ und 11039 bis 12646 der erfindungsge¬ mäßen DNA-Sequenz von Figur 6 können genutzt werden, um die Aktivität der ACC in einer Pflanze zu hemmen. Dies kann ins¬ besondere durch Kontrolle von Fragmenten des ACC-Gens durch Kontrolle von Fragmenten des ACC-Gens durch geeignete regu¬ latorische Elemente (Promotoren) im Samen erfolgen. Dadurch kann ein Stau an Acetyl-CoA erzeugt werden, da dieses Inter- mediat nicht mehr in den Fettsäurestoffwechsel abfließen kann und somit den Stoffwechsel z.B. einer Pflanzenzelle beein¬ flußt :Antisense constructions e.g. with sequences from positions 1905 to 3187, 318δ to δlOδ and 11039 to 12646 of the DNA sequence according to the invention from FIG. 6 can be used to inhibit the activity of the ACC in a plant. This can be done in particular by checking fragments of the ACC gene by checking fragments of the ACC gene by means of suitable regulatory elements (promoters) in the seed. This can cause a build-up of acetyl-CoA, since this intermediate can no longer flow into the fatty acid metabolism and thus the metabolism e.g. a plant cell influences:
1. Mit geeigneten regulatorischen Elementen kann somit ein "suicide gene" hergestellt werden, wenn eine Antisensekon- struktion dazu führt, daß die Bildung von Fettsäuren in einer Zelle unterbleibt . In der Bekämpfung von Pflanzenkrankheiten kann in dieser Weise eine hypersensitive Reaktion ausgelöst werden.1. With suitable regulatory elements, a "suicide gene" can thus be produced if an antisense construction leads to the formation of fatty acids in a Cell is omitted. In the fight against plant diseases, a hypersensitive reaction can be triggered in this way.
2. Durch Hinzufügen zusätzlicher Gene, deren Genprodukte Acetyl-CoA verwenden, kann der Rückstau von Acetyl-CoA ver¬ hindert werden. Zum Beispiel können die Gene für die Synthese von z.B. Polyhydroxybutyrat (PHB) (Piorier et. al. 1992, Science 256, Seiten 520-523) spezifisch in bestimmten Ge¬ weben/Organen/Zelltypen einer Pflanze vorzugsweise Speicher¬ geweben, wie Samen (Endosperm, Kotyledon) ; Wurzeln; diverse Typen von Knollen) exprimiert werden. Wird gleichzeitig in denselben Teilen der Pflanze eine ACC-Antisensekonstruktion exprimiert, dann kann das nicht verwertete Acetyl-CoA zur Synthese von PHBs verwandt werden.2. By adding additional genes whose gene products use acetyl-CoA, the backflow of acetyl-CoA can be prevented. For example, the genes for the synthesis of, for example, polyhydroxybutyrate (PHB) (Piorier et . Al. 1992, Science 256, pages 520-523) can be stored in particular tissues / organs / cell types of a plant, preferably storage tissues such as seeds ( Endosperm, cotyledon); Root; various types of tubers) can be expressed. If an ACC antisense construction is simultaneously expressed in the same parts of the plant, the unused acetyl-CoA can be used for the synthesis of PHBs.
Aus der erfindungsgemäßen DNA-Sequenz lassen sich Oligonu- kleotide ableiten, um eine cDNA oder Stücke einer cDNA zu synthetisieren. Diese cDNA oder Stücke davon können allein oder in Verbindung mit Teilen des genomischen Klons genutzt werden, um eine vollständige cDNA zu isolieren. Auch sind diese cDNA bzw. cDNA-Stücke verwendbar für eine Antisense- expression.Oligonucleotides can be derived from the DNA sequence according to the invention in order to synthesize a cDNA or pieces of a cDNA. This cDNA or pieces thereof can be used alone or in conjunction with parts of the genomic clone to isolate a complete cDNA. These cDNA or cDNA pieces can also be used for an antisense expression.
So können einzelne cDNA-Fragmente oder die gesamte cDNA zur Komplementation von Mutanten der ACC z.B. in Mikroorganismen verwendet werden. Damit werden die Mikroorganismen (Mutanten aus E. coli fabE; Silbert et. al. 1976, J.Bakteriol .126, Seiten 1351-1354) ; Härder et al. 1972, PNAS 69, Seiten 3105-3109 und aus Hefe (Schweizer et. al. etwa i960) unter nicht-permissiven Bedingungen durch die pflanzliche ACC funktioneil komplemen¬ tiert und sind unmittelbar vom pflanzlichen Enzym abhängig. Damit ergibt sich die Möglichkeit zur Selektion auf das pflanzliche Enzym und ein Testsystem zur Entwicklung und Optimierung von Hemmstoffen für die ACC. Dadurch können neben besseren Wirkstoffen für den Einsatz als Herbizide auch resistente Formen des ACC Enzyms nach Mutagenese des Gens (oder Bereichen des Gens) entwickelt oder selektiert werden.For example, individual cDNA fragments or the entire cDNA can be used to complement ACC mutants, for example in microorganisms. This means that the microorganisms (mutants from E. coli fabE; Silbert et. Al. 1976, J. Bacteriol. 126, pages 1351-1354); Harder et al. 1972, PNAS 69, pages 3105-3109 and from yeast (Schweizer et . Al. About i960) under non-permissive conditions functionally complemented by the vegetable ACC and are directly dependent on the vegetable enzyme. This results in the possibility of selection for the vegetable enzyme and a test system for the development and optimization of inhibitors for the ACC. This allows next to better active ingredients for use as herbicides, resistant forms of the ACC enzyme after mutagenesis of the gene (or regions of the gene) can be developed or selected.
Die cDNA kann ferner genutzt werden, um größere Mengen des Proteins oder Teile des Proteins zu gewinnen. Dieses herge¬ stellte Protein kann für Studien zum Reaktionsmechanismus und der Regulation eingesetzt werden oder um die dreidimensionale Struktur des Enzyms oder von Teilen des Enzyms aufzuklären. Der zuletzt genannte Punkt ist besonders für ein "protein modeiling" bedeutsam, da es die Einpassung von z.B. Hemm¬ stoffen in die Struktur des Proteins erlaubt.The cDNA can also be used to recover larger amounts of the protein or parts of the protein. This manufactured protein can be used for studies on the reaction mechanism and the regulation or to elucidate the three-dimensional structure of the enzyme or parts of the enzyme. The latter point is particularly important for a "protein modeiling", since it allows the adaptation of e.g. Inhibitors allowed in the structure of the protein.
Die ACC-Gensequenz, die Allele und Derivate dieser Sequenz werden vorzugsweise zusammen mit geeigneten Promotoren, insbe¬ sondere in rekombinanten Vektoren in die Pflanzen eingeführt.The ACC gene sequence, the alleles and derivatives of this sequence are preferably introduced into the plants together with suitable promoters, in particular in recombinant vectors.
Alle Arten von Pflanzen können für diesen Zweck transformiert werden. In diesem Zusammenhang seien Nutzpflanzen, Garten¬ pflanzen und Zierpflanzen genannt. Unter den Nutzpflanzen sind Brassica napus, B. rapa, Kokos- und Ölpalme, Sonnenblume und Lein besonders bevorzugt .All types of plants can be transformed for this purpose. In this context, useful plants, garden plants and ornamental plants may be mentioned. Brassica napus, B. rapa, coconut and oil palm, sunflower and flax are particularly preferred among the useful plants.
Die erfindungsgemäße DNA-Sequenz, die für die ACC kodiert, kann insbesondere eingesetzt werden, um Herbizidresistenzen in Nutzpflanzen, darunter insbesondere Getreidepflanzen, gegen¬ über bestimmten Herbiziden zu erzielen. Als bevorzugt zu transformierende Pflanzen seien Mais, Weizen, Gerste, Reis und Roggen genannt .The DNA sequence according to the invention, which codes for the ACC, can be used in particular to achieve herbicide resistance in useful plants, including in particular cereal plants, against certain herbicides. Maize, wheat, barley, rice and rye can be mentioned as preferred plants to be transformed.
Die gentechnologische Einführung der ACC-DNA-Sequenz, die Allele und Derivate dieser Sequenz kann mit Hilfe üblicher Transformationstechniken durchgeführt werden. Solche Techniken umfassen Verfahren wie direkten Gentransfer, wie beispiels¬ weise Mikroinjektion, Elektroporation, particle gun, virale Vektoren und Liposomen-vermittelten Transfer sowie die Übertragung von entsprechenden rekombinanten Ti-Plasmiden oder Ri-Plasmiden und die Transformation durch Pflanzenviren.The genetic engineering introduction of the ACC-DNA sequence, the alleles and derivatives of this sequence can be carried out using conventional transformation techniques. Such techniques include methods such as direct gene transfer, such as microinjection, electroporation, particle gun, viral Vectors and liposome-mediated transfer as well as the transfer of corresponding recombinant Ti plasmids or Ri plasmids and the transformation by plant viruses.
Bei einer Zellkultur einer monokotylen Pflanze, wie beispiels¬ weise Gerste, Weizen oder Mais, kann der Nachweis der Trans¬ formation durch Selektion mit einem geeigneten Herbizid durchgeführt werden. Des weiteren kann der Nachweis durch Southern-Blots mit beispielsweise Intronsequenzen der Raps- ACC-DNA als Hybridisierungssonde erbracht werden.In the case of a cell culture of a monocotyledonous plant, such as barley, wheat or maize, the detection of the transformation can be carried out by selection with a suitable herbicide. Furthermore, the detection can be carried out by Southern blots with, for example, intron sequences of the rapeseed ACC DNA as a hybridization probe.
Somit betrifft die Erfindung ebenso Pflanzen, Pflanzenteile und Pflanzenprodukte, die nach einem der obigen Verfahren hergestellt bzw. transformiert worden sind.The invention thus also relates to plants, plant parts and plant products which have been produced or transformed by one of the above processes.
Die nachfolgenden Beispiele dienen zur Erläuterung der Er¬ findung.The following examples serve to explain the invention.
BeispieleExamples
Beispiel 1: Herstellung der Hybridisierungssonde für die Acetyl-CoA-Carboxylase (ACC)Example 1: Preparation of the Hybridization Probe for Acetyl-CoA Carboxylase (ACC)
(a) Herstellung degenerierter Oligonukleotide(a) Preparation of degenerate oligonucleotides
Ausgehend von einem Sequenzvergleich verschiedener biotin- haltiger Proteine wurden synthetische Oligonukleotide von konservierten Abschnitten der ACC-Sequenzen abgeleitet. Hierzu sei auf Figur 1 verwiesen, die einen Sequenzvergleich der Aminosäuresequenz von biotinabhängigen und verwandten Enzymen in ihrer BC-Domäne zeigt . Diese Figur geht auf Abbildung 3 aus der Publikation von Kondo et. al, supra, zurück. Die Ab¬ kürzungen in der linken Spalte haben folgende Bedeutungen: EACC = ACC aus E.coli; cACC = ACC vom Huhn; rPCCof = α-Untereinheit der Propionyl-CoA-Carboxylase von derBased on a sequence comparison of different biotin-containing proteins, synthetic oligonucleotides were derived from conserved sections of the ACC sequences. For this purpose, reference is made to FIG. 1, which shows a sequence comparison of the amino acid sequence of biotin-dependent and related enzymes in their BC domain. This figure goes to Figure 3 from the publication by Kondo et . al, supra, back. The abbreviations in the left column have the following meanings: EACC = ACC from E. coli; cACC = ACC from chicken; rPCCof = α subunit of the propionyl-CoA carboxylase from the
Ratte; yPC = Pyruvat-Carboxylase aus der Hefe und ECPSN = n-terminale Hälfte der Carbamoylphosphat-Synthetase.Rat; yPC = yeast pyruvate carboxylase and ECPSN = n-terminal half of the carbamoyl phosphate synthetase.
Identische Aminosäuren sind eingerahmt und streng konservierte Reste durch Punkte markiert. Zusätzlich wurden durch Pfeile und Zahlen die konservierten Sequenzen in Figur 1 hervorge¬ hoben, die zur Herstellung bzw. Ableitung der degenerierten Oligonukleotide 3455 und 3464 dienten.Identical amino acids are framed and strictly preserved residues are marked with dots. In addition, the conserved sequences in FIG. 1 which served for the production or derivation of the degenerate oligonucleotides 3455 and 3464 were highlighted by arrows and numbers.
Die Oligonukleotide wurden auf einem Applied Biosystems DNA- Synthesizer (Model 380B) synthetisiert und sind in Figur 2 wiedergegeben. Beide Oligonukleotide sind in 5 '-3 '-Orien¬ tierung dargestellt, so daß beim Vergleich mit Figur 1 die Aminosäuresequenz des Oligonukleotids 3464 in umgekehrter Richtung gelesen werden muß.The oligonucleotides were synthesized on an Applied Biosystems DNA synthesizer (Model 380B) and are shown in FIG. 2. Both oligonucleotides are shown in 5 '-3' orientation, so that when comparing with FIG. 1, the amino acid sequence of oligonucleotide 3464 must be read in the opposite direction.
Aufgrund des degenerierten genetischen Codes und der möglichen Variabilität der Aminosäuresequenz an einzelnen Positionen wurden in den Oligonukleotiden unterschiedliche Basen einge¬ baut, z.B. C oder T bzw. A oder G im Oligonukleotid 3464. Darüberhinaus wurde I eingeführt, welches eine Wechselwirkung mit allen Nukleotiden eingehen kann und damit als unspezifi¬ sche Base zu betrachten ist.Due to the degenerate genetic code and the possible variability of the amino acid sequence at individual positions, different bases were built into the oligonucleotides, e.g. C or T or A or G in oligonucleotide 3464. In addition, I was introduced, which can interact with all nucleotides and is therefore to be regarded as a non-specific base.
(b) Polymerase-Kettenreaktion (PCR)(b) Polymerase chain reaction (PCR)
Ausgehend von einem μg PolyA+RNA wurde mit Avian Myelo- blastosisvirus (AMV) Reverser Transkriptase während 30 Minuten bei einer Temperatur von. 37 C eine cDNA-Synthese mit dem Oligonukleotid 3464 als Primer durchgeführt. Nach Inaktivie- rung der Reversen Transkriptase durch Erhitzen während fünf Minuten bei einer Temperatur von 95 C wurde in demselben Reaktionsansatz die PCR-Reaktion mit 50 pmol Endkonzentration je Primer (3455 und 3464) und vier Einheiten Ampli-Taςp^Poly- merase (Perkin Eimer Cetus) durchgeführt. Die Reaktionen wurden unter folgenden Bedingungen durchgeführt:Starting from one μg of polyA + RNA, Avian myeloblostosis virus (AMV) was used to reverse transcriptase for 30 minutes at a temperature of. 37 C performed a cDNA synthesis with the oligonucleotide 3464 as a primer. After inactivity Reverse transcriptase by heating for five minutes at a temperature of 95 C, the PCR reaction with 50 pmol final concentration per primer (3455 and 3464) and four units of Ampli-Taςp ^ polymerase (Perkin Elmer Cetus) was carried out in the same reaction mixture . The reactions were carried out under the following conditions:
a) Pufferbedingungen: 10 mM Tris-HCl, pH-Wert 8,0; 50 mM KCl; 1,5 mM MgCl2; 0,01 % Gelatine und 5 mM dNTPs;a) Buffer conditions: 10 mM Tris-HCl, pH 8.0; 50 mM KCl; 1.5 mM MgCl 2 ; 0.01% gelatin and 5 mM dNTPs;
b) Reaktionstemperaturen: 3 Minuten bei einer Temperatur von 92 C zum erstmaligen Denaturieren, dann 30 Temperaturzyklen mit jeweils 2 Minuten bei einer Temperatur von 92 C zum Denaturieren, 2 Minuten bei einer Temperatur von 51 C zum Annealen der Oligonukleotide und 2,5 Minuten bei einer Temperatur von 72° C zur Amplifikation der DNA und ab¬ schließend 2,5 Minuten bei einer Temperatur von 72° C, um eine vollständige Synthese der letzten Syntheseprodukte zu er¬ reichen.b) Reaction temperatures: 3 minutes at a temperature of 92 C for the first denaturation, then 30 temperature cycles with 2 minutes each at a temperature of 92 C for the denaturation, 2 minutes at a temperature of 51 C for annealing the oligonucleotides and 2.5 minutes a temperature of 72 ° C for amplification of the DNA and finally 2.5 minutes at a temperature of 72 ° C to achieve a complete synthesis of the last synthesis products.
c) Klonierung der Amplifikationsproduktec) Cloning the amplification products
Überstehende einzelsträngige DNA der PCR-Produkte wurden mittels der Klenow-Polymerase aufgefüllt (Sambrook et. al, Molecular Cloning - A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York (1989)) und anschließend mit Polynukleotidkinase phosphoryliert (Sambrook et. al, supra) . Die Aufreinigung der PCR-Produkte erfolgte gemäß Standard¬ protokollen nach Sambrook et al, supra, durch Agarose-Gel- elektrophorese, Gelelution, Reinigung mit Phenol/Chloroform und der abschließenden Fällung mit Isopropanol. Die auf dieseProtruding single-stranded DNA of the PCR products were filled in using Klenow polymerase (Sambrook et. Al, Molecular Cloning - A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York (1989)) and then phosphorylated with polynucleotide kinase (Sambrook et al, supra). The PCR products were purified according to standard protocols according to Sambrook et al, supra, by agarose gel electrophoresis, gel elution, purification with phenol / chloroform and the final precipitation with isopropanol. The on this
Weise gereinigte DNA wurde in S al gespaltene pBluescipt _§)-Purified DNA was cleaved into S al pBluescipt _§) -
Vektor-DNA ligiert und kloniert . d) DNA- SequenzierungVector DNA ligated and cloned. d) DNA sequencing
Zur Bestimmung der DNA-Sequenz von in pBluescripc-' her¬ gestellten Subklonen und solchen DNA-Sequenzen, bei denen Deletionen mittels Exonuklease III hergestellt worden sind (siehe auch Beispiel 2) (Sambrook et. al, supra) wurden nach der Methode von Sanger et. al, Proc. Natl. Acad. Sei. 74, S. 5463-5467 (1977) sequenziert. Die Sequenzdaten wurden mit Hilfe der Computer-Software der "University of Wisconsin Genetics Computer Group" (Devereux et. al, Nucl. Acids Res. 12, S. 367-395 (1964)) analysiert. Die Homologiestudien erfolgten mit dem Programm "Bestfit".For the determination of the DNA sequence of subclones produced in pBluescripc and those DNA sequences in which deletions were produced by means of exonuclease III (see also Example 2) (Sambrook et. Al, supra) were carried out according to the Sanger method et . al, Proc. Natl. Acad. Be. 74, pp. 5463-5467 (1977). The sequence data were analyzed using the computer software of the "University of Wisconsin Genetics Computer Group" (Devereux et. Al, Nucl. Acids Res. 12, pp. 367-395 (1964)). The homology studies were carried out with the "Bestfit" program.
e) Synthese einer spezifischen Hybridisierungssonde mittels PCRe) synthesis of a specific hybridization probe by means of PCR
Ausgehend von polyA -RNA aus unreifen Samen vom Raps (Brassica napus) (etwa 2-3 Wochen alt) wurden nach einer cDNA-Erststrang- synthese mittels PCR-Reaktionen DNA-Fragmente amplifiziert . Die dazu erforderlichen Oligonukleotide wurden aufgrund eines Homologievergleiches u.a. zwischen der ACC vom Huhn und aus E.coli (Figur 1) synthetisiert. Rechnerisch sollte sich mit diesen (degenerierten) Oligonukleotiden ein Produkt von 260 bp Länge amplifizieren lassen, das für 86 Aminosäuren kodiert. Daher wurden Amplifikationsprodukte in dieser Größenordnung aus dem erhaltenen Produktgemisch isoliert, in pBluescripr-^ kloniert und durch DNA-Sequenzierung identifiziert. Neben anderen unspezifischen PCR-Produkten konnte eines kloniert werden, daß die erwartete Größe von 260 bp hat und über ein offenes Leseraster von 86 Aminosäuren verfügt (Figur 3a) . Dieses Produkt, wird die Homologie auch im Bereich der Oligonukleotide mitgerechnet, weist 77,9 % identische Amino¬ säuren im Vergleich zur ACC der Ratte auf und eine Homologie von 8δ,4 % (Figur 3b) . Berechnet man die Identität bzw. Homologie nur auf die amplifizierte Sequenz, also ohne den Bereich der Oligonukleotide, die auch Fehlpaarungen zulassen, so ergeben sich immerhin noch Werte von 73,2 % identischen Aminosäuren bzw. 85,9 % Homologie zwischen den Protein¬ sequenzen der ACC von Ratte und Raps. Diese Zahlen zeigen, daß das klonierte PCR-Produkt einen Teil der ACC aus Raps kodiert und somit als spezifische Hybridisierungssonde eingesetzt werden kann. Aufgrund der Lage der Homologie zur ACC der Ratte zwischen den Aminosäuren der Positionen 304 und 389 (Figur 3b) war zu erwarten, daß das klonierte PCR-Fragment nur cDNAs erkennt, die über 6000 bp lang sind.Starting from polyA-RNA from immature rapeseed seeds (Brassica napus) (about 2-3 weeks old), DNA fragments were amplified by means of PCR reactions after a first-strand cDNA synthesis. The oligonucleotides required for this were synthesized on the basis of a homology comparison inter alia between the ACC from the chicken and from E. coli (FIG. 1). Mathematically, these (degenerate) oligonucleotides should be able to amplify a product of 260 bp length, which codes for 86 amino acids. Amplification products of this magnitude were therefore isolated from the product mixture obtained, cloned in pBluescripr- ^ and identified by DNA sequencing. In addition to other non-specific PCR products, one could be cloned that has the expected size of 260 bp and has an open reading frame of 86 amino acids (FIG. 3a). This product, if the homology is also included in the area of the oligonucleotides, has 77.9% identical amino acids compared to the ACC of the rat and a homology of 8δ, 4% (FIG. 3b). If one calculates the identity or homology only on the amplified sequence, i.e. without the In the area of the oligonucleotides that also allow mismatches, there are still values of 73.2% identical amino acids or 85.9% homology between the protein sequences of the ACC of rats and rapeseed. These numbers show that the cloned PCR product encodes part of the ACC from rapeseed and can thus be used as a specific hybridization probe. Due to the position of the homology to the ACC ACC of the rat between the amino acids of positions 304 and 389 (FIG. 3b), it was to be expected that the cloned PCR fragment would only recognize cDNAs which are over 6000 bp long.
Beispiel 2: Charakterisierung eines genomischen Klons mit einer DNA-Sequenz, die für ACC kodiertExample 2: Characterization of a genomic clone with a DNA sequence coding for ACC
Aus einer Genbank von Raps (Brassica napus) der Sorte Akela, die im Vektor Lambda FlJrll (Stratagene) konstruiert worden war, wurden mit Hilfe des unter Beispiel 2 beschriebenen, klonierten PCR-Fragmentes 10 genomische Klone isoliert und charakterisiert. Sie lassen sich aufgrund ihrer Restriktions¬ karten in 3 Klassen einteilen. Figur 4 zeigt die Restrik¬ tionskarten der genomischen Klone BnACC3, BnACCδ, BnACCIO und BnACCl. Der Klon, BnACCδ, der zur am häufigsten vertretenen Klasse gehört, enthält ein DNA-Fragment mit einer Größe von 13,7 kb. Dieses DNA-Fragment umfaßt das vollständige Struktur¬ gen der ACC aus Raps. Das DNA-Fragment wurde in Form von Xbal-10 genomic clones were isolated and characterized from a gene bank of rape (Brassica napus) of the Akela variety, which had been constructed in the vector Lambda FlJrll (Stratagene), with the aid of the PCR fragment cloned as described in Example 2. Because of their restriction maps, they can be divided into 3 classes. FIG. 4 shows the restriction maps of the genomic clones BnACC3, BnACCδ, BnACCIO and BnACCl. The clone, BnACCδ, which belongs to the most frequently represented class, contains a DNA fragment with a size of 13.7 kb. This DNA fragment comprises the complete structural gene of the ACC from rapeseed. The DNA fragment was in the form of Xbal
Smal-Fragmenten in pBluescript-^ subkloniert sequenziert. Des weiteren wurde ein ca. 3,2 kb Sall-Smal-Fragment DNA-Fragment des ca. 20 kb DNA-Fragments aus BnACC3 subkloniert und davon ca. 2 kb von der Sall-Schnittstelle aus in 3 ' -Richtung sequenziert . Smal fragments in pBluescript- ^ subcloned sequenced. Furthermore, an approximately 3.2 kb Sall-Smal fragment DNA fragment of the approximately 20 kb DNA fragment from BnACC3 was subcloned and approximately 2 kb of which was sequenced in 3 'direction from the Sall interface.

Claims

Patentansprüche Claims
1. DNA-Sequenz, die für die Acetyl-CoA-Carboxylase kodiert, und die Allele sowie Derivate dieser DNA-Sequenz.1. DNA sequence coding for the acetyl-CoA carboxylase and the alleles and derivatives of this DNA sequence.
2. DNA-Sequenz nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß sie aus Pflanzen isoliert ist.2. DNA sequence according to claim 1, d a d u r c h g e k e n n z e i c h n e t that it is isolated from plants.
3. DNA- Sequenz nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß sie aus Raps (Brassica napus) isoliert ist.3. DNA sequence according to claim 2, d a d u r c h g e k e n n z e i c h n e t that it is isolated from oilseed rape (Brassica napus).
4. DNA-Sequenz nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß sie eine Größe von 13,7 kb aufweist und das vollständige Strukturgen sowie zumindest Teile des Promotors der Acetyl-CoA-Carboxylase enthält. 4. DNA sequence according to one of claims 1 to 3, characterized in that it has a size of 13.7 kb and contains the complete structural gene and at least parts of the promoter of acetyl-CoA carboxylase.
5. Genomischer Klon, der eine DNA-Sequenz enthält, die für die Acetyl-CoA-Carboxylase kodiert, und die Allele sowie Derivate dieser DNA-Sequenz.5. Genomic clone which contains a DNA sequence which codes for the acetyl-CoA carboxylase, and the alleles and derivatives of this DNA sequence.
6. Genomischer Klon nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß die DNA-Sequenz aus Pflanzen isoliert ist.6. Genomic clone according to claim 5, d a d u r c h g e k e n n z e i c h n e t that the DNA sequence is isolated from plants.
7. Genomischer Klon nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, daß die DNA-Sequenz aus Raps (Brassica napus) isoliert ist.7. Genomic clone according to claim 6, that the DNA sequence from oilseed rape (Brassica napus) is isolated.
8. Genomischer Klon nach einem der Ansprüche 5 bis 7, d a d u r c h g e k e n n z e i c h n e t, daß die DNA-Sequenz eine Größe von 13,7 kb aufweist und das vollständige Strukturgen sowie zumindest Teile des Promotors der Acetyl-CoA-Carboxylase enthält.8. Genomic clone according to one of claims 5 to 7, that the DNA sequence has a size of 13.7 kb and contains the complete structural gene and at least parts of the promoter of the acetyl-CoA carboxylase.
9. Genomischer Klon BnACCδ (DSM 7384) .9. Genomic clone BnACCδ (DSM 7384).
10. Genomische Klone BnACCl, BnACC3 und BnACCIO, die die DNA- Sequenz für das vollständige Strukturgen der Acetyl-CoA- Carboxylase oder zumindest Teile davon und die Allele sowie Derivate dieser DNA-Sequenz enthalten.10. Genomic clones BnACCl, BnACC3 and BnACCIO, which contain the DNA sequence for the complete structural gene of acetyl-CoA carboxylase or at least parts thereof and the alleles and derivatives of this DNA sequence.
11. Genomische Klone nach Anspruch 10, d a d u r ch g e k e n n z e i c h n e t, daß die DNA-Sequenz für das Strukturgen aus Pflanzen isoliert ist .11. Genomic clones according to claim 10, so that the DNA sequence for the structural gene is isolated from plants.
12. Genomische Klone nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, daß die DNA-Sequenz für das Strukturgen aus Raps (Brassica napus) isoliert ist. 12. Genomic clones according to claim 11, characterized in that the DNA sequence for the structural gene from rape (Brassica napus) is isolated.
13. Genomische Klone nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t, daß zumindest der genomische Klon BnACC3 die DNA-Sequenzen für den Promotor für das Strukturgen der Acetyl-CoA- Carboxylase enthält .13. Genomic clones according to claim 12, so that at least the genomic clone BnACC3 contains the DNA sequences for the promoter for the structural gene of the acetyl-CoA carboxylase.
14. DNA-Sequenz, die das Strukturgen und den Promotor für die Acetyl-CoA-Carboxylase enthält gemäß Fig. 5.14. DNA sequence which contains the structural gene and the promoter for the acetyl-CoA carboxylase according to FIG. 5.
15. Verfahren zur Herstellung von Pflanzen, Pflanzenteilen und Pflanzenprodukten, die Herbizidresistenz aufweisen, bei dem eine DNA-Sequenz nach einem der Ansprüche 1 bis 4 oder Anspruch 14 oder eine aus den genomischen Klonen nach einem der Ansprüche 5 bis 13 stammende DNA-Sequenz auf gentechnologischem Weg übertragen wird.15. A process for the production of plants, parts of plants and plant products which have herbicide resistance, in which a DNA sequence according to one of claims 1 to 4 or claim 14 or a DNA sequence derived from the genomic clones according to one of claims 5 to 13 genetic engineering path is transferred.
16. Verfahren zur Herstellung von Pflanzen, Pflanzenteilen und Pflanzenprodukten, deren Qualität und Quantität hinsichtlich der Öl- und Fettsäureproduktion verändert ist, bei dem eine DNA-Sequenz nach einem der Ansprüche 1 bis 4 oder Anspruch 14 oder eine aus den genomischen Klonen nach einem der Ansprüche 5 bis 13 stammende DNA- Sequenz auf gentechnologischem Weg übertragen wird.16. A process for the production of plants, plant parts and plant products, the quality and quantity of which is changed with regard to oleic and fatty acid production, in which a DNA sequence according to one of claims 1 to 4 or claim 14 or one of the genomic clones according to one of the Claims 5 to 13 derived DNA sequence is transferred by genetic engineering.
17. Verfahren nach Anspruch 14 oder 15, d a d u r c h g e k e n n z e i c h n e t, daß die DNA-Sequenz durch Mikroinjektion, Elektroporation, particle gun, Übertragung von entsprechenden rekombi¬ nanten Ti-Plasmiden oder Ri-Plasmiden, Liposomen- vermitteltem Transfer oder durch Pflanzenviren übertragen wird. 17. The method according to claim 14 or 15, characterized in that the DNA sequence is transferred by microinjection, electroporation, particle gun, transfer of corresponding recombinant Ti plasmids or Ri plasmids, liposome-mediated transfer or by plant viruses.
18. Verwendung einer DNA-Sequenz nach einem der Ansprüche 1 bis 4 oder Anspruch 14 oder einer aus den genomischen Klonen nach einem der Ansprüche 5 bis 13 stammenden DNA- Sequenz zur Übertragung von Herbizidresistenzen in Pflanzen.18. Use of a DNA sequence according to one of claims 1 to 4 or claim 14 or a DNA sequence derived from the genomic clones according to one of claims 5 to 13 for the transmission of herbicide resistance in plants.
19. Verwendung einer DNA-Sequenz nach einem der Ansprüche 1 bis 4 oder Anspruch 14 oder einer aus den genomischen Klonen nach einem der Ansprüche 5 bis 13 stammenden DNA- Sequenz zur Veränderung der Qualität und Quantität hinsichtlich der Öl- und Fettsäureproduktion in Pflanzen.19. Use of a DNA sequence according to one of claims 1 to 4 or claim 14 or a DNA sequence derived from the genomic clones according to one of claims 5 to 13 for changing the quality and quantity with regard to the oil and fatty acid production in plants.
20. Pflanzen, Pflanzenteile und Pflanzenprodukte, hergestellt nach einem Verfahren des Anspruchs 15 oder 16 und 17. 20. Plants, parts of plants and plant products produced by a process of claim 15 or 16 and 17.
EP94905669A 1993-01-22 1994-01-21 Acetyl-coa-carboxylase-gene Withdrawn EP0680511A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4301694 1993-01-22
DE4301694 1993-01-22
DE4317260 1993-05-24
DE4317260A DE4317260A1 (en) 1993-01-22 1993-05-24 DNA sequence encoding acetyl-CoA carboxylase
PCT/EP1994/000150 WO1994017188A2 (en) 1993-01-22 1994-01-21 Acetyl-coa-carboxylase-gene

Publications (1)

Publication Number Publication Date
EP0680511A1 true EP0680511A1 (en) 1995-11-08

Family

ID=25922444

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94905669A Withdrawn EP0680511A1 (en) 1993-01-22 1994-01-21 Acetyl-coa-carboxylase-gene

Country Status (4)

Country Link
EP (1) EP0680511A1 (en)
JP (1) JPH08509116A (en)
CA (1) CA2150678A1 (en)
WO (1) WO1994017188A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539092A (en) * 1992-10-02 1996-07-23 Arch Development Corporation Cyanobacterial and plant acetyl-CoA carboxylase
US6069298A (en) * 1993-02-05 2000-05-30 Regents Of The University Of Minnesota Methods and an acetyl CoA carboxylase gene for conferring herbicide tolerance and an alteration in oil content of plants
US6414222B1 (en) 1993-02-05 2002-07-02 Regents Of The University Of Minnesota Gene combinations for herbicide tolerance in corn
US6222099B1 (en) 1993-02-05 2001-04-24 Regents Of The University Of Minnesota Transgenic plants expressing maize acetyl COA carboxylase gene and method of altering oil content
GB9306490D0 (en) * 1993-03-29 1993-05-19 Zeneca Ltd Plant gene specifying acetyl,coenzyme a carboxylase and transformed plants containing same
AU695775B2 (en) * 1993-09-04 1998-08-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Promoters
US6455688B1 (en) * 1994-04-21 2002-09-24 Zeneca Limited Plant gene specifying acetyl coenzyme A carboxylase and transformed plants containing same
US5925805A (en) * 1994-05-24 1999-07-20 Board Of Trustees Operating Michigan State University Methods of increasing oil content of seeds
US5962767A (en) * 1994-05-24 1999-10-05 Board Of Trustees Operating Michigan State University Structure and expression of an arabidopsis acetyl-coenzyme A carboxylase gene
WO1996032484A2 (en) * 1995-04-14 1996-10-17 Arch Development Corporation ACETYL-CoA CARBOXYLASE COMPOSITIONS AND METHODS OF USE
DE19737870C2 (en) * 1997-08-29 1999-07-01 Max Planck Gesellschaft Recombinant DNA molecules and methods for increasing the oil content in plants
US6306636B1 (en) 1997-09-19 2001-10-23 Arch Development Corporation Nucleic acid segments encoding wheat acetyl-CoA carboxylase
CN1154745C (en) * 1999-11-09 2004-06-23 浙江省农业科学院 Method of utilizing antisense gene in controlling protein and oil content of seed

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8142191A (en) * 1990-07-30 1992-02-06 Iowa State University Research Foundation Inc. Plant acetyl-coa carboxylase polypeptide and gene
GB9125330D0 (en) * 1991-11-28 1992-01-29 Commw Scient Ind Res Org Novel dna clones and uses thereof
US5539092A (en) * 1992-10-02 1996-07-23 Arch Development Corporation Cyanobacterial and plant acetyl-CoA carboxylase

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9417188A3 *

Also Published As

Publication number Publication date
CA2150678A1 (en) 1994-08-04
WO1994017188A3 (en) 1994-10-13
JPH08509116A (en) 1996-10-01
WO1994017188A2 (en) 1994-08-04

Similar Documents

Publication Publication Date Title
DE69834192T2 (en) WHEAT RHT GEN FOR GENETIC CONTROL OF PLANT GROWTH AND DEVELOPMENT
DE69634875T2 (en) COLD-ENHANCED PROMOTER SEQUENCES
DE10000978A1 (en) Process for increasing the level of fatty acids in plants and microorganisms
DE69533794T2 (en) DNA Sequencing Encoding Cinnamoyl-COA-Reductase, And Its Use In Regulation Of The Lignin Content Of Plants
WO1994017188A2 (en) Acetyl-coa-carboxylase-gene
EP0616035A2 (en) Transgenic pathogen resistant organism
DE60207714T2 (en) SEMIDWARFING OF PLANTS INVOLVED GEN SD1 AND ITS USES
DE69433424T2 (en) PLANTS WITH MODIFIED RESPONSE TO ETHYLENE
DE69921025T2 (en) Rice gene resistant to rice blight
DE19752647C1 (en) Reduction of the chlorophyll content in oil plant seeds
DE4433307A1 (en) An isolated nucleic acid fragment and products derived from it
EP0716699A1 (en) Glycerin-3-phosphate-dehydrogenase (gpdh)
DE4317260A1 (en) DNA sequence encoding acetyl-CoA carboxylase
EP0716707A1 (en) Promoters
DE19926456A1 (en) Process for increasing the fatty acid content in plant seeds
EP0918849A1 (en) Transgenic plant cells and plants with modified acetyl-coa formation
WO1999022011A1 (en) Reduction of chlorophyll content in oil plant seeds
WO2003014364A1 (en) Method for influencing the acceptance of minerals in transgenic plants
DE19940270A1 (en) Preparing plants with increased photosynthetic rate, useful for increasing crop yields, comprises introducing the gene for PsaE subunit of photo-system I
DE60128796T2 (en) PROCESS FOR PRODUCING PLANTS WITH INCREASED RESISTANCE TO WATER STRESS
EP0927246A2 (en) Adenylosuccinate synthetase
EP1346054B1 (en) Nucleic acids coding for vacuolar invertases, vegetal cells and plants containing said nucleic acids and the use thereof
DE69723383T2 (en) Gene coding for plant indole acetaldehyde oxidase and its use
DE10313795A1 (en) Altered PPase expression in sugar beet
EP1070120A1 (en) Amp deaminase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19971211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20001218