WO1999022011A1 - Reduction of chlorophyll content in oil plant seeds - Google Patents

Reduction of chlorophyll content in oil plant seeds Download PDF

Info

Publication number
WO1999022011A1
WO1999022011A1 PCT/EP1998/006852 EP9806852W WO9922011A1 WO 1999022011 A1 WO1999022011 A1 WO 1999022011A1 EP 9806852 W EP9806852 W EP 9806852W WO 9922011 A1 WO9922011 A1 WO 9922011A1
Authority
WO
WIPO (PCT)
Prior art keywords
promoter
plants
seeds
plant
chlorophyll
Prior art date
Application number
PCT/EP1998/006852
Other languages
German (de)
French (fr)
Inventor
Bernhard Grimm
Original Assignee
Institut für Pflanzengenetik und Kulturpflanzenforschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19752647A external-priority patent/DE19752647C1/en
Application filed by Institut für Pflanzengenetik und Kulturpflanzenforschung filed Critical Institut für Pflanzengenetik und Kulturpflanzenforschung
Priority to CA002306205A priority Critical patent/CA2306205A1/en
Priority to EP98954461A priority patent/EP1025248A1/en
Priority to AU11563/99A priority patent/AU1156399A/en
Publication of WO1999022011A1 publication Critical patent/WO1999022011A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)

Definitions

  • the present invention relates to methods for reducing the chlorophyll content in seeds of oil plants, in particular rapeseed, based on the expression of antisense genes in chlorophyll synthesis.
  • the invention further relates to seeds of oil plants which have a reduced chlorophyll content compared to wild type plants, and to the use of these seeds for the production of vegetable oils.
  • the cruciferous oilseed rape (Brassica napus) and turnip rape (Brassica rapa) are among the most important oil plants alongside soybeans and cottonseed.
  • the seeds of rapeseed contain around 40% fatty oil, the so-called rapeseed or turnip oil, which is usually obtained from the crushed seeds by pressing or extraction in a yield of approx. 40% and then subjected to refining.
  • the rapeseed oil obtained can then be used as cooking oil, mineral lubricant oil additive, after fat hardening for margarine production and as a raw material in the production of tree wax, plasters, leather greasing agents, etc.
  • Rapeseed oil is also known as a good source of C 20 and C 22 fatty acids, which are important as plastic processing and washing aids.
  • vegetable oils, and in particular rapeseed oil are also becoming increasingly important as biodiesel fuels.
  • biodiesel fuels In general, the areas of application of vegetable oils have been significantly expanded in recent years. With increasing environmental awareness, increasingly more environmentally friendly industrial products, such as lubricants and hydraulic oils, were developed.
  • the pigments contained in the seeds, especially the chlorophylls, and their photosensitive precursors have to be extracted in a complex manner. Apart from the fact that these extractions are time and cost intensive, they always mean a loss of the rapeseed oil yield. Although turnips have somewhat lower requirements than rapeseed in terms of vegetation duration and location, similar problems arise for these Brassicaceae in terms of seed ripening and excess chlorophyll content. The extraction and use of rapeseed oil largely corresponds to that for rapeseed oil.
  • ALA 5-aminolevulinic acid
  • glutamate via three enzyme activities (glutamyl tRNA synthetase, glutamyl tRNA reductase and glutamate 1-semialdehyde aminotransferase).
  • the protopophyrin IX is formed from hydroxymethylbilane by oxidation and side chain modifications via uroporphyrinogen III, coproporphyrinogen and protopophyrinogen IX.
  • the incorporation of a divalent metal cation produces magnesium protopophyrin IX, which is converted into chlorophyll a by further modifications, which include the incorporation of an additional isocyclic ring on ring B and the particularly important esterification of a propionate with a phytol chain.
  • European patent application 0 779 364 A2 describes an approach to reducing the chlorophyll content in transgenic plants, in which the transcript and protein content of the chlorophyll-binding proteins (chlorophyll a / b binding (CAB) proteins) of the antenna complex of Photosystem II (light harvesting complex associated with photosystem II, LHCII) is reduced.
  • This approach which is based on the expression of antisense genes for LHCII, therefore relates to proteins which bind already synthesized chlorophyll in Photosystem II, but not to enzymes which are directly involved in chlorophyll synthesis.
  • transgenic plant seeds with a reduced chlorophyll content compared to seeds of wild-type plants.
  • the present invention thus relates to the use of DNA sequences which code for enzymes in chlorophyll synthesis and whose targeted transfer to and expression in transgenic plant cells results in a reduction in chlorophyll synthesis. More specifically, the invention relates to the transfer of suitable antisense gene constructs to plants and their expression in the seed tissue.
  • the invention is based on experiments in which the amount of chlorophyll in plant seeds could be significantly reduced by the seed-specific expression of antisense genes against certain enzyme steps in tetrapyrrole synthesis and the resultant seed-specific inhibition of the activity of defined enzymes in chlorophyll synthesis.
  • Antisense genes which code complementary to the endogenous RNA for enzymes of the tetrapyrrole metabolism, reduce the endogenous RNA contents or the number of RNA molecules available for the subsequent protein biosynthesis.
  • a reduced content of endogenous RNA inevitably leads to a reduced translation, that is to say a reduced amount of protein, which in turn manifests itself in a reduced activity of the target enzyme.
  • the invention relates to all genes whose gene products catalyze steps of tetrapyrrole synthesis. Since the expression and activity of any enzyme involved in tetrapyrrole synthesis can be reduced or inhibited by targeted antisense RNA synthesis, the method according to the invention for reducing the chlorophyll content in sperm cells can use all genes of this metabolic pathway, ie also individually or in combination , be performed.
  • genes are primarily genes which are responsible for glutamyl tRNA synthetase, glutamyl tRNA reductase, glutamate 1 semialdehyde aminotransferase, magnesium chelatase or their subunits CHL I, Code CHL D, CHL H, chlorophyll synthetase and Mg protopophyrin monomethyl ester transferase.
  • the invention also relates to fragments of such genes involved in chlorophyll synthesis, the use of which within an antisense construct results in reduced activity of the target enzyme.
  • Such fragments could be referred to in the context of this invention as "antisense active" fragments, i.e. their transfer in the form of a suitable construct reduces the corresponding endogenous enzyme activity.
  • the invention relates to the use of alleles and derivatives of the genes according to the invention for reducing the chlorophyll content in plant seeds, thus also the use of nucleic acid molecules whose sequences differ from the genes according to the invention due to the degeneration of the genetic code and their transmission to plant cells in one go the
  • nucleic acid molecules which contain the antisense genes according to the invention or which have arisen from, or have been derived from, naturally occurring or by genetic engineering or chemical processes and synthesis processes.
  • This can be, for example, DNA or RNA molecules, cDNA, genomic DNA, mRNA etc.
  • GSA-AT glutamate 1 semialdehyde aminotransferase
  • GSA glutamate 1-semialdehyde
  • ALA aminolevulinic acid
  • GSA-AT The expression of a tobacco antisense RNA for GSA-AT has so far only been investigated in leaves of tobacco plants (Höfgen et al. (1994) Proc. Natl. Acad. Sei. USA 91, 1726-1730).
  • DNA sequences from two tobacco full-length cDNA clones are in the GenBank, Accession Nos. X65973 and X65974 are available.
  • a gene of chlorophyll synthesis or a fragment thereof preferably the coding region of such a gene or fragment, is in the antisense orientation, ie 3 '->5' orientation, with the 3 'end a promoter, i.e. a regulatory element that ensures the transcription of the linked gene in plant cells.
  • genes according to the invention can be expressed in plant cells under the control of constitutive, but also inducible or tissue or development-specific promoters. These are preferably seed-specific promoters, the use of which enables the targeted inhibition of chlorophyll synthesis in sperm cells.
  • seed-specific promoters that can be used in connection with the invention, mention should be made of the USP promoter (described, inter alia, in: Bäumlein et al. (1991) Mol. Gen. Genet. 459-467; Fiedler et al. ( 1993) Plant Mol. Biol. 22, 669-679; DE-C2-39 20 034), the napin promoter (Ericson et al. (1991) Eur. J. Biochem. 197, 741-746; Accession No. X 58142), the 2S albumin promoter (Krebbers et al. (1988) Plant Physiol. 87, 859-866; Accession No.
  • legumin promoter (Bäumlein et al. (1986) Nucl. Acids Res. 14, 2707-2720; Accession No. X 03677) and the Hordein promoter (Entwistle et al. (1991) Plant Mol. Biol. 17, 1217-1231; Accession No. X 60037).
  • the antisense constructs used according to the invention can additionally comprise enhancer sequences or other regulatory sequences. It is also an object of the invention to provide new plants, plant cells, parts or products which are distinguished by a reduced chlorophyll content compared to wild type plants.
  • the antisense nucleic acid molecules according to the invention are transferred to plants.
  • the transgenic oilseed rape plants are particularly preferably summer oilseed rape plants.
  • OO rapeseed plants are also suitable for the use of the processes according to the invention, i.e. Rapeseed plants that are free of erucic acid and low in glucosinolate.
  • the plants that are transformed with the nucleic acid molecules according to the invention and in which a smaller amount of chlorophylls are synthesized due to the integration of such a molecule into their genome can in principle be any plant. It is preferably an oil plant, such as oilseed rape and turnips, from which vegetable oil is obtained, in the production of which high chlorophyll contents are undesirable.
  • the invention relates in particular to propagation material from plants according to the invention, for example seeds, fruits.
  • Cuttings, tubers, rhizomes etc., this material may be above contains described transgenic plant cells, and parts of these plants such as protoplasts, plant cells and calli; seeds are particularly preferred.
  • the present invention is also based on the object of providing processes for producing plant cells and plants and parts thereof, in particular seeds, which are distinguished by a reduced chlorophyll content.
  • plant cells which have a reduced chlorophyll content due to the expression of an antisense gene construct according to the invention are produced by a process which comprises the following steps:
  • an expression cassette which comprises the following DNA sequences: a promoter which ensures transcription in plant cells; at least one nucleic acid sequence encoding an enzyme or a fragment thereof that is involved in chlorophyll synthesis, the nucleic acid sequence being coupled in antisense orientation to the 3 'end of the promoter; and optionally a termination signal for the termination of the transcription and the addition of a poly-A tail to the corresponding transcript which is coupled to the 5 'end of the nucleic acid sequence.
  • the invention relates to the use of the antisense constructions according to the invention for producing plants, in particular plant seeds, which have a reduced chlorophyll content.
  • the invention preferably relates to the use of the antisense constructions according to the invention for the production of seeds from oil plants, particularly preferably from rapeseed and turnips, which have a reduced chlorophyll content.
  • Another object of the invention is to record the possibilities of using the plants according to the invention or their cells, parts and products, in particular their seeds.
  • the invention relates in particular to the use of the plants according to the invention, in particular their seeds, for obtaining vegetable oils as raw materials for the chemical, cosmetic, pharmaceutical and food industries and as an energy source.
  • the plants according to the invention thus represent an important source for the production of vegetable oils, in particular rapeseed and turnip oils for a broad spectrum of commercial purposes.
  • Transformation selected plant functional promoter into consideration which fulfills the condition that the expression regulated by it leads to a reduced chlorophyll synthesis performance in plant cells.
  • promoters which ensure seed-specific expression appear particularly useful for this purpose. Examples of such promoters are the above-mentioned USP, napin, 2S-albumin, legumin and hordein promoters.
  • RNA + RNA is isolated from seed tissue and a cDNA library is created.
  • cDNA clones based on poly (A) * RNA molecules from a non-seed tissue are used to identify those clones from the first bank whose hybrid poly (A) + RNA Molecules are only expressed in the seed tissue. Promoters are then isolated with the help of these cDNAs identified in this way, which can then be used for the expression of the antisense.
  • cloning vectors which contain a replication signal for E. coli and a marker gene for the selection of transformed bacterial cells.
  • examples of such vectors are pBR322, pUC series, M13mp series, pACYC184 etc.
  • the desired sequence can be matched to a suitable one - 1:
  • Restriction interface to be introduced into the vector The plasmid obtained is used for the transformation of E. co // cells. Transformed E. coli cells are grown in a suitable medium and then harvested and lysed. The plasmid is recovered. Restriction analyzes, gel electrophoresis and other biochemical-molecular biological methods are generally used as the analysis method for characterizing the plasmid DNA obtained. After each manipulation, the plasmid DNA can be cleaved and DNA fragments obtained can be linked to other DNA sequences. Each plasmid DNA sequence can be cloned into the same or different plasmids.
  • a large number of known techniques are available for introducing DNA into a plant host cell, and the person skilled in the art can determine the appropriate method in each case without difficulty. These techniques include the transformation of plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as a transformation agent, the fusion of protoplasts, the direct gene transfer of isolated DNA to protoplasts, the electroporation of DNA, the introduction of DNA using the biolistic method as well as other options.
  • plasmids When injecting and electroporation of DNA into plant cells, there are no special requirements per se for the plasmids used. The same applies to direct gene transfer. Simple plasmids such as pUC derivatives can be used. However, if whole plants are to be regenerated from such transformed cells, the presence of a selectable marker gene is necessary. The usual selection markers are known to the person skilled in the art and it is no problem for him to select a suitable marker. Depending on the method of introducing desired genes into the plant cell, additional DNA sequences may be required.
  • the Ti or Ri plasmid is used for the transformation of the plant cell, at least the right boundary, but often the right and left boundary of the T-DNA contained in the Ti and Ri plasmid, must be connected as a flank region to the genes to be introduced .
  • the DNA to be introduced must be cloned into special plasmids, either in an intermediate or in a binary vector.
  • the intermediate vectors can be integrated into the Ti or Ri plasmid of the agrobacteria on the basis of sequences which are homologous to sequences in the T-DNA by homologous recombination. This also contains the vir region necessary for the transfer of the T-DNA.
  • Intermediate vectors cannot replicate in agrobacteria.
  • the intermediate vector can be transferred to Agrobacterium tumefaciens using a helper phasmid (conjugation).
  • Binary vectors can replicate in E. coli as well as in Agrobacteria.
  • T-DNA border region They contain a selection marker gene and a linker or polylinker, which are framed by the right and left T-DNA border region. They can be transformed directly into the agrobacteria (Holsters et al. (1978) Molecular and General Genetics 163, 181-187). Serving as host cell should contain a plasmid of Agrobacterium carrying a vz 'R region. The vir region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be present. The agrobacterium transformed in this way is used to transform plant cells.
  • T-DNA for the transformation of plant cells has been intensively investigated and is sufficient in EP 120 515; Hoekema in: The Binary Plant Vector System, Offsetdrokkerij Kanters BV, Alblasserdam (1985) Chapter V; Fraley et al. (1993) Crit. Rev. Plant. Sci., 4, 1-46 and An et al. (1985) EMBO J. 4, 277-287.
  • plant explants can expediently be cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes.
  • Whole plants can then be regenerated from the infected plant material (e.g. leaf pieces, stem segments, roots, but also protoplasts or suspension-cultivated plant cells) in a suitable medium, which may contain antibiotics or biocides for the selection of transformed cells.
  • the plants are regenerated using conventional regeneration methods using known nutrient media.
  • the plants thus obtained can then be examined for the presence of the introduced DNA.
  • Other ways of introducing foreign DNA using the biolistic method or by protoplast transformation are known (cf., for example, Willmitzer L.
  • the introduced DNA is integrated in the genome of the plant cell, it is generally stable there and is also retained in the progeny of the originally transformed cell. It normally contains a selection marker which gives the transformed plant cells resistance to a biocide or an antibiotic such as kanamycin, G418, bleomycin, hygromycin, methotrexate, glyphosate, streptomycin, sulfonylurea, gentamycin or phosphinotricin and others.
  • the individually selected marker should therefore allow the selection of transformed cells from cells that lack the inserted DNA.
  • the transformed cells grow within the plant in the usual way (see also McCormick et al. (1986) Plant Cell Reports 5, 81-84).
  • the resulting plants can be grown normally and crossed with plants that have the same transformed genetic makeup or other genetic makeup.
  • the resulting hybrid individuals have the corresponding phenotypic properties. Seeds can be obtained from the plants.
  • Two or more generations should be grown to ensure that the phenotypic trait is stably maintained and inherited. Seeds should also be harvested to ensure that the appropriate phenotype or other characteristics have been preserved.
  • transgenic lines can be determined using conventional methods, which are homozygous for the new nucleic acid molecules and which investigate their phenotypic behavior with regard to a changed chlorophyll content and compare them with that of hemizygotic lines.
  • the transmission and expression of the antisense gene constructs according to the invention can be carried out with the aid of conventional molecular biological and biochemical methods. These techniques are known to the person skilled in the art and he is easily able to choose a suitable detection method, for example a Northern blot analysis for the qualitative and quantitative detection of RNA which is specific for the coding region of the respective antisense gene, or a Southern -Blot analysis to identify the transferred DNA sequences.
  • a suitable detection method for example a Northern blot analysis for the qualitative and quantitative detection of RNA which is specific for the coding region of the respective antisense gene, or a Southern -Blot analysis to identify the transferred DNA sequences.
  • transgenic plant cells or plants as well as parts and products thereof can then be examined for their chlorophyll content.
  • analysis methods are available:
  • a reduced chlorophyll content of the transgenic plants or their parts and products compared to wild-type plants can often also be seen with the naked eye or with the aid of optical aids.
  • Example 1 Preparation of an antisense construct based on DNA sequences which code for a glutamate 1 semialdehyde aminotransferase from tobacco
  • the vector pP30T which contains the USP promoter from Viceafaba, was a pUC18 derivative (see also Bäumlein et al. (1991) supra), cut with PstI and Bglll.
  • the isolated USP promoter fragment was then cloned into a BamHI / Pstl-cut pBluescript vector (-> pUSPblue). This vector construct pUSPblue was then cut with EcoRI and Xbal to obtain an EcoRI / Xbal promoter fragment.
  • the 35S CaMV promoter was removed from the binary vector BinAR by restriction digestion with EcoRI and Xbal and replaced by this seed-specific promoter by ligation of the EcoRI / Xbal vector fragment with the USP promoter fragment (-> pUSPbin).
  • the complete cDNA sequence (Xbal - 3 '- GSA-AT-cDNA - 5' -Sall) of the tobacco-GSA aminotransferase cut from the pBluescript with Xbal and Sall was used in the Xbal-Sall-cut pUSPbin.
  • the resulting binary vector was named pUSPASGSAT (see also Figure 2).
  • any vector suitable for plant transformation can be used to produce an antisense gene consisting of a fusion of a promoter, preferably a seed-specific promoter, which ensures transcription and translation in plant cells, and DNA sequences which code for enzymes involved in chlorophyll synthesis are used.
  • a promoter preferably a seed-specific promoter, which ensures transcription and translation in plant cells, and DNA sequences which code for enzymes involved in chlorophyll synthesis are used.
  • a recombinant culture of Agrobacterium tumefaciens was washed and in medium 1 (MS medium (Murashige and Skoog (1962) Physiol. Plant 15, 473), 2.5 mM MES pH 5.5, 1 mg / 1 benzylaminopurine (BAP), 0.1 mg / 1 naphthylacetic acid (NAA), 0.01 mg / 1 gibberelic acid (GA 3 ), 200 ⁇ M acetosyringone).
  • hypocotyl of 14-day-old Brassica " ⁇ pw ⁇ seedlings was cut into 0.5 to 1 cm long segments, with the bacterial suspension for 30 min. incubated and then stored for 5 days in the dark at 21 ° C. on medium 1 containing 0.7% agar.
  • hypocotyl was at 25 ° C on medium 2 (MS medium, 2.5 mM MES pH 5.7, 30 g / 1 sucrose, 1 mg / 1 kinetin, 1 mg / 1 2,4-dichloropheneoxyacetic acid (2nd , 4-D), 0.01 mg / 1 GA 3 , 500 mg / 1 polyvinylpyrrolidone (PVP), 5 mg / 1 AgNO 3 , 5 g / 1 agarose, 250 mg / 1 carbenicillin, 100 mg / 1 kanamycin; at 150 ⁇ M photon / ⁇ r / sec).
  • MS medium MS medium, 2.5 mM MES pH 5.7, 30 g / 1 sucrose, 1 mg / 1 kinetin, 1 mg / 1 2,4-dichloropheneoxyacetic acid (2nd , 4-D), 0.01 mg / 1 GA 3 , 500 mg / 1 polyvinylpyrrolidone (PVP), 5 mg / 1 AgNO 3 , 5
  • shoot induction was carried out on medium 3 (MS medium, 2.5 mM MES pH 5.5, 20 g / 1 sucrose, 40 mg / 1 adenine, 1 mg / 1 BAP, 0.1 mg / 1 NAA , 0.01 mg / 1 GA 3 , 500 mg / 1 PVP, 5 mg / 1 AgNO 3 , 100 mg / 1 kanamycin, 5 g / 1 agarose, 250 mg / 1 carbenicillin).
  • MS medium 2.5 mM MES pH 5.5, 20 g / 1 sucrose, 40 mg / 1 adenine, 1 mg / 1 BAP, 0.1 mg / 1 NAA , 0.01 mg / 1 GA 3 , 500 mg / 1 PVP, 5 mg / 1 AgNO 3 , 100 mg / 1 kanamycin, 5 g / 1 agarose, 250 mg / 1 carbenicillin).
  • the calli which showed shoots, were placed on shoot extension medium (medium 4) in glass vessels (MS medium, 2.5 mM MES pH 5.7, 10 g / 1 sucrose, 0.0025 mg / 1 BAP, 100 mg / 1 kanamycin, 7 g / 1 agarose, 250 mg / 1 carbenicillin). After about 2-3 weeks, the shoots were transferred to medium 5 (MS medium, 2.5 mM MES pH 5.5, 7 g / 1 agarose) to form roots.
  • medium 4 MS medium, 2.5 mM MES pH 5.7, 10 g / 1 sucrose, 0.0025 mg / 1 BAP, 100 mg / 1 kanamycin, 7 g / 1 agarose, 250 mg / 1 carbenicillin.
  • transgenic oilseed rape plants were produced according to the following protocol: A recombinant culture of Agrobacterium tumefaciens (strain GV 3101) was washed and resuspended in MS medium with 2.5 mM MES pH 5.5. The hypocotyl of rape seedlings 5-7 days old was cut into explants approximately 7 mm long and precultivated in liquid CIM medium for 24 hours. The explants were then co-cultivated in 10 ml of the CIM medium with 50 ⁇ l of an overnight culture of the recombinant Agrobacterium strain for 2-3 days in the dark.
  • the CIM medium consists (per liter) of MS medium, 30 g sucrose, 500 mg MES pH 5.8, 1 mg 2.4 D, 1 mg kinetin.
  • the hypocotyl pieces were then washed and cultured on CIM medium with 5 g / 1 agarose, 20 mg kanamycin, 250 mg betabactyl, 250 mg carbenicillin for 7-10 days for callus induction.
  • the slightly swollen explants were then placed on SIM medium for shoot induction. The medium was renewed every 10-14 days.
  • the SIM medium consists (per liter) of MS medium, vitamins, 20 g sucrose, 500 mg MES pH 5.6-5.8, 2 mg zeatin, 2 mg BAP, 100 mg myo-inositol, 5 g agarose, 20 mg kanamycin, 500 mg betabactyl or carbenicillin. After the shoots had formed, the calli, which showed shoots, were placed in glass vessels with MS medium, 500 mg / 1 MES pH 5.7, 20 g / 1 sucrose, 20 mg / 1 kanamycin, 5 g / 1 agarose, 500 mg / 1 Carbenicillin transferred.
  • rapeseed plants can also be transformed using other techniques.
  • Moloney et al. (1989, Plant Cell Rep. 8. 238-242), in which an agrobacterial-mediated DNA transfer to cotyledons from 7 day old seedlings via the cut at the petiole.
  • the transformation of protoplasts using cells of different tissues is suitable (e.g. described in Thomzik (1993) In: Biotechnology in agriculture and forestry, Vol. 23, Plant protoplasts and genetic engineering IV (Bajaj, ed.) Springer-Verlag, Berlin, 170-182).
  • Plants that were transformed with the vector construct pUSPASGSAT were then examined for the expression of antisense RNA against GSA-AT.
  • chlorophyll contents and synthesis rates in the transgenic plants were determined.
  • chlorophylls were extracted from 100 mg of seed material ground in liquid nitrogen with buffered, ice-cold 80% acetone until the pellet had become colorless. The samples were diluted accordingly and the absorbance at 663, 646 and 750 nm was measured on the spectrophotometer. The formulas by Porra et al. (1989, supra).
  • Chlorophyll extraction carried out and separated by HPLC.
  • the extraction and separation was carried out according to the method of Gilmore and Yamamoto (1991, J. Chromatography 543, 137-145), modified by Kruse et al. (1995, EMBO J. 14, 3712-3720) as follows: 100 mg of seed material ground in liquid nitrogen were weighed and extracted with 100% acetone and 10 ⁇ M KOH until the pellet had become colorless (1 ⁇ 400 ⁇ l, 3 ⁇ 200 ⁇ l). The extracts were diluted 4: 1 with H 2 O for the HPLC runs in order to achieve sharper separations.
  • the chlorophylls were measured using a LiChrospher 100 HPLC RP 18 column (5 ⁇ m, Merck) at a flow of 1 ml / min. eluted with the following gradient: 100% mobile solvent A (780 ml acetonitrile; 80 ml MeOH; 30 ml Tris / HCl 0.1 M pH
  • Retention times that are known for the HPLC system can be assigned.
  • the 5-aminolevulinic acid synthesis capacity in the transgenic plants was determined. Since enzyme activities in the C5 pathway cannot be determined without purifying the enzymes, indirect methods were chosen to measure the ability of ALA formation from glutamate. On the one hand, the accumulation of ALA after incubation of LA was determined according to the following protocol: 100-300 mg of seed tissue were mixed with 40 mM levulinic acid, a potent inhibitor (substrate analog) of ALA dehydratase (ALAD), in 20 mM K 2 per batch HPO 4 / KH 2 PO 4 (pH 7.1) incubated in the light for 2-4 h.
  • ALAD potent inhibitor
  • the plant material was frozen in liquid nitrogen, homogenized and mixed well after adding 1 ml of 20 mM K 2 HPO 4 / KH 2 PO 4 (pH 7.1).
  • the ALA determination was carried out according to Mauzerall and Granick (1956, J. Biol. Chem. 219, 435-446). After centrifugation for 20 minutes at 15,000 g at 4 ° C., the same volume of 20 mM K 2 HPO 4 / KH 2 PO 4 (pH 7.1) and 100 ⁇ l of ethyl acetoacetate were pipetted into 250 ⁇ l of the supernatant. Samples that had been extracted without levulinic acid incubation at time t 0 served as a control. All samples were for exactly 10 min.
  • Fig. 1 shows the metabolic pathway of tetrapyrrole biosynthesis
  • Fig. 2 shows a restriction map of the binary described in Example 1
  • Vector pUSP-ASGSAT which contains a fusion of the USP promoter and the region coding for GSA aminotransferase in antisense orientation.
  • the vector pUSP-ASGSAT carries a kanamycin resistance gene as a plant selection marker.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a method for the reduction of chlorophyll content in oil plant seeds, especially rape-seeds, based on the expression of chlorophyll synthesis antisense genes. The invention also relates to oil plant seeds which have a reduced chlorophyll content in relation to wild species of seeds. The invention further relates to the use of said seeds to obtain vegetable oil.

Description

Reduktion des Chlorophyllgehaltes in Ölpflanzensamen Reduction of the chlorophyll content in oil plant seeds
Die vorliegende Erfindung betrifft Verfahren zur Reduktion des Chlorophyllgehalts in Samen von Ölpflanzen, insbesondere Rapssamen, basierend auf der Expression von Antisense-Genen der Chlorophyllsynthese. Des weiteren betrifft die Erfindung Samen von Ölpflanzen, die einen gegenüber Wildtyppflanzen verringerten Chlorophyllgehalt aufweisen, sowie die Verwendung dieser Samen zur Gewinnung pflanzlicher Öle.The present invention relates to methods for reducing the chlorophyll content in seeds of oil plants, in particular rapeseed, based on the expression of antisense genes in chlorophyll synthesis. The invention further relates to seeds of oil plants which have a reduced chlorophyll content compared to wild type plants, and to the use of these seeds for the production of vegetable oils.
Die Kreuzblütler Raps (Brassica napus) und Rübsen (Brassica rapa) gehören neben Soja und Baumwollsaat zu den wichtigsten Ölpflanzen. Die Samen des Raps enthalten etwa 40% fettes Öl, das sog. Raps- oder Rüböl, das in der Regel aus den geschroteten Samen durch Pressen oder Extraktion in einer Ausbeute von ca. 40% gewonnen und anschließend einer Raffination unterworfen wird. Das gewonnene Rapsöl kann anschließend als Speiseöl, Mineralschmieröl-Zusatz, nach Fetthärtung zur Margarine-Herstellung sowie als Rohstoff bei der Herstellung von Baumwachs, Pflastern, Lederfettungsmitteln usw. verwendet werden. Rapsöl ist auch als gute Quelle für u.a. C20- und C22-Fettsäuren bekannt, die als Kunststoffverarbeitungs- und Waschhilfsmittel wichtig sind. Zusätzlich zu ihrer Verwendung als Industrierohstoffe erlangen pflanzliche Öle, und insbesondere Rapsöl, auch zunehmende Bedeutung als Biodieseltreibstoffe. Allgemein sind die Einsatzbereiche pflanzlicher Öle in den vergangenen Jahren deutlich erweitert wurden. Mit steigendem Umweltbewußtsein wurden zunehmend umweltverträglichere Industrieprodukte, bspw. Schmierstoffe und Hydrauliköle, entwickelt.The cruciferous oilseed rape (Brassica napus) and turnip rape (Brassica rapa) are among the most important oil plants alongside soybeans and cottonseed. The seeds of rapeseed contain around 40% fatty oil, the so-called rapeseed or turnip oil, which is usually obtained from the crushed seeds by pressing or extraction in a yield of approx. 40% and then subjected to refining. The rapeseed oil obtained can then be used as cooking oil, mineral lubricant oil additive, after fat hardening for margarine production and as a raw material in the production of tree wax, plasters, leather greasing agents, etc. Rapeseed oil is also known as a good source of C 20 and C 22 fatty acids, which are important as plastic processing and washing aids. In addition to their use as industrial raw materials, vegetable oils, and in particular rapeseed oil, are also becoming increasingly important as biodiesel fuels. In general, the areas of application of vegetable oils have been significantly expanded in recent years. With increasing environmental awareness, increasingly more environmentally friendly industrial products, such as lubricants and hydraulic oils, were developed.
Das Problem zu hoher Chlorophyllgehalte in Rapssamen ist allgemein bekannt, insbesondere im Rapsanbau mit kurzen Vegetationsperioden. Bei jeder Ernte müssen Züchter und Saatgutbetriebe das Risiko, die Ernte wegen Frost zu verlieren, gegenüber der weiteren notwendigen Reifung der Samen, während der zudem ein Abbau von Pigmenten beobachtet wird, abwägen. Aus diesem Grund wird der Raps häufig nach der Ernte zur weiteren Reifung mehrere Tage liegen gelassen, ehe die Ernte eingefahren wird.The problem of high chlorophyll contents in rapeseed is well known, especially in rapeseed cultivation with short growing seasons. With every harvest, breeders and seed farms face the risk of freezing due to frost weigh against the further necessary maturation of the seeds, during which a breakdown of pigments is also observed. For this reason, the rapeseed is often left to ripen for several days after harvesting before the harvest is started.
Erschwerend kommt hinzu, daß tiefe Temperaturen, also auch für den Samen subletale Frosttemperaturen, die Chlorophyllbiosynthese in Rapsamen fördern und somit dem bei der Reifung stattfindenden Abbau der Pigmente zusätzlich entgegenwirken, wodurch sich insbesondere in Anbaugebieten mit relativ kurzen Vegetationsperioden unerwünscht hohe Chlorophyllgehalte in Rapssamen einstellen können.To make matters worse, low temperatures, also for the seeds sublethal frost temperatures, promote the chlorophyll biosynthesis in rapeseed and thus additionally counteract the degradation of the pigments during ripening, which can result in undesirably high chlorophyll contents in rapeseed, especially in cultivation areas with relatively short growing periods .
Während des Raffϊnierens des Rapsöls müssen die in den Samen enthaltenen Pigmente, insbesondere die Chlorophylle, und ihre photosensitiven Vorstufen aufwendig extrahiert werden. Abgesehen davon, daß diese Extraktionen zeit- und kostenintensiv sind, bedeuten sie auch immer einen Verlust des Rapsölertrages. Obwohl Rübsen hinsichtlich Vegetationsdauer und Standort etwas geringere Ansprüche als Raps stellt, ergeben sich für diese Brassicaceae ähnliche Probleme hinsichtlich Reifung der Samen und überschüssigem Chlorophyllgehalt. Die Gewinnung und Verwendung von Rüböl entsprechen weitgehend denen für Rapsöl.During the refining of the rapeseed oil, the pigments contained in the seeds, especially the chlorophylls, and their photosensitive precursors have to be extracted in a complex manner. Apart from the fact that these extractions are time and cost intensive, they always mean a loss of the rapeseed oil yield. Although turnips have somewhat lower requirements than rapeseed in terms of vegetation duration and location, similar problems arise for these Brassicaceae in terms of seed ripening and excess chlorophyll content. The extraction and use of rapeseed oil largely corresponds to that for rapeseed oil.
Mit Hilfe der molekularen Biotechnologie könnte in Raps- und Rübsenpflanzen und deren Samen die Chlorophyllsynthese dahingehend beeinflußt werden, daß die Menge an überschüssigem Chlorophyll in Rapssamen reduziert bzw. vollkommen Chlorophyll-freier Samen produziert wird. Die Tetrapyrrolbiosynthese, die in Pflanzen vorwiegend in Piastiden erfolgt, verläuft, wie gegenwärtig angenommen wird, nach folgendem Stoffwechselweg (siehe hierzu auch Abbildung 1). Aus Glutamat wird über drei Enzymaktivitäten (Glutamyl-tRNA-Synthetase, Glutamyl-tRNA-Reduktase und Glutamat 1- Semialdehyd-Aminotransferase) 5-Aminolävulinsäure (ALA) hergestellt. Zwei ALA-Moleküle kondensieren zur zyklischen Verbindung, Porphobilinogen, das durch Verkettung von 4 Einheiten zum ersten Tetrapyrrol, dem Hydroxy- methylbilan, umgewandelt wird. Aus Hydroxymethylbilan entsteht durch Oxidationen und Seitenkettenmodifikationen über Uroporphyrinogen III, Coproporphyrinogen und Protopoφhyrinogen IX das Protopoφhyrin IX. Durch Einbau eines bivalenten Metallkations entsteht Magnesium-Protopoφhyrin IX, das durch weitere Modifikationen, die u.a. den Einbau eines zusätzlichen isozyklischen Ringes am Ring B und die besonders wichtige Veresterung eines Propionats mit einer Phytolkette betreffen, in Chlorophyll a umgewandelt.With the help of molecular biotechnology, the synthesis of chlorophyll in rapeseed and turnip plants and their seeds could be influenced by reducing the amount of excess chlorophyll in rapeseed or producing completely chlorophyll-free seeds. Tetrapyrrole biosynthesis, which occurs mainly in plastids in plants, proceeds, as is currently assumed, according to the following metabolic pathway (see also Figure 1). 5-aminolevulinic acid (ALA) is produced from glutamate via three enzyme activities (glutamyl tRNA synthetase, glutamyl tRNA reductase and glutamate 1-semialdehyde aminotransferase). Two ALA molecules condense to form the cyclic compound, porphobilinogen, which is converted into the first tetrapyrrole, the hydroxymethylbilane, by chaining 4 units. The protopophyrin IX is formed from hydroxymethylbilane by oxidation and side chain modifications via uroporphyrinogen III, coproporphyrinogen and protopophyrinogen IX. The incorporation of a divalent metal cation produces magnesium protopophyrin IX, which is converted into chlorophyll a by further modifications, which include the incorporation of an additional isocyclic ring on ring B and the particularly important esterification of a propionate with a phytol chain.
Die Kenntnis über Pflanzengene, die für Enzyme des oben aufgezeigten Chlorophyllsynthesewegs kodieren und die Möglichkeit solche Gene, gezielt auf Pflanzen zu übertragen, stellen eine wesentliche Grundlage der vorliegenden Erfindung da.The knowledge of plant genes which code for enzymes of the chlorophyll synthesis path indicated above and the possibility of transferring such genes in a targeted manner to plants form an essential basis of the present invention.
Die europäische Patentanmeldung 0 779 364 A2 beschreibt einen Ansatz zur Reduktion des Chlorophyllgehalts in transgenen Pflanzen, bei dem der Transkript- und Proteingehalt der chlorophyllbindenden Proteine (Chlorophyll a/b binding (CAB) proteins) des Antennenkomplexes des Photosystems II (light harvesting complex associated with photosystem II, LHCII) verringert ist. Dieser auf der Expression von Antisense-Genen für LHCII basierende Ansatz betrifft somit Proteine, die bereits synthetisiertes Chlorophyll im Photosystem II binden, nicht aber Enzyme, die unmittelbar an der Chlorophyllsynthese beteiligt sind. Darüber hinaus deuten experimentelle Daten von Flachmann und Kühlbrandt (Plant Cell (1995) 7, 149-160) darauf hin, daß in Blättern von transgenen Tabakpflanzen infolge der Expression von Antisense-Genen für LHCII zwar die RNA-Gehalte bis auf 5% der Kontroll werte in Wildtyppflanzen verringert sind, aber weder eine Verminderung des LHC-Proteingehalts noch eine Chlorophyllreduktion zu beobachten ist. Eine Korrelation zwischen der Abnahme der LHC- RNA-Menge und der Verringerung des Protein- und Chlorophyllgehalts konnte von Flachmann und Kühlbrandt nicht festgestellt werden.European patent application 0 779 364 A2 describes an approach to reducing the chlorophyll content in transgenic plants, in which the transcript and protein content of the chlorophyll-binding proteins (chlorophyll a / b binding (CAB) proteins) of the antenna complex of Photosystem II (light harvesting complex associated with photosystem II, LHCII) is reduced. This approach, which is based on the expression of antisense genes for LHCII, therefore relates to proteins which bind already synthesized chlorophyll in Photosystem II, but not to enzymes which are directly involved in chlorophyll synthesis. In addition, experimental data from Flachmann and Kühlbrandt (Plant Cell (1995) 7, 149-160) indicate that the leaves of transgenic tobacco plants, as a result of the expression of antisense genes for LHCII, have RNA contents down to 5% of the control values in wild-type plants are reduced, but neither a decrease in the LHC protein content nor a chlorophyll reduction can be observed. A correlation between the decrease in the amount of LHC-RNA and the decrease in the protein and chlorophyll content could not be found by Flachmann and Kühlbrandt.
Im Unterschied zu der im Stand der Technik verfolgten Strategie sollte es möglich sein, mittels eines direkten Eingriffs in die Tetrapyrrolsynthese eine erfolgreiche und zuverlässige Reduktion des Chlorophyllgehalts in transgenen Pflanzen zu erreichen.In contrast to the strategy pursued in the prior art, it should be possible to achieve a successful and reliable reduction in the chlorophyll content in transgenic plants by means of a direct intervention in the tetrapyrrole synthesis.
Es ist daher eine Aufgabe der Erfindung, Wege aufzuzeigen, auf denen mit Hilfe gentechnologischer Methoden die Chlorophyll synthese in transgenen Ölpflanzensamen verringert bzw. blockiert und dadurch der Chlorophyllgehalt reduziert werden kann.It is therefore an object of the invention to show ways in which the chlorophyll synthesis in transgenic oil plant seeds can be reduced or blocked with the aid of genetic engineering methods and the chlorophyll content can thereby be reduced.
Des weiteren ist es eine wichtige Aufgabe der Erfindung, transgene Pflanzensamen mit gegenüber Samen von Wildtyppflanzen verringertem Chlorophyllgehalt bereitzustellen.Furthermore, it is an important object of the invention to provide transgenic plant seeds with a reduced chlorophyll content compared to seeds of wild-type plants.
Weitere Aufgaben der Erfindung ergeben sich aus der folgenden Beschreibung. Diese Aufgaben werden durch die Gegenstände der unabhängigen Ansprüche, insbesondere basierend auf der Bereitstellung der erfindungsgemäßen Verfahren zur Reduktion des Chlorophyllgehalts in Pflanzensamen sowie der erfindungsgemäßen Pflanzen und Teile und Produkte davon mit gegenüber Wildtyppflanzen verringertem Chlorophyllgehalt, gelöst. Die vorliegende Erfindung betrifft somit den Einsatz von DNA- Sequenzen, die für Enzyme der Chlorophyllsynthese kodieren und deren gezielte Übertragung auf und Expression in transgenen Pflanzenzellen in einer Verminderung der Chlorophyllsynthese resultieren. Genauer betrifft die Erfindung die Übertragung geeigneter Antisense-Genkonstrukte auf Pflanzen und deren Expression im Samengewebe.Further objects of the invention will become apparent from the following description. These objects are achieved by the subject matter of the independent claims, in particular based on the provision of the methods according to the invention for reducing the chlorophyll content in plant seeds and the plants and parts and products thereof according to the invention with a chlorophyll content reduced compared to wild type plants. The present invention thus relates to the use of DNA sequences which code for enzymes in chlorophyll synthesis and whose targeted transfer to and expression in transgenic plant cells results in a reduction in chlorophyll synthesis. More specifically, the invention relates to the transfer of suitable antisense gene constructs to plants and their expression in the seed tissue.
Die Erfindung basiert auf Experimenten, in denen die Chlorophyllmenge in Pflanzensamen durch die samenspezifische Expression von Antisense-Genen gegen bestimmte Enzymschritte der Tetrapyrrolsynthese und die hierdurch bedingte samenspezifische Hemmung der Aktivität definierter Enzyme der Chlorophyllsynthese signifikant reduziert werden konnte.The invention is based on experiments in which the amount of chlorophyll in plant seeds could be significantly reduced by the seed-specific expression of antisense genes against certain enzyme steps in tetrapyrrole synthesis and the resultant seed-specific inhibition of the activity of defined enzymes in chlorophyll synthesis.
Die Antisense-Technik nutzt die Komplementarität von Nukleinsäuremolekülen auf elegante Weise aus. Antisense-Gene, die komplementär zur endogenen RNA für Enyzme des Tetrapyrrolstoffwechsels kodieren, vermindern die endogenen RNA- Gehalte bzw. die Anzahl der für die anschließende Proteinbiosynthese verfügbaren RNA-Moleküle. Ein verminderter Gehalt an endogener RNA bedingt zwangsläufig eine verringerte Translation, also eine reduzierte Proteinmenge, die sich wiederum in einer verringerten Aktivität des Zielenzyms äußert.The antisense technique elegantly exploits the complementarity of nucleic acid molecules. Antisense genes, which code complementary to the endogenous RNA for enzymes of the tetrapyrrole metabolism, reduce the endogenous RNA contents or the number of RNA molecules available for the subsequent protein biosynthesis. A reduced content of endogenous RNA inevitably leads to a reduced translation, that is to say a reduced amount of protein, which in turn manifests itself in a reduced activity of the target enzyme.
Die Erfindung betrifft sämtliche Gene, deren Genprodukte Schritte der Tetrapyrrolsynthese katalysieren. Da durch gezielte Antisense-RNA-Synthese die Expression und Aktivität jedes beliebigen, in die Tetrapyrrolsynthese involvierten Enzyms vermindert bzw. gehemmt werden kann, kann das erfindungsgemäße Verfahren zur Reduktion des Chlorophyllgehalts in Samenzellen unter Einsatz sämtlicher Gene dieses Stoffwechselweges, d.h. auch einzeln oder in Kombination, durchgeführt werden. Bei diesen Gene handelt es sich vor allem um Gene, die für Glutamyl-tRNA-Synthetase, Glutamyl-tRNA-Reduktase, Glutamat 1 -Semialdehyd- Aminotransferase, Magnesium-Chelatase bzw. deren Untereinheiten CHL I, CHL D, CHL H, Chlorophyllsynthetase und Mg-Protopoφhyrin-Monomethylester- Transferase kodieren.The invention relates to all genes whose gene products catalyze steps of tetrapyrrole synthesis. Since the expression and activity of any enzyme involved in tetrapyrrole synthesis can be reduced or inhibited by targeted antisense RNA synthesis, the method according to the invention for reducing the chlorophyll content in sperm cells can use all genes of this metabolic pathway, ie also individually or in combination , be performed. These genes are primarily genes which are responsible for glutamyl tRNA synthetase, glutamyl tRNA reductase, glutamate 1 semialdehyde aminotransferase, magnesium chelatase or their subunits CHL I, Code CHL D, CHL H, chlorophyll synthetase and Mg protopophyrin monomethyl ester transferase.
Die Erfindung betrifft auch Fragmente solcher, an der Chlorophyllsynthese beteiligter Gene, deren Verwendung innerhalb eines Antisense-Konstruktes in einer verringerten Aktivität des Zielenzyms resultiert. Man könnte solche Fragmente im Zusammenhang mit dieser Erfindung als "Antisense-aktive" Fragmente bezeichnen, d.h. ihre Übertragung in Form eines geeigneten Konstruktes bewirkt eine Reduktion der entsprechenden endogenen Enzymaktivität.The invention also relates to fragments of such genes involved in chlorophyll synthesis, the use of which within an antisense construct results in reduced activity of the target enzyme. Such fragments could be referred to in the context of this invention as "antisense active" fragments, i.e. their transfer in the form of a suitable construct reduces the corresponding endogenous enzyme activity.
Des weiteren betrifft die Erfindung den Einsatz von Allelen und Derivaten der erfindungsgemäßen Gene zur Reduktion des Chlorophyllgehalts in Pflanzensamen, also auch den Einsatz von Nukleinsäuremolekülen, deren Sequenzen sich aufgrund der Degeneration des genetischen Codes von den erfindungsgemäßen Genen unterscheiden und deren Übertragung auf Pflanzenzellen in einer durch dasFurthermore, the invention relates to the use of alleles and derivatives of the genes according to the invention for reducing the chlorophyll content in plant seeds, thus also the use of nucleic acid molecules whose sequences differ from the genes according to the invention due to the degeneration of the genetic code and their transmission to plant cells in one go the
Antisense-Gen bedingten Verminderung des Gehalts des gewünschten Enzyms des Chlorophyllstoffwechsels resultiert.Antisense gene-related reduction in the content of the desired enzyme of chlorophyll metabolism results.
Des weiteren betrifft die Erfindung den erfindungsgemäßen Einsatz von Nukleinsäuremolekülen, die die erfindungsgemäßen Antisense-Gene enthalten oder durch natürlich vorkommende oder durch gentechnische oder chemische Prozesse und Syntheseverfahren aus diesen entstanden sind bzw. von diesen abgeleitet wurden. Hierbei kann es sich beispielsweise um DNA- oder RNA-Moleküle, cDNA, genomische DNA, mRNA etc. handeln.Furthermore, the invention relates to the use according to the invention of nucleic acid molecules which contain the antisense genes according to the invention or which have arisen from, or have been derived from, naturally occurring or by genetic engineering or chemical processes and synthesis processes. This can be, for example, DNA or RNA molecules, cDNA, genomic DNA, mRNA etc.
Bevorzugt werden im Rahmen der Erfindung die folgenden Gene der Chlorophyllsynthese zur Reduktion des Chlorophyllgehaltes in Samengewebe eingesetzt. Gene, die für Glutamat 1 -Semialdehyd- Aminotransferase (GSA-AT) kodieren. Dieses Enzym katalysiert die Umwandlung von Glutamat 1- Semialdehyd (GSA) in Aminolävulinsäure (ALA) durch den Nettotransfer einer Aminogruppe vom C2 zum Cl . Die Expression einer Tabak- Antisense-RNA für GSA-AT wurde bisher nur in Blättern von Tabakpflanzen untersucht (Höfgen et al. (1994) Proc. Natl. Acad. Sei. USA 91, 1726-1730). DNA-Sequenzen von zwei Tabak-full-length- cDNA-Klonen stehen in der GenBank, Accession Nos. X65973 und X65974, zur Verfügung.In the context of the invention, the following genes of chlorophyll synthesis are preferably used to reduce the chlorophyll content in seed tissue. Genes coding for glutamate 1 semialdehyde aminotransferase (GSA-AT). This enzyme catalyzes the conversion of glutamate 1-semialdehyde (GSA) to aminolevulinic acid (ALA) through the net transfer of an amino group from C2 to Cl. The expression of a tobacco antisense RNA for GSA-AT has so far only been investigated in leaves of tobacco plants (Höfgen et al. (1994) Proc. Natl. Acad. Sei. USA 91, 1726-1730). DNA sequences from two tobacco full-length cDNA clones are in the GenBank, Accession Nos. X65973 and X65974 are available.
Gene, die für die Untereinheiten CHL I und CHL H der Magnesium- Chelatase kodieren. Die Untereinheiten der Mg-Chelatase sind an dem Einbau von Magnesium in Protopoφhyrin IX beteiligt. Geeignete DNA- Sequenzen von full-length-cDNA-Klonen, die für CHL I und CHL H kodieren, sind in Kruse et al. (1997) Plant Mol. Biol. 35, 1053-1056 und unter Accession Nos. AF014053 (Chl I) bzw. AF014051 und AF14052 (Chl H) in der GenBank beschrieben.Genes encoding the CHL I and CHL H subunits of magnesium chelatase. The subunits of Mg chelatase are involved in the incorporation of magnesium into Protopoφhyrin IX. Suitable DNA sequences of full-length cDNA clones which code for CHL I and CHL H are described in Kruse et al. (1997) Plant Mol. Biol. 35, 1053-1056 and under Accession Nos. AF014053 (Chl I) or AF014051 and AF14052 (Chl H) are described in the GenBank.
Gene, die für die plastidäre Glutamyl-tRNA-Synthetase kodieren. Dieses Enzym katalysiert die Bildung von Glutamyl-tRNA aus Glutaminsäure.Genes encoding plastid glutamyl tRNA synthetase. This enzyme catalyzes the formation of glutamyl tRNA from glutamic acid.
Gene, die für Glutamyl-tRNA Reduktase kodieren. Dieses Enzym katalysiert die Reduktion aktivierten Glutamats zum Glutamat- 1- Semialdehyd. Geeignete DNA-Sequenzen von full-length-cDNA-Klonen aus einer Gersten-cDNA-Bank, die für die Reduktase kodieren, sind inGenes that code for glutamyl tRNA reductase. This enzyme catalyzes the reduction of activated glutamate to glutamate 1-semialdehyde. Suitable DNA sequences of full-length cDNA clones from a barley cDNA library, which code for the reductase, are shown in
Bougri and Grimm (1996) Plant J. 9, 7867-878 und unter Accession Nos. X86101, X86102 und X92403 in der Genbank beschrieben. In einem Antisense-Genkonstrukt gemäß der Erfindung ist ein Gen der Chlorophyllsynthese oder ein Fragment davon, vorzugsweise die kodierende Region eines solchen Gens bzw. Fragments, in Antisense-Orientierung, d.h. 3' -> 5 '-Orientierung, mit dem 3 '-Ende eines Promotors, also einem regulatorischen Element, das die Transkription des daran gekoppelten Gens in Pflanzenzellen gewährleistet, verknüpft.Bougri and Grimm (1996) Plant J. 9, 7867-878 and under Accession Nos. X86101, X86102 and X92403 are described in the gene bank. In an antisense gene construct according to the invention, a gene of chlorophyll synthesis or a fragment thereof, preferably the coding region of such a gene or fragment, is in the antisense orientation, ie 3 '->5' orientation, with the 3 'end a promoter, i.e. a regulatory element that ensures the transcription of the linked gene in plant cells.
So können die erfindungsgemäßen Gene beispielsweise unter Kontrolle konstitutiver, aber auch induzierbarer oder gewebe- bzw. enwicklungsspezifischer Promotoren in Pflanzenzellen exprimiert werden. Bevorzugt handelt es sich hierbei um samenspezifische Promotoren, deren Einsatz die gezielte Hemmung der Chlorophyllsynthese in Samenzellen ermöglicht.For example, the genes according to the invention can be expressed in plant cells under the control of constitutive, but also inducible or tissue or development-specific promoters. These are preferably seed-specific promoters, the use of which enables the targeted inhibition of chlorophyll synthesis in sperm cells.
Als Beispiele für samenspezifische Promotoren, die im Zusammenhang mit der Erfindung eingesetzt werden können, sind zu erwähnen der USP-Promotor (u.a. beschrieben in: Bäumlein et al. (1991) Mol. Gen. Genet. 459-467; Fiedler et al. (1993) Plant Mol. Biol. 22, 669-679; DE-C2-39 20 034), der Napin-Promotor (Ericson et al. (1991) Eur. J. Biochem. 197, 741-746; Accession No. X 58142), der 2S-Albumin-Promotor (Krebbers et al. (1988) Plant Physiol. 87, 859-866; Accession No. Z 24745), der Legumin-Promotor (Bäumlein et al. (1986) Nucl. Acids Res. 14, 2707-2720; Accession No. X 03677) und der Hordein-Promotor (Entwistle et al. (1991) Plant Mol. Biol. 17, 1217-1231; Accession No. X 60037).As examples of seed-specific promoters that can be used in connection with the invention, mention should be made of the USP promoter (described, inter alia, in: Bäumlein et al. (1991) Mol. Gen. Genet. 459-467; Fiedler et al. ( 1993) Plant Mol. Biol. 22, 669-679; DE-C2-39 20 034), the napin promoter (Ericson et al. (1991) Eur. J. Biochem. 197, 741-746; Accession No. X 58142), the 2S albumin promoter (Krebbers et al. (1988) Plant Physiol. 87, 859-866; Accession No. Z 24745), the legumin promoter (Bäumlein et al. (1986) Nucl. Acids Res. 14, 2707-2720; Accession No. X 03677) and the Hordein promoter (Entwistle et al. (1991) Plant Mol. Biol. 17, 1217-1231; Accession No. X 60037).
Gegebenenfalls können die gemäß der Erfindung eingesetzten Antisense- Konstrukte zusätzlich Enhancer-Sequenzen oder andere regulatorische Sequenzen umfassen. Es ist ebenso eine Aufgabe der Erfindung, neue Pflanzen, Pflanzenzellen, -teile oder -produkte bereitzustellen, die sich durch einen gegenüber Wildtyppflanzen verringerten Chlorophyllgehalt auszeichnen.Optionally, the antisense constructs used according to the invention can additionally comprise enhancer sequences or other regulatory sequences. It is also an object of the invention to provide new plants, plant cells, parts or products which are distinguished by a reduced chlorophyll content compared to wild type plants.
Diese Aufgaben werden durch die Übertragung der erfindungsgemäßen Antisense- Nukleinsäuremoleküle und ihre Expression in Pflanzen gelöst. Durch die Bereitstellung der erfindungsgemäßen Nukleinsäuremoleküle besteht nun die Möglichkeit, pflanzliche Zellen mittels gentechnischer Methoden dahingehend zu verändern, daß sie im Vergleich zu Wildtypzellen eine reduzierte Chlorophyll- biosyntheseleistung aufweisen. Erfindungsgemäß handelt es sich um Samen von Ölpflanzen, insbesondere von Raps und Rübsen, die einen gegenüber Samen von Wildtyppflanzen signifikant verringerten Chlorophyllgehalt aufweisen. Besonders bevor∑ igt handelt es sich bei den transgenen Rapspflanzen um Sommerrapspflanzen. Für die Anwendung der erfindungsgemäßen Verfahren eignen sich ebenfalls OO-Rapspflanzen, d.h. Rapspflanzen, die Erucasäure-frei und Glucosinolat-arm sind.These objects are achieved by the transfer of the antisense nucleic acid molecules according to the invention and their expression in plants. By providing the nucleic acid molecules according to the invention, it is now possible to use genetic engineering methods to modify plant cells to the extent that they have a reduced chlorophyll biosynthesis capacity compared to wild-type cells. According to the invention, these are seeds of oil plants, in particular oilseed rape and turnips, which have a significantly reduced chlorophyll content compared to seeds of wild type plants. The transgenic oilseed rape plants are particularly preferably summer oilseed rape plants. OO rapeseed plants are also suitable for the use of the processes according to the invention, i.e. Rapeseed plants that are free of erucic acid and low in glucosinolate.
Bei den Pflanzen, die mit den erfindungsgemäßen Nukleinsäuremolekülen transformiert sind und in denen aufgrund der Integration eines solchen Moleküls in ihr Genom eine geringere Menge an Chlorophllen synthetisiert wird, kann es sich im Prinzip um jede beliebige Pflanze handeln. Vorzugsweise ist es eine Ölpflanze, wie Raps und Rübsen, aus der pflanzliches Öl gewonnen wird, bei dessen Gewinnung hohe Chlorophyllgehalte unerwünscht sind.The plants that are transformed with the nucleic acid molecules according to the invention and in which a smaller amount of chlorophylls are synthesized due to the integration of such a molecule into their genome can in principle be any plant. It is preferably an oil plant, such as oilseed rape and turnips, from which vegetable oil is obtained, in the production of which high chlorophyll contents are undesirable.
Gegenstand der Erfindung sind insbesondere Vermehrungsmaterial von erfindungsgemäßen Pflanzen, beispielsweise Samen, Früchte. Stecklinge, Knollen, Wurzelstöcke etc., wobei dieses Vermehrungsmaterial gegebenenfalls oben beschriebene transgene Pflanzenzellen enthält, sowie Teile dieser Pflanzen wie Protoplasten, Pflanzenzellen und Kalli; besonders bevorzugt handelt es sich um Samen.The invention relates in particular to propagation material from plants according to the invention, for example seeds, fruits. Cuttings, tubers, rhizomes etc., this material may be above contains described transgenic plant cells, and parts of these plants such as protoplasts, plant cells and calli; seeds are particularly preferred.
Der vorliegenden Erfindung liegt außerdem die Aufgabe zugrunde, Verfahren zur Herstellung von Pflanzenzellen und Pflanzen und Teilen davon, insbesondere Samen, die sich durch einen reduzierten Chlorophyllgehalt auszeichnen, bereitzustellen.The present invention is also based on the object of providing processes for producing plant cells and plants and parts thereof, in particular seeds, which are distinguished by a reduced chlorophyll content.
Diese Aufgabe wird durch Verfahren gelöst, mit deren Hilfe die Erzeugung neuer Pflanzenzellen und Pflanzen, die aufgrund der Übertragung und Expression von Antisense-Genen, die gegen endogene, für Enzyme der Chlorophyllsynthese kodierende Gene gerichtet sind, durch einen gegenüber Wildtypzellen verringerten Chlorophyllgehalt gekennzeichnet sind, möglich ist.This object is achieved by methods by means of which the production of new plant cells and plants which, owing to the transfer and expression of antisense genes which are directed against endogenous genes which code for enzymes of chlorophyll synthesis, are characterized by a reduced chlorophyll content compared to wild-type cells, is possible.
Zur Erzeugung solcher neuer Pflanzenzellen und Pflanzen bieten sich verschiedene gentechnologische Transformationsmethoden an. Erfindungsgemäß werden Pflanzenzellen, die aufgrund der Expression eines erfindungsgemäßen Antisense- Genkonstrukts einen verringerten Chlorophyllgehalt aufweisen, durch ein Verfahren hergestellt, das folgende Schritte umfaßt:Various genetic engineering transformation methods are available for generating such new plant cells and plants. According to the invention, plant cells which have a reduced chlorophyll content due to the expression of an antisense gene construct according to the invention are produced by a process which comprises the following steps:
a) Herstellung einer Expressionskassette, die folgende DNA-Sequenzen umfaßt: einen Promotor, der die Transkription in pflanzlichen Zellen gewährleistet; mindestens eine Nukleinsäuresequenz, die für ein Enzym oder ein Fragment davon kodiert, das an der Chlorophyllsynthese beteiligt ist, wobei die Nukleinsäuresequenz in Antisense-Orientierung an das 3' -Ende des Promotors gekoppelt ist; und gegebenenfalls ein Terminationssignal für die Termination der Transkription und die Addition eines poly-A-Schwanzes an das entsprechende Transkript, das an das 5 '-Ende der Nukleinsäuresequenz gekoppelt ist.a) Production of an expression cassette which comprises the following DNA sequences: a promoter which ensures transcription in plant cells; at least one nucleic acid sequence encoding an enzyme or a fragment thereof that is involved in chlorophyll synthesis, the nucleic acid sequence being coupled in antisense orientation to the 3 'end of the promoter; and optionally a termination signal for the termination of the transcription and the addition of a poly-A tail to the corresponding transcript which is coupled to the 5 'end of the nucleic acid sequence.
b) Transformation pflanzlicher Zellen mit der in Schritt a) hergestellten Expressionskassette .b) Transformation of plant cells with the expression cassette produced in step a).
c) Regeneration transgener Pflanzen und gegebenenfalls die Vermehrung der Pflanzen.c) Regeneration of transgenic plants and, if appropriate, the multiplication of the plants.
Des weiteren betrifft die Erfindung die Verwendung der erfindungsgemäßen Antisense-Konstruktionen zur Erzeugung von Pflanzen, insbesondere Pflanzensamen, die einen verringerten Chlorophyllgehalt aufweisen. Bevorzugt betrifft die Erfindung die Verwendung der erfindungsgemäßen Antisense- Konstruktionen zur Erzeugung von Samen von Ölpflanzen, besonders bevorzugt von Raps und Rübsen, die einen verringerten Chlorophyllgehalt aufweisen.Furthermore, the invention relates to the use of the antisense constructions according to the invention for producing plants, in particular plant seeds, which have a reduced chlorophyll content. The invention preferably relates to the use of the antisense constructions according to the invention for the production of seeds from oil plants, particularly preferably from rapeseed and turnips, which have a reduced chlorophyll content.
Eine weitere Aufgabe der Erfindung besteht darin, die Möglichkeiten der Verwendung der erfindungsgemäßen Pflanzen bzw. deren Zellen, Teile und Produkte, insbesondere deren Samen, aufzuzeichnen.Another object of the invention is to record the possibilities of using the plants according to the invention or their cells, parts and products, in particular their seeds.
Gegenstand der Erfindung ist insbesondere die Verwendung der erfindungsgemäßen Pflanzen, insbesondere ihrer Samen, zur Gewinnung pflanzlicher Öle als Rohstoffe für die chemische, kosmetische, pharmazeutische und Nahrungsmittelindustrie sowie als Energieträger. Die erfindungsgemäßen Pflanzen stellen somit eine wichtige Quelle für die Gewinnung von Pflanzenölen, insbesondere Raps- und Rübsenölen für ein breites Spektrum gewerblicher Zwecke dar.The invention relates in particular to the use of the plants according to the invention, in particular their seeds, for obtaining vegetable oils as raw materials for the chemical, cosmetic, pharmaceutical and food industries and as an energy source. The plants according to the invention thus represent an important source for the production of vegetable oils, in particular rapeseed and turnip oils for a broad spectrum of commercial purposes.
Für den genannten Promotor kommt im Prinzip jeder in den für dieFor the promoter mentioned, everyone comes in principle for the
Transformation gewählten Pflanzen funktionale Promotor in Betracht, der die Bedingung erfüllt, daß die von ihm regulierte Expression zu einer verringerten Chlorophyllsyntheseleistung in Pflanzenzellen führt. Im Hinblick auf die Verwendung der transgenen Pflanzen als Lieferant pflanzlicher Öle erscheinen hierfür besonders solche Promotoren sinnvoll, die eine samenspezifische Expression gewährleisten. Beispiele für solche Promotoren sind die oben genannten USP-, Napin-, 2S-Albumin-, Legumin- und Hordein-Promotoren.Transformation selected plant functional promoter into consideration, which fulfills the condition that the expression regulated by it leads to a reduced chlorophyll synthesis performance in plant cells. With regard to the use of the transgenic plants as a supplier of vegetable oils, promoters which ensure seed-specific expression appear particularly useful for this purpose. Examples of such promoters are the above-mentioned USP, napin, 2S-albumin, legumin and hordein promoters.
Falls solche Promotoren nicht bekannt sind oder nicht zur Verfügung stehen, ist auf jeden Fall das Konzept zur Isolierung solcher Promotoren dem Fachmann bekannt. Dabei wird in einem ersten Schritt aus Samengewebe die poly(A)+ RNA isoliert und eine cDNA-Bank angelegt. In einem zweiten Schritt werden mit Hilfe von cDNA-Klonen, die auf poly(A)* RNA-Molekülen aus einem nicht aus Samen stammenden Gewebe basieren, aus der ersten Bank mittels Hybridisierung diejenigen Klone identifiziert, deren korrespondierende poly(A)+ RNA-Moleküle lediglich im Samengewebe exprimiert werden. Anschließend werden mit Hilfe dieser so identifizierten cDNA's Promotoren isoliert, die sodann für die Expression der Antisense verwendet werden können.If such promoters are not known or are not available, the concept for isolating such promoters is in any case known to the person skilled in the art. In a first step, the poly (A) + RNA is isolated from seed tissue and a cDNA library is created. In a second step, cDNA clones based on poly (A) * RNA molecules from a non-seed tissue are used to identify those clones from the first bank whose hybrid poly (A) + RNA Molecules are only expressed in the seed tissue. Promoters are then isolated with the help of these cDNAs identified in this way, which can then be used for the expression of the antisense.
Zur Vorbereitung der Einführung fremder Gene in höhere Pflanzen stehen eine große Anzahl von Klonierungsvektoren zur Verfügung, die ein Replikationssignal für E. coli und ein Markergen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC-Serien, M13mp- Serien, pACYC184 usw. Die gewünschte Sequenz kann an einer passenden - 1:To prepare the introduction of foreign genes into higher plants, a large number of cloning vectors are available which contain a replication signal for E. coli and a marker gene for the selection of transformed bacterial cells. Examples of such vectors are pBR322, pUC series, M13mp series, pACYC184 etc. The desired sequence can be matched to a suitable one - 1:
Restriktionsschnittstelle in den Vektor eingeführt werden. Das erhaltene Plasmid wird für die Transformation von E. co//-Zellen verwendet. Transformierte E. coli- Zellen werden in einem geeigneten Medium gezüchtet und anschließend geerntet und lysiert. Das Plasmid wird wiedergewonnen. Als Analysemethode zur Charakterisierung der gewonnenen Plasmid-DNA werden im allgemeinen Restriktionsanalysen, Gelelektrophoresen und weitere biochemisch- molekularbiologische Methoden eingesetzt. Nach jeder Manipulation können die Plasmid-DNA gespalten und gewonnene DNA-Fragmente mit anderen DNA- Sequenzen verknüpft werden. Jede Plasmid-DNA-Sequenz kann in den gleichen oder anderen Plasmiden kloniert werden.Restriction interface to be introduced into the vector. The plasmid obtained is used for the transformation of E. co // cells. Transformed E. coli cells are grown in a suitable medium and then harvested and lysed. The plasmid is recovered. Restriction analyzes, gel electrophoresis and other biochemical-molecular biological methods are generally used as the analysis method for characterizing the plasmid DNA obtained. After each manipulation, the plasmid DNA can be cleaved and DNA fragments obtained can be linked to other DNA sequences. Each plasmid DNA sequence can be cloned into the same or different plasmids.
Für die Einführung von DNA in eine pflanzliche Wirtszelle stehen eine Vielzahl bekannter Techniken zur Verfügung, wobei der Fachmann die jeweils geeignete Methode ohne Schwierigkeiten ermitteln kann. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von Agro- bacterium tumefaciens oder Agrobacterium rhizogenes als Transformationsmittel, die Fusion von Protoplasten, den direkten Gentransfer isolierter DNA in Protoplasten, die Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten.A large number of known techniques are available for introducing DNA into a plant host cell, and the person skilled in the art can determine the appropriate method in each case without difficulty. These techniques include the transformation of plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as a transformation agent, the fusion of protoplasts, the direct gene transfer of isolated DNA to protoplasts, the electroporation of DNA, the introduction of DNA using the biolistic method as well as other options.
Bei der Injektion und Elektroporation von DNA in Pflanzenzellen werden per se keine speziellen Anforderungen an die verwendeten Plasmide gestellt. Ähnliches gilt für den direkten Gentransfer. Es können einfache Plasmide wie z.B. pUC- Derivate verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens notwendig. Dem Fachmann sind die gängigen Selektionsmarker bekannt und es stellt für ihn kein Problem dar. einen geeigneten Marker auszuwählen. Je nach Einführungsmethode gewünschter Gene in die Pflanzenzelle können weitere DNA-Sequenzen erforderlich sein. Werden z.B. für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muß mindestens die rechte Begrenzung, häufig jedoch die rechte und linke Begrenzung der im Ti- und Ri- Plasmid enthaltenen T-DNA als Flankenbereich mit den einzuführenden Genen verbunden werden.When injecting and electroporation of DNA into plant cells, there are no special requirements per se for the plasmids used. The same applies to direct gene transfer. Simple plasmids such as pUC derivatives can be used. However, if whole plants are to be regenerated from such transformed cells, the presence of a selectable marker gene is necessary. The usual selection markers are known to the person skilled in the art and it is no problem for him to select a suitable marker. Depending on the method of introducing desired genes into the plant cell, additional DNA sequences may be required. If, for example, the Ti or Ri plasmid is used for the transformation of the plant cell, at least the right boundary, but often the right and left boundary of the T-DNA contained in the Ti and Ri plasmid, must be connected as a flank region to the genes to be introduced .
Werden für die Transformation Agrobakterien verwendet, muß die einzuführende DNA in spezielle Plasmide kloniert werden, und zwar entweder in einen intermediären oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobakterien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir- Region. Intermediäre Vektoren können nicht in Agrobakterien replizieren. Mittels eines Helfeφlasmids kann der intermediäre Vektor auf Agrobacterium tumefaciens übertragen werden (Konjugation). Binäre Vektoren können sowohl in E. coli als auch in Agrobakterien replizieren. Sie enthalten ein Selektionsmarker-Gen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA- Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden (Holsters et al. (1978) Molecular and General Genetics 163, 181-187). Das als Wirtszelle dienende Agrobakterium soll ein Plasmid, das eine vz'r-Region trägt, enthalten. Die vir-Region ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet.If agrobacteria are used for the transformation, the DNA to be introduced must be cloned into special plasmids, either in an intermediate or in a binary vector. The intermediate vectors can be integrated into the Ti or Ri plasmid of the agrobacteria on the basis of sequences which are homologous to sequences in the T-DNA by homologous recombination. This also contains the vir region necessary for the transfer of the T-DNA. Intermediate vectors cannot replicate in agrobacteria. The intermediate vector can be transferred to Agrobacterium tumefaciens using a helper phasmid (conjugation). Binary vectors can replicate in E. coli as well as in Agrobacteria. They contain a selection marker gene and a linker or polylinker, which are framed by the right and left T-DNA border region. They can be transformed directly into the agrobacteria (Holsters et al. (1978) Molecular and General Genetics 163, 181-187). Serving as host cell should contain a plasmid of Agrobacterium carrying a vz 'R region. The vir region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be present. The agrobacterium transformed in this way is used to transform plant cells.
Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in EP 120 515; Hoekema in: The Binary Plant Vector System, Offsetdrokkerij Kanters B.V., Alblasserdam (1985) Chapter V; Fraley et al. (1993) Crit. Rev. Plant. Sei., 4, 1-46 und An et al. (1985) EMBO J. 4, 277-287 beschrieben worden.The use of T-DNA for the transformation of plant cells has been intensively investigated and is sufficient in EP 120 515; Hoekema in: The Binary Plant Vector System, Offsetdrokkerij Kanters BV, Alblasserdam (1985) Chapter V; Fraley et al. (1993) Crit. Rev. Plant. Sci., 4, 1-46 and An et al. (1985) EMBO J. 4, 277-287.
Für den Transfer der DNA in die Pflanzenzelle können Pflanzen-Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kultiviert werden. Aus dem infizierten Pflanzenmaterial (z.B. Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Suspensionskultivierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten können, wieder ganze Pflanzen regeneriert werden. Die Regeneration der Pflanzen erfolgt nach üblichen Regenerationsmethoden unter Verwendung bekannter Nährmedien. Die so erhaltenen Pflanzen können dann auf Anwesenheit der eingeführten DNA untersucht werden. Andere Möglichkeiten der Einführung fremder DNA unter Verwendung des biolistischen Verfahrens oder durch Protoplasten-Transformation sind bekannt (vgl. z.B. Willmitzer L. (1993) Transgenic Plants, in: Biotechnology, A Multi-Volume Comprehensive Treatise (H . Rehm, G. Reed, A. Pühler, P. Stadler, eds.) Vol. 2, 627-659, V.C.H. Weinheim - New York - Basel - Cambridge).For the transfer of the DNA into the plant cell, plant explants can expediently be cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes. Whole plants can then be regenerated from the infected plant material (e.g. leaf pieces, stem segments, roots, but also protoplasts or suspension-cultivated plant cells) in a suitable medium, which may contain antibiotics or biocides for the selection of transformed cells. The plants are regenerated using conventional regeneration methods using known nutrient media. The plants thus obtained can then be examined for the presence of the introduced DNA. Other ways of introducing foreign DNA using the biolistic method or by protoplast transformation are known (cf., for example, Willmitzer L. (1993) Transgenic Plants, in: Biotechnology, A Multi-Volume Comprehensive Treatise (H. Rehm, G. Reed, A. Pühler, P. Stadler, eds.) Vol. 2, 627-659, VCH Weinheim - New York - Basel - Cambridge).
Ist die eingeführte DNA einmal im Genom der Pflanzenzelle integriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle erhalten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G418, Bleomycin, Hygromycin, Methotrexat, Glyphosat, Streptomycin, Sulfonyl-Harnstoff, Gentamycin oder Phosphinotricin u.a. vermittelt. Der individuell gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten. Die transformierten Zellen wachsen innerhalb der Pflanze in der üblichen Weise (siehe auch McCormick et al. (1986) Plant Cell Reports 5, 81-84). Die resultierenden Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen besitzen, gekreuzt werden. Die daraus entstehenden hybriden Individuen haben die entsprechenden phänotypischen Eigenschaften. Von den Pflanzen können Samen gewonnen werden.Once the introduced DNA is integrated in the genome of the plant cell, it is generally stable there and is also retained in the progeny of the originally transformed cell. It normally contains a selection marker which gives the transformed plant cells resistance to a biocide or an antibiotic such as kanamycin, G418, bleomycin, hygromycin, methotrexate, glyphosate, streptomycin, sulfonylurea, gentamycin or phosphinotricin and others. The individually selected marker should therefore allow the selection of transformed cells from cells that lack the inserted DNA. The transformed cells grow within the plant in the usual way (see also McCormick et al. (1986) Plant Cell Reports 5, 81-84). The resulting plants can be grown normally and crossed with plants that have the same transformed genetic makeup or other genetic makeup. The resulting hybrid individuals have the corresponding phenotypic properties. Seeds can be obtained from the plants.
Es sollten zwei oder mehrere Generationen angezogen werden, um sicherzustellen, daß das phänotypische Merkmal stabil beibehalten und vererbt wird. Auch sollten Samen geerntet werden, um sicherzustellen, daß der entsprechende Phänotyp oder andere Eigenarten erhalten geblieben sind.Two or more generations should be grown to ensure that the phenotypic trait is stably maintained and inherited. Seeds should also be harvested to ensure that the appropriate phenotype or other characteristics have been preserved.
Ebenso können nach üblichen Methoden transgene Linien bestimmt werden, die für die neuen Nukleinsäuremoleküle homozygot sind und ihr phänotypisches Verhalten hinsichtlich eines veränderten Chlorophyllgehalts untersucht und mit dem von hemizygoten Linien verglichen werden.Likewise, transgenic lines can be determined using conventional methods, which are homozygous for the new nucleic acid molecules and which investigate their phenotypic behavior with regard to a changed chlorophyll content and compare them with that of hemizygotic lines.
Die Übertragung und Expression der erfindungsgemäßen Antisense-Genkonstrukte kann mit Hilfe herkömmlicher molekularbiologischer und biochemischer Methoden erfolgen. Dem Fachmann sind diese Techniken bekannt und er ist problemlos in der Lage, eine geeignete Nachweismethode zu wählen, beispielsweise eine Northern Blot-Analyse zum qualitativen und quantitativen Nachweis von RNA, die für die kodierende Region des jeweiligen Antisense-Gens spezifisch ist, oder eine Southern-Blot Analyse zur Identifizierung der übertragenen DNA-Sequenzen.The transmission and expression of the antisense gene constructs according to the invention can be carried out with the aid of conventional molecular biological and biochemical methods. These techniques are known to the person skilled in the art and he is easily able to choose a suitable detection method, for example a Northern blot analysis for the qualitative and quantitative detection of RNA which is specific for the coding region of the respective antisense gene, or a Southern -Blot analysis to identify the transferred DNA sequences.
Die erhaltenen transgenen Pflanzenzellen bzw. Pflanzen sowie Teile und Produkte davon können anschließend auf ihren Chlorophyllgehalt untersucht werden. Hier bieten sich beispielsweise folgende Analyseverfahren an:The transgenic plant cells or plants as well as parts and products thereof can then be examined for their chlorophyll content. Here For example, the following analysis methods are available:
Bestimmung der Chlorophyll- und der Carotinoidgehalte nach Porra et al. (1989) Biochem. Biophys. Acta 975, 384-394; Bestimmung der ALA-Sytheseleistung (wie z.B. beschrieben in Zavgorodnyaya et al. (1997) The Plant J. 12, 169-178);Determination of chlorophyll and carotenoid contents according to Porra et al. (1989) Biochem. Biophys. Acta 975, 384-394; Determination of ALA synthesis performance (e.g. as described in Zavgorodnyaya et al. (1997) The Plant J. 12, 169-178);
Bestimmung der Glutamat 1 -Semialdehyd- Aminotransferase- Aktivität (siehe ebenfalls Zavgorodnyaya et al. (1997) supr ).Determination of glutamate 1 semialdehyde aminotransferase activity (see also Zavgorodnyaya et al. (1997) supr).
Häufig ist ein gegenüber Wildtyppflanzen verringerter Chlorophyllgehalt der transgenen Pflanzen bzw. deren Teile und Produkte auch mit bloßem Auge bzw. mit Hilfe optischer Hilfsmittel erkennbar.A reduced chlorophyll content of the transgenic plants or their parts and products compared to wild-type plants can often also be seen with the naked eye or with the aid of optical aids.
Zur DNA-, RNA-Isolierung, Sequenzanalye, Restriktion, Klonierung, Gelelektrophorese, radioaktive Markierung, Southern, Northen und Western Blot Analysen, Hybridisierung und dergleichen können gängige Methoden angewandt werden, wie sie in einschlägigen Laborhandbüchern, wie Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, beschrieben sind.For DNA, RNA isolation, sequence analysis, restriction, cloning, gel electrophoresis, radioactive labeling, Southern, Northen and Western blot analyzes, hybridization and the like, common methods can be used, as described in relevant laboratory manuals such as Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung.The following examples serve to explain the invention.
BEISPIELEEXAMPLES
Beispiel 1 : Herstellung eines Antisense-Konstrukts auf der Basis von DNA-Sequenzen, die für eine Glutamat 1 -Semialdehyd- Aminotransferase aus Tabak kodierenExample 1: Preparation of an antisense construct based on DNA sequences which code for a glutamate 1 semialdehyde aminotransferase from tobacco
Zur Konstruktion eines GSA-AT-Antisense-mRNA-Expressionsvektors wurde das vollständige 1714 Bp. lange Tabak-GSA-AT-cDNA-Fragment (GenBank Accession No. X65974; vgl. Höfgen et al, supra) als EcoRV/Xbal- Restriktionsfragment in den binären Vektor BinHyg-Tx, einem Plasmidderivat des Vektors BinAR (Höfgen and Willmitzer (1990) Plant Sei. 66, 221-230) kloniert, der zuvor mit den Restriktionsenzymen Smal und Xbal geschnitten wurde.To construct a GSA-AT antisense mRNA expression vector, the complete 1714 bp. Tobacco GSA-AT cDNA fragment (GenBank Accession No. X65974; see. Höfgen et al, supra) as an EcoRV / Xbal restriction fragment in the binary vector BinHyg-Tx, a plasmid derivative of the vector BinAR (Höfgen and Willmitzer (1990) Plant Sei. 66, 221-230), which previously cloned with the restriction enzymes Smal and Xbal was cut.
Zur Herstellung eines binären Vektors mit einer Fusion eines USP-Promotors und der GSA-AT-cDNA-Sequenz in Antisenseorientierung wurde der den USP- Promotor aus Viceafaba enthaltende Vektor pP30T, ein pUC18-Derivat (s. auch Bäumlein et al. (1991) supra), mit PstI und Bglll geschnitten. Das isolierte USP- Promotorfragment wurde anschließend in einen BamHI/Pstl-geschnittenen pBluescript- Vektor kloniert (-> pUSPblue). Dieses Vektorkonstrukt pUSPblue wurde sodann mit EcoRI und Xbal geschnitten, um ein EcoRI/Xbal- Promotorfragment zu erhalten. Aus dem binären Vektor BinAR wurde durch Restriktionsverdau mit EcoRI und Xbal der 35S CaMV-Promotor entfert und durch Ligation des EcoRI/Xbal- Vektorfragments mit dem USP-Promotorfragment durch diesen samenspezifischen Promotor ersetzt (-> pUSPbin). In den Xbal-Sall- gschnittenen pUSPbin wurde die mit Xbal und Sall aus dem pBluescript geschnittene vollständige cDNA-Sequenz (Xbal - 3' - GSA-AT-cDNA - 5' -Sall) der Tabak-GSA-Aminotransferase eingesetzt. Der resultierende binäre Vektor wurde mit pUSPASGSAT bezeichnet (vgl. auch Abbildung 2).To produce a binary vector with a fusion of a USP promoter and the GSA-AT cDNA sequence in antisense orientation, the vector pP30T, which contains the USP promoter from Viceafaba, was a pUC18 derivative (see also Bäumlein et al. (1991) supra), cut with PstI and Bglll. The isolated USP promoter fragment was then cloned into a BamHI / Pstl-cut pBluescript vector (-> pUSPblue). This vector construct pUSPblue was then cut with EcoRI and Xbal to obtain an EcoRI / Xbal promoter fragment. The 35S CaMV promoter was removed from the binary vector BinAR by restriction digestion with EcoRI and Xbal and replaced by this seed-specific promoter by ligation of the EcoRI / Xbal vector fragment with the USP promoter fragment (-> pUSPbin). The complete cDNA sequence (Xbal - 3 '- GSA-AT-cDNA - 5' -Sall) of the tobacco-GSA aminotransferase cut from the pBluescript with Xbal and Sall was used in the Xbal-Sall-cut pUSPbin. The resulting binary vector was named pUSPASGSAT (see also Figure 2).
Anstelle der genannten binären Vektoren BinAR bzw. BinHyg-Tx, der einen Tetracyclin-induzierbaren CaMV 35S Promotor enthält, kann jeder beliebige für die Pflanzentransformation geeignete Vektor für die Herstellung eines Antisense- Gens, bestehend aus einer Fusion eines Promotors, vorzugsweise eines samenspezifischen Promotors, der die Transkription und Translation in Pflanzenzellen gewährleistet, und DNA- Sequenzen, die für an der Chlorophyllsynthese beteiligte Enzyme kodieren, verwendet werden. Beispiel 2:Instead of the binary vectors BinAR or BinHyg-Tx mentioned, which contains a tetracycline-inducible CaMV 35S promoter, any vector suitable for plant transformation can be used to produce an antisense gene consisting of a fusion of a promoter, preferably a seed-specific promoter, which ensures transcription and translation in plant cells, and DNA sequences which code for enzymes involved in chlorophyll synthesis are used. Example 2:
Transformation von Rapspflanzen und Regeneration intakter PflanzenTransformation of rapeseed plants and regeneration of intact plants
Die Transformation in Sommerraps wurde nach der Methode von De Block et al. (1989, Plant Physiol. 91, 694-701) und Damgaard et al. (1997, Transgenic Research 6, 279-288) durchgeführt.The transformation into summer rape was carried out according to the method of De Block et al. (1989, Plant Physiol. 91, 694-701) and Damgaard et al. (1997, Transgenic Research 6, 279-288).
Hierzu wurde eine rekombinante Kultur von Agrobacterium tumefaciens (Stamm GV 3101) gewaschen und in Medium 1 (MS-Medium (Murashige und Skoog (1962) Physiol. Plant 15, 473), 2,5 mM MES pH 5,5, 1 mg/1 Benzylaminopurin (BAP), 0,1 mg/1 Naphthylessigsäure (NAA), 0,01 mg/1 Gibberelinsäure (GA3), 200 μM Acetosyringon) resuspendiert.For this purpose, a recombinant culture of Agrobacterium tumefaciens (strain GV 3101) was washed and in medium 1 (MS medium (Murashige and Skoog (1962) Physiol. Plant 15, 473), 2.5 mM MES pH 5.5, 1 mg / 1 benzylaminopurine (BAP), 0.1 mg / 1 naphthylacetic acid (NAA), 0.01 mg / 1 gibberelic acid (GA 3 ), 200 μM acetosyringone).
Das Hypokotyl von 14 Tage alten Brassica «αpw^-Keimlingen wurde in 0,5 bis 1 cm lange Segmente geschnitten, mit der Bakteriensuspension für 30 min. inkubiert und anschließend für 5 Tage in Dunkelheit bei 21 °C auf Medium 1 -enthaltenem 0,7%-Agar aufbewahrt. Zur Kallusinduktion wurde das Hypokotyl bei 25 °C auf Medium 2 (MS-Medium, 2,5 mM MES pH 5,7, 30 g/1 Saccharose, 1 mg/1 Kinetin, 1 mg/1 2,4-Dichloφhenoxyessigsäure (2,4-D), 0,01 mg/1 GA3, 500 mg/1 Polyvinylpyrrolidon (PVP), 5 mg/1 AgNO3, 5 g/1 Agarose, 250 mg/1 Carbenicillin, 100 mg/1 Kanamycin; bei 150 μM Photon/πr/sec) inkubiert.The hypocotyl of 14-day-old Brassica "αpw ^ seedlings was cut into 0.5 to 1 cm long segments, with the bacterial suspension for 30 min. incubated and then stored for 5 days in the dark at 21 ° C. on medium 1 containing 0.7% agar. For callus induction, the hypocotyl was at 25 ° C on medium 2 (MS medium, 2.5 mM MES pH 5.7, 30 g / 1 sucrose, 1 mg / 1 kinetin, 1 mg / 1 2,4-dichloropheneoxyacetic acid (2nd , 4-D), 0.01 mg / 1 GA 3 , 500 mg / 1 polyvinylpyrrolidone (PVP), 5 mg / 1 AgNO 3 , 5 g / 1 agarose, 250 mg / 1 carbenicillin, 100 mg / 1 kanamycin; at 150 μM photon / πr / sec).
Nach Bildung des Kallus erfolgte die Sproßinduktion auf Medium 3 (MS-Medium, 2,5 mM MES pH 5,5, 20 g/1 Saccharose, 40 mg/1 Adenin, 1 mg/1 BAP, 0,1 mg/1 NAA, 0,01 mg/1 GA3, 500 mg/1 PVP, 5 mg/1 AgNO3, 100 mg/1 Kanamycin, 5 g/1 Agarose, 250 mg/1 Carbenicillin).After formation of the callus, shoot induction was carried out on medium 3 (MS medium, 2.5 mM MES pH 5.5, 20 g / 1 sucrose, 40 mg / 1 adenine, 1 mg / 1 BAP, 0.1 mg / 1 NAA , 0.01 mg / 1 GA 3 , 500 mg / 1 PVP, 5 mg / 1 AgNO 3 , 100 mg / 1 kanamycin, 5 g / 1 agarose, 250 mg / 1 carbenicillin).
Nach erfolgter Sproßbildung wurden die Kalli, die Sprosse zeigten, auf Sproßverlängerungsmedium (Medium 4) in Glasgefäße (MS-Medium, 2,5 mM MES pH 5,7, 10 g/1 Saccharose, 0.0025 mg/1 BAP, 100 mg/1 Kanamycin, 7 g/1 Agarose, 250 mg/1 Carbenicillin) überführt. Nach ca. 2-3 Wochen wurden die Sprosse auf Medium 5 (MS-Medium, 2,5 mM MES pH 5,5, 7 g/1 Agarose) transferiert, um Wurzeln zu bilden.After the shoot had formed, the calli, which showed shoots, were placed on shoot extension medium (medium 4) in glass vessels (MS medium, 2.5 mM MES pH 5.7, 10 g / 1 sucrose, 0.0025 mg / 1 BAP, 100 mg / 1 kanamycin, 7 g / 1 agarose, 250 mg / 1 carbenicillin). After about 2-3 weeks, the shoots were transferred to medium 5 (MS medium, 2.5 mM MES pH 5.5, 7 g / 1 agarose) to form roots.
Alternativ wurden transgene Rapspflanzen nach folgendem Protokoll erzeugt: Eine rekombinante Kultur von Agrobacterium tumefaciens (Stamm GV 3101) wurde gewaschen und in MS-Medium mit 2,5 mM MES pH 5,5 resuspendiert. Das Hypokotyl von 5-7 Tage alten Rapskeimlingen wurde in ca. 7 mm lange Explantate geschnitten und in flüssigem CIM-Medium 24 h vorkultiviert. Danach wurden die Explantate in 10 ml des CIM-Mediums mit 50 μl einer Übernacht- Kultur des rekombinanten Agrobakterium- Stammes für 2-3 Tage im Dunkeln co- kultiviert. Das CIM-Medium besteht (pro Liter) aus MS-Medium, 30 g Saccharose, 500 mg MES pH 5,8, 1 mg 2,4 D, 1 mg Kinetin. Anschließend wurden die Hypokotylstücke gewaschen und auf CIM-Medium mit 5 g/1 Agarose, 20 mg Kanamycin, 250 mg Betabactyl, 250 mg Carbenicillin für 7-10 Tage zur Kallusinduktion kultiviert. Danach wurden die leicht angeschwollenen Explantate zur Sproßinduktion auf SIM-Medium gelegt. Das Medium wurde alle 10-14 Tage erneuert. Das SIM-Medium besteht (pro Liter) aus MS-Medium, Vitaminen, 20 g Saccharose, 500 mg MES pH 5,6-5,8, 2 mg Zeatin, 2 mg BAP, 100 mg myo- Inositol, 5 g Agarose, 20 mg Kanamycin, 500 mg Betabactyl oder Carbenicillin. Nach erfolgter Sproßbildung wurden die Kalli, die Sprosse zeigten, in Glasgefäße mit MS-Medium, 500 mg/1 MES pH 5,7, 20 g/1 Saccharose, 20 mg/1 Kanamycin, 5 g/1 Agarose, 500 mg/1 Carbenicillin überführt.Alternatively, transgenic oilseed rape plants were produced according to the following protocol: A recombinant culture of Agrobacterium tumefaciens (strain GV 3101) was washed and resuspended in MS medium with 2.5 mM MES pH 5.5. The hypocotyl of rape seedlings 5-7 days old was cut into explants approximately 7 mm long and precultivated in liquid CIM medium for 24 hours. The explants were then co-cultivated in 10 ml of the CIM medium with 50 μl of an overnight culture of the recombinant Agrobacterium strain for 2-3 days in the dark. The CIM medium consists (per liter) of MS medium, 30 g sucrose, 500 mg MES pH 5.8, 1 mg 2.4 D, 1 mg kinetin. The hypocotyl pieces were then washed and cultured on CIM medium with 5 g / 1 agarose, 20 mg kanamycin, 250 mg betabactyl, 250 mg carbenicillin for 7-10 days for callus induction. The slightly swollen explants were then placed on SIM medium for shoot induction. The medium was renewed every 10-14 days. The SIM medium consists (per liter) of MS medium, vitamins, 20 g sucrose, 500 mg MES pH 5.6-5.8, 2 mg zeatin, 2 mg BAP, 100 mg myo-inositol, 5 g agarose, 20 mg kanamycin, 500 mg betabactyl or carbenicillin. After the shoots had formed, the calli, which showed shoots, were placed in glass vessels with MS medium, 500 mg / 1 MES pH 5.7, 20 g / 1 sucrose, 20 mg / 1 kanamycin, 5 g / 1 agarose, 500 mg / 1 Carbenicillin transferred.
Neben den beschriebenen Transformationsmethoden können Rapspflanzen auch mittels weiterer Techniken transformiert werden. So bietet sich zu diesem Zweck beispielsweise das Protokoll von Moloney et al. (1989, Plant Cell Rep. 8. 238- 242) an, bei dem ein Agrobakterien- vermittelter DNA-Transfer auf Kotyledonen von 7 Tage alten Keimlingen über die Schnittstelle am Blattstiel erfolgt. Des weiteren ist die Transformation von Protoplasten unter Verwendung von Zellen verschiedener Gewebe geeignet (z.B. beschrieben bei Thomzik (1993) In: Biotechnology in agriculture and forestry, Vol. 23, Plant protoplasts and genetic engineering IV (Bajaj, ed.) Springer- Verlag, Berlin, 170-182).In addition to the transformation methods described, rapeseed plants can also be transformed using other techniques. For example, the Moloney et al. (1989, Plant Cell Rep. 8. 238-242), in which an agrobacterial-mediated DNA transfer to cotyledons from 7 day old seedlings via the cut at the petiole. Furthermore, the transformation of protoplasts using cells of different tissues is suitable (e.g. described in Thomzik (1993) In: Biotechnology in agriculture and forestry, Vol. 23, Plant protoplasts and genetic engineering IV (Bajaj, ed.) Springer-Verlag, Berlin, 170-182).
Beispiel 3:Example 3:
Analyse transgener Pflanzen, die Antisense-RNA gegen Glutamat 1-Semialdehyd- Aminotransferase unter Kontrolle des USP-Promotors exprimierenAnalysis of transgenic plants that express antisense RNA against glutamate 1-semialdehyde aminotransferase under the control of the USP promoter
Pflanzen, die mit dem Vektorkonstrukt pUSPASGSAT (siehe Beispiel 1 und Abbildung 2) transformiert wurden, wurden anschließend auf die Expression von Antisense-RNA gegen GSA-AT untersucht.Plants that were transformed with the vector construct pUSPASGSAT (see Example 1 and Figure 2) were then examined for the expression of antisense RNA against GSA-AT.
Zu diesem Zweck wurden u.a. die Chlorophyllgehalte und -syntheseraten in den transgenen Pflanzen bestimmt. Hierzu wurden Chlorophylle aus 100 mg in flüssigem Stickstoff gemörsertem Samenmaterial mit gepuffertem, eiskaltem 80%igen Aceton solange extrahiert, bis das Pellet farblos geworden war. Die Proben wurden entsprechend verdünnt und am Spektrophotometer die Extinktion bei 663, 646 und 750 nm gemessen. Für die Berechnung der Chlorophyllgehalte wurden die Formeln von Porra et al. (1989, supra) herangezogen.For this purpose, i.a. the chlorophyll contents and synthesis rates in the transgenic plants were determined. For this purpose, chlorophylls were extracted from 100 mg of seed material ground in liquid nitrogen with buffered, ice-cold 80% acetone until the pellet had become colorless. The samples were diluted accordingly and the absorbance at 663, 646 and 750 nm was measured on the spectrophotometer. The formulas by Porra et al. (1989, supra).
Zur Bestimmung von Chlorophyllsyntheseraten wurde Samengewebe in 20 mM K2HPO4/KH2PO4 (pH 7,1) mit 34 kBq D-[4-14C]-markierter ALA (5- Aminolävulinsäure) für 8 h im Licht inkubiert, anschließend eineFor the determination of chlorophyll synthesis rates seed tissue was homogenized in 20 mM K 2 HPO 4 / KH 2 PO 4 (pH 7.1) were incubated with 34 kBq D- [4- 14 C] -labeled ALA (5-aminolevulinic acid) for 8 h in the light, then one
Chlorophyllextraktion durchgeführt und über HPLC aufgetrennt. Die Extraktion und Auftrennung erfolgte nach der Methode von Gilmore and Yamamoto (1991 , J. Chromatography 543, 137-145), modifiziert von Kruse et al. (1995, EMBO J. 14, 3712-3720) wie folgt: 100 mg in flüssigem Stickstoff gemörsertes Samenmaterial wuden abgewogen und mit 100% Aceton und 10 μM KOH so oft extrahiert, bis das Pellet farblos geworden war (lmal 400 μl, 3mal 200 μl). Die Extrakte wurden für die HPLC-Läufe 4: 1 mit H2O verdünnt, um schärfere Trennungen zu erzielen.Chlorophyll extraction carried out and separated by HPLC. The extraction and separation was carried out according to the method of Gilmore and Yamamoto (1991, J. Chromatography 543, 137-145), modified by Kruse et al. (1995, EMBO J. 14, 3712-3720) as follows: 100 mg of seed material ground in liquid nitrogen were weighed and extracted with 100% acetone and 10 μM KOH until the pellet had become colorless (1 × 400 μl, 3 × 200 μl). The extracts were diluted 4: 1 with H 2 O for the HPLC runs in order to achieve sharper separations.
Die Chlorophylle wurden mittels einer LiChrospher 100 HPLC RP 18-Säule (5 μm, Merck) bei einem Fluß von 1 ml/min. mit folgendem Gradienten eluiert: 100% Laufmittel A (780 ml Acetonitril; 80 ml MeOH; 30 ml Tris/HCl 0,1 M pHThe chlorophylls were measured using a LiChrospher 100 HPLC RP 18 column (5 μm, Merck) at a flow of 1 ml / min. eluted with the following gradient: 100% mobile solvent A (780 ml acetonitrile; 80 ml MeOH; 30 ml Tris / HCl 0.1 M pH
8,0) für 7 min., in einem linearen Anstieg in 6 min. auf 100% Laufmittel B (800 ml MeOH; 200 ml Hexan), 14 min. 100% Laufmittel B. Das Eluat wurde mit einem "Photodiode Array" (PDA)-Detektor und nachgeschaltetem Radioaktivitäts- monitor analysiert. Radioaktiv markiertes Chlorophyll konnte entsprechend der8.0) for 7 min., In a linear increase in 6 min. to 100% solvent B (800 ml MeOH; 200 ml hexane), 14 min. 100% solvent B. The eluate was analyzed with a "photodiode array" (PDA) detector and a radioactivity monitor connected downstream. Radioactive labeled chlorophyll could
Retentionszeiten, die für das HPLC-System bekannt sind, zugeordnet werden.Retention times that are known for the HPLC system can be assigned.
Des weiteren wurde die 5-Aminolävulinsäure-Synthesekapazität in den transgenen Pflanzen bestimmt. Da sich Enzymaktivitäten im C5-Weg nicht ohne Aufreinigung der Enzyme bestimmen lassen, wurden indirekte Methoden gewählt, um die Fähigkeit der ALA-Bildung aus Glutamat zu messen. Zum einen wurde die Akkumulation von ALA nach Inkubation von LA nach folgendem Protokoll bestimmt: Pro Ansatz wurden 100-300 mg Samengewebe mit 40 mM Lävulin- säure, einem potenten Inhibitor (Substratanalogon) der ALA-Dehydratase (ALAD), in 20 mM K2HPO4/KH2PO4 (pH 7,1) im Licht für 2-4 h inkubiert. Das Pflanzenmaterial wurde in flüssigem Stickstoff eingefroren, homogenisiert und nach Zugabe von 1 ml 20 mM K2HPO4/KH2PO4 (pH 7,1) gut gemischt. Die ALA- Bestimmung erfolgte nach Mauzerall and Granick (1956, J. Biol. Chem. 219, 435- 446). Nach 20-minütiger Zentrifugation mit 15.000 g bei 4 °C wurden zu 250 μl des Überstandes dasselbe Volumen 20 mM K2HPO4/KH2PO4 (pH 7,1) und 100 μl Ethylacetoacetat pipettiert. Als Kontrolle dienten Proben, die ohne Lävulinsäureinkubation zum Zeitpunkt t0 extrahiert worden waren. Alle Proben wurden für exakt 10 min. bei 100 °C erhitzt, anschließend auf Eis für 5 min. abgekühlt, mit 500 μl modifiziertem Ehrlichs Reagenz (373 ml Eisessig; 90 ml 70% (w/v) Perchlorsäure; 1,55 g HgCl2; auf 500 ml mit H2O aufgefüllt; in 110 ml dieser Lösung 2 g p-Dimethylaminobenzaldehyd gelöst) gut gemischt und für 5 min. bei 15.000 g zentrifugiert. Die Extinktion wurde bei 525, 553 und 600 nm gemessen. Die unspezifische Trübung, gemessen bei 600 nm, wurde von allen Werten subtrahiert; das Verhältnis E553/E525 sollte zwischen 1,3 und 1,5 liegen. Zur Quantifizierung der ALA-Gehalte wurde eine Eichreihe erstellt.Furthermore, the 5-aminolevulinic acid synthesis capacity in the transgenic plants was determined. Since enzyme activities in the C5 pathway cannot be determined without purifying the enzymes, indirect methods were chosen to measure the ability of ALA formation from glutamate. On the one hand, the accumulation of ALA after incubation of LA was determined according to the following protocol: 100-300 mg of seed tissue were mixed with 40 mM levulinic acid, a potent inhibitor (substrate analog) of ALA dehydratase (ALAD), in 20 mM K 2 per batch HPO 4 / KH 2 PO 4 (pH 7.1) incubated in the light for 2-4 h. The plant material was frozen in liquid nitrogen, homogenized and mixed well after adding 1 ml of 20 mM K 2 HPO 4 / KH 2 PO 4 (pH 7.1). The ALA determination was carried out according to Mauzerall and Granick (1956, J. Biol. Chem. 219, 435-446). After centrifugation for 20 minutes at 15,000 g at 4 ° C., the same volume of 20 mM K 2 HPO 4 / KH 2 PO 4 (pH 7.1) and 100 μl of ethyl acetoacetate were pipetted into 250 μl of the supernatant. Samples that had been extracted without levulinic acid incubation at time t 0 served as a control. All samples were for exactly 10 min. heated at 100 ° C, then on ice for 5 min. cooled, with 500 μl modified Ehrlich's reagent (373 ml glacial acetic acid; 90 ml 70% (w / v) perchloric acid; 1.55 g HgCl 2 ; made up to 500 ml with H 2 O; in 110 ml of this solution, 2 g of p-dimethylaminobenzaldehyde dissolved) mixed well and for 5 min. Centrifuged at 15,000 g. The absorbance was measured at 525, 553 and 600 nm. The non-specific turbidity, measured at 600 nm, was subtracted from all values; the ratio E 553 / E 525 should be between 1.3 and 1.5. A calibration series was created to quantify the ALA contents.
Zum anderen wurde die Akkumulation von ALA nach Inkubation in Glutamat und Lävulinsäure bestimmt. Zu diesem Zweck wurden 100-300 mg Samen in 92,5 kBq L-[U-14C]-Glutamat, 2 mM Glutamat, 20 mM LA, 880 μl 20 mM K2HPO4/On the other hand, the accumulation of ALA after incubation in glutamate and levulinic acid was determined. For this purpose, 100-300 mg of seeds in 92.5 kBq L- [U- 14 C] -glutamate, 2 mM glutamate, 20 mM LA, 880 μl 20 mM K 2 HPO 4 /
KH2PO4 (pH 7,2) für 8 h bei RT im Licht inkubiert. Das Pflanzenmaterial wurde in 0,5 ml 1 N TCA und 1% SDS homogenisiert, zentrifugiert und der Überstand mit 1 Volumen Laufmittel (7,8 g/1 NaH2PO4; 1,74 g/1 SDS; 5 ml/1 tertiärer Amylalkohol) verdünnt. Der Nachweis von gebildeter [14C]-markierter ALA erfolgte nach Pontoppidan and Kannangara (1994, Eur. J. Biochem. 225, 529-537) über HPLC (Fluß 1 ml/min., isokratisch, RP 8-Säule, Novapak C8, 4 μm Partikelgröße, 3,9 mm x 150 mm). Die Menge an radioaktiv markierter ALA wurde über einen angeschlossenen Radioaktivitätsmonitor bestimmt. Die Peakidentifizierung erfolgte durch Co-Chromatographie mit D- [4- 14C] -markierter ALA, die Quanti- fizierung anhand von Eichreihen derselben Substanz.KH 2 PO 4 (pH 7.2) incubated for 8 h at RT in the light. The plant material was homogenized in 0.5 ml of 1N TCA and 1% SDS, centrifuged and the supernatant was treated with 1 volume of eluent (7.8 g / 1 NaH 2 PO 4 ; 1.74 g / 1 SDS; 5 ml / 1 tertiary Amyl alcohol) diluted. [ 14 C] -labeled ALA was detected according to Pontoppidan and Kannangara (1994, Eur. J. Biochem. 225, 529-537) via HPLC (flow 1 ml / min., Isocratic, RP 8 column, Novapak C8 , 4 μm particle size, 3.9 mm x 150 mm). The amount of radioactively labeled ALA was determined using a connected radioactivity monitor. The peak was identified by co-chromatography with D- [4- 14 C] -labeled ALA, the quantification using calibration series of the same substance.
Des weiteren wurden Southern- und Northern-Blot-Experimente zum Nachweis der Integration der Transgene und der Beeinflussung der RNA-Gehalte für GSA- Aminotransferase nach Standardmethoden (z.B. Sambrook et al. (1989) supra) durchgeführt. Ebenso wurde die Menge an GSA-Aminotransferase in klassischen Western-Blot-Analysen immunologisch bestimmt, wobei die Gewinnung von Antikörpern durch Immunisierung von Kaninchen oder Mäusen mit Freunds Adjuvans erfolgte. Die Analyse von transgenen Rapssamen, die das in dem Vektor pUSPASGSAT enthaltene Antisense-Konstrukt exprimierten, ergab, daß das erfindungsgemäße Verfahren in einer signifikanten Reduktion des Chlorophyllgehalts resultiert.Furthermore, Southern and Northern blot experiments were carried out to detect the integration of the transgenes and the influencing of the RNA contents for GSA aminotransferase according to standard methods (for example Sambrook et al. (1989) supra). The amount of GSA aminotransferase was also determined immunologically in classic Western blot analyzes, the antibodies being obtained by immunizing rabbits or mice with Freund's adjuvant. Analysis of transgenic rapeseed expressing the antisense construct contained in the vector pUSPASGSAT showed that the method according to the invention results in a significant reduction in the chlorophyll content.
Sollten in irgendeiner Weise molekularbiologische Arbeiten nicht hinreichend beschrieben worden sein, so wurden diese nach Standardmethoden, wie bei Sambrook et al. (1989) supra, beschrieben, durchgeführt. Bezüglich der Transformation von Pflanzen wird auf allgemein bekannte Übersichtsartikel sowie auf die oben genannten Veröffentlichungen verwiesen.If molecular biological work has not been adequately described in any way, this was done using standard methods, as described by Sambrook et al. (1989) supra. With regard to the transformation of plants, reference is made to generally known review articles and to the publications mentioned above.
Beschreibung der Abbildungen:Description of the pictures:
Abb. 1 zeigt den Stoffwechselweg der TetrapyrrolbiosyntheseFig. 1 shows the metabolic pathway of tetrapyrrole biosynthesis
Abb. 2 zeigt eine Restriktionskarte des in Beispiel 1 beschriebenen binärenFig. 2 shows a restriction map of the binary described in Example 1
Vektors pUSP-ASGSAT, der eine Fusion des USP-Promotors und der für GSA-Aminotransferase kodierenden Region in Antisense-Orientierung enthält. Als Pflanzenselektionsmarker trägt der Vektor pUSP-ASGSAT ein Kanamycinresistenzgen. Vector pUSP-ASGSAT, which contains a fusion of the USP promoter and the region coding for GSA aminotransferase in antisense orientation. The vector pUSP-ASGSAT carries a kanamycin resistance gene as a plant selection marker.

Claims

A N S P R U C H E EXPECTATIONS
1. Verfahren zur Reduktion des Chlorophyllgehalts in Samen von Ölpflanzen, folgende Schritte umfassend:1. A method for reducing the chlorophyll content in seeds of oil plants, comprising the following steps:
a) Herstellung eines Antisense-Expressionsvektors, umfassend die folgendena) Preparation of an antisense expression vector comprising the following
DNA-Sequenzen umfaßt: ein in Pflanzen funktionsfähiger, insbesondere samenspezifischer, Promotor, mindestens eine Nukleinsäuresequenz, die für ein Enzym oder ein Fragment davon kodiert, das an der Chlorophyllsynthese beteiligt ist, wobei die Nukleinsäuresequenz in Antisense-Orientierung an das 3 '-Ende des Promotors gekoppelt ist; und - gegebenenfalls ein Terminationssignal für die Termination derDNA sequences comprises: a promoter which is functional in plants, in particular seed-specific, at least one nucleic acid sequence which codes for an enzyme or a fragment thereof which is involved in chlorophyll synthesis, the nucleic acid sequence being in the antisense orientation at the 3 'end of the Promoter is coupled; and - if necessary, a termination signal for the termination of the
Transkription und die Addition eines poly-A-Schwanzes an das entsprechende Transkript, das an das 5 '-Ende der Nukleinsäuresequenz gekoppelt ist.Transcription and the addition of a poly-A tail to the corresponding transcript which is coupled to the 5 'end of the nucleic acid sequence.
b) Übertragung des Expressionsvektors aus a) auf pflanzliche Zellen undb) transfer of the expression vector from a) to plant cells and
Integration der Nukleinsäuresequenz in das pflanzliche Genom,Integration of the nucleic acid sequence into the plant genome,
c) Regeneration transgener Pflanzen und gegebenenfalls Vermehrung dieserc) Regeneration of transgenic plants and, if appropriate, multiplication of these
Pflanzen.Plants.
2. Verfahren nach Anspruch 1, worin die kodierende Sequenz für eine Glutamat 1- Semialdehyd- Aminotransferase oder mindest einen Teil davon kodiert. 2. The method of claim 1, wherein the coding sequence for a glutamate 1-semialdehyde aminotransferase or at least a part thereof.
3. Verfahren nach Anspruch 1, worin die kodierende Sequenz für die Untereinheit CHL I der Magnesium-Chelatase oder mindestens einen Teil davon kodiert.3. The method according to claim 1, wherein the coding sequence encodes the subunit CHL I of magnesium chelatase or at least a part thereof.
4. Verfahren nach Anspruch 1 , worin die kodierende Sequenz für die4. The method of claim 1, wherein the coding sequence for the
Untereinheit CHL H der Magnesium-Chelatase oder mindestens einen Teil davon kodiert.Coded subunit CHL H of magnesium chelatase or at least a part thereof.
5. Verfahren nach Anspruch 1, worin die kodierende Sequenz für die plastidäre Glutamyl-tRNA- Synthetase oder mindestens einen Teil davon kodiert.5. The method of claim 1, wherein the coding sequence encodes the plastid glutamyl tRNA synthetase or at least a portion thereof.
6. Verfahren nach Anspruch 1 , worin die kodierende Sequenz für eine Glutamyl-tRNA-Reduktase oder mindestens einen Teil davon kodiert.6. The method of claim 1, wherein the coding sequence encodes a glutamyl tRNA reductase or at least a portion thereof.
7. Verfahren nach einem der vorangehenden Ansprüche, worin der7. The method according to any one of the preceding claims, wherein the
Promotor ein USP-Promotor ist.Promoter is a USP promoter.
8. Verfahren nach einem der vorangehenden Ansprüche, worin der Promotor ein Napin-Promotor ist.8. The method according to any one of the preceding claims, wherein the promoter is a napin promoter.
9. Verfahren nach einem der vorangehenden Ansprüche, worin der Promotor ein 2S-Albumin-Promotor ist.9. The method according to any one of the preceding claims, wherein the promoter is a 2S albumin promoter.
10. Verfahren nach einem der vorangehenden Ansprüche, worin der Promotor ein Legumin-Promotor ist.10. The method according to any one of the preceding claims, wherein the promoter is a legumin promoter.
1 1. Verfahren nach einem der vorangehenden Ansprüche, worin der Promotor ein Hordein-Promotor ist. 1 1. The method according to any one of the preceding claims, wherein the promoter is a hordein promoter.
12. Verfahen nach einem der vorangehenden Ansprüche, worin die Ölpflanze zu der Familie der Brassicacea gehört.12. The method according to any one of the preceding claims, wherein the oil plant belongs to the Brassicacea family.
13. Verfahren nach einem der vorangehenden Ansprüche, worin die Ölpflanze Raps ist.13. The method according to any one of the preceding claims, wherein the oil plant is rapeseed.
14. Verfahren nach einem der Ansprüche 1-12, worin die Ölpflanze Rübsen ist.14. The method according to any one of claims 1-12, wherein the oil plant is turnips.
15. Transgene Pflanzensamen mit gegenüber Samen von Wildtyppflanzen reduziertem Chlorophyllgehalt, die aus einem Verfahren nach einem der vorangehenden Ansprüche erhalten werden.15. Transgenic plant seeds with reduced chlorophyll content compared to seeds of wild type plants, which are obtained from a process according to one of the preceding claims.
16. Verwendung der Samen nach Anspruch 15 zur Gewinnung pflanzlicher Öle. 16. Use of the seeds according to claim 15 for the production of vegetable oils.
PCT/EP1998/006852 1997-10-29 1998-10-29 Reduction of chlorophyll content in oil plant seeds WO1999022011A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002306205A CA2306205A1 (en) 1997-10-29 1998-10-29 Reduction of chlorophyll content in oil plant seeds
EP98954461A EP1025248A1 (en) 1997-10-29 1998-10-29 Reduction of chlorophyll content in oil plant seeds
AU11563/99A AU1156399A (en) 1997-10-29 1998-10-29 Reduction of chlorophyll content in oil plant seeds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19747739.9 1997-10-29
DE19747739 1997-10-29
DE19752647.0 1997-11-27
DE19752647A DE19752647C1 (en) 1997-10-29 1997-11-27 Reduction of the chlorophyll content in oil plant seeds

Publications (1)

Publication Number Publication Date
WO1999022011A1 true WO1999022011A1 (en) 1999-05-06

Family

ID=26041176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/006852 WO1999022011A1 (en) 1997-10-29 1998-10-29 Reduction of chlorophyll content in oil plant seeds

Country Status (4)

Country Link
EP (1) EP1025248A1 (en)
AU (1) AU1156399A (en)
CA (1) CA2306205A1 (en)
WO (1) WO1999022011A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075340A2 (en) * 1999-06-04 2000-12-14 E.I. Du Pont De Nemours And Company Magnesium chelatase
WO2001009355A2 (en) * 1999-08-03 2001-02-08 Basf Aktiengesellschaft PLANT S-ADENOSYLMETHIONIN:Mg-PROTOPORPHYRIN-IX-O-METHYLTRANSFERASE, PLANTS WITH VARIABLE CHLOROPHYLL CONTENTS AND/OR HERBICIDE TOLERANCE, AND METHOD FOR THE PRODUCTION THEREOF
EP2522722A3 (en) * 2005-12-09 2012-12-12 BASF Plant Science GmbH Nucleic acid molecules encoding polypeptides involved in regulation of sugar and lipid metabolism and methods of use VIII
CN118406702A (en) * 2024-05-16 2024-07-30 华中农业大学 Preparation method and application of brassica napus BnaCHL gene and mutant thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111066437B (en) * 2019-12-11 2021-11-05 中国烟草总公司郑州烟草研究院 Soil conditioning fluid for reducing chloride ion content in tobacco leaves and application method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779364A2 (en) * 1995-12-12 1997-06-18 Her Majesty in Right of Canada, represented by The Minister of Agriculture and Agri-Food Canada Anti-sense rna for cab transcript to reduce chlorophyll content in plants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779364A2 (en) * 1995-12-12 1997-06-18 Her Majesty in Right of Canada, represented by The Minister of Agriculture and Agri-Food Canada Anti-sense rna for cab transcript to reduce chlorophyll content in plants

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BOUGRI,O. AND GRIMM, B.: "members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley", THE PLANT JOURNAL, vol. 9, no. 6, 1996, pages 867 - 878, XP002093836 *
GRIMM B ET AL: "MOLECULAR BIOLOGY OF CHLOROPHYLL BIOSYNTHESIS AND ITS MANIPULATION BY EXPRESSION OF ANTISENSE RNA", JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT, 1994, pages 93, XP002058315 *
HÖFGEN,R., ET AL.: "a visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with a glutamate-1-semialdehyde aminotransferase antisense gene", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 91, March 1994 (1994-03-01), pages 1726 - 1730, XP002093834 *
KRUSE ET AL: "isolation and characterisation of tobacco (Nicotiana tabacum) cDNA clones encoding proteins involved in Magnesium chelation into protoporphyrin IX", PLANT MOLECULAR BIOLOGY, no. 35, 1997, pages 1053 1053, XP002076483 *
MOCK. H.P. AND GRIMM, B.: "reduction of uroporphyrinogen dearboxylase by antisense RNA expression affects activities of other enzymes involved in tetrapyrrole biosynthesis and leads to light-dependent necrosis", PLANT PHYSIOLOGY, vol. 113, 1997, pages 1101 - 1112, XP002093835 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075340A2 (en) * 1999-06-04 2000-12-14 E.I. Du Pont De Nemours And Company Magnesium chelatase
WO2000075340A3 (en) * 1999-06-04 2001-07-05 Du Pont Magnesium chelatase
US6570063B1 (en) 1999-06-04 2003-05-27 E.I. Dupont De Nemours And Company Magnesium chelatase
WO2001009355A2 (en) * 1999-08-03 2001-02-08 Basf Aktiengesellschaft PLANT S-ADENOSYLMETHIONIN:Mg-PROTOPORPHYRIN-IX-O-METHYLTRANSFERASE, PLANTS WITH VARIABLE CHLOROPHYLL CONTENTS AND/OR HERBICIDE TOLERANCE, AND METHOD FOR THE PRODUCTION THEREOF
WO2001009355A3 (en) * 1999-08-03 2001-09-07 Basf Ag PLANT S-ADENOSYLMETHIONIN:Mg-PROTOPORPHYRIN-IX-O-METHYLTRANSFERASE, PLANTS WITH VARIABLE CHLOROPHYLL CONTENTS AND/OR HERBICIDE TOLERANCE, AND METHOD FOR THE PRODUCTION THEREOF
EP2522722A3 (en) * 2005-12-09 2012-12-12 BASF Plant Science GmbH Nucleic acid molecules encoding polypeptides involved in regulation of sugar and lipid metabolism and methods of use VIII
CN118406702A (en) * 2024-05-16 2024-07-30 华中农业大学 Preparation method and application of brassica napus BnaCHL gene and mutant thereof

Also Published As

Publication number Publication date
EP1025248A1 (en) 2000-08-09
CA2306205A1 (en) 1999-05-06
AU1156399A (en) 1999-05-17

Similar Documents

Publication Publication Date Title
EP0765393B1 (en) Dna molecules which code for a plastid 2-oxoglutarate/malate translocator
EP0973921B1 (en) 2-deoxyglucose-6-phosphate (2-dog-6-p) phosphatase dna sequences as selection markers in plants
WO2001051647A2 (en) Method for increasing the content of fatty acids in plants and micro-organisms
WO1999004021A1 (en) Dna sequence coding for a hydroxyphenylpyruvate dioxygenase and overproduction thereof in plants
DE69528045T2 (en) DNA CONSTRUCTIONS, CELLS AND THE PLANTS DERIVED FROM THEM
EP1102852A1 (en) Dna sequence coding for a 1-deoxy-d-xylulose-5-phosphate synthase and the overproduction thereof in plants
DE19752647C1 (en) Reduction of the chlorophyll content in oil plant seeds
EP1301610B1 (en) Method for influencing the content of sinapine in transgenic plant cells and plants
WO1995006733A2 (en) Glycerin-3-phosphate-dehydrogenase (gpdh)
WO1999022011A1 (en) Reduction of chlorophyll content in oil plant seeds
WO1998006831A1 (en) Transgenic plant cells and plants with modified acetyl-coa formation
DE4439748A1 (en) Method for changing the flowering behavior in plants
DE60216419T2 (en) METHOD FOR PRODUCING PLANT SEAMS WITH CHANGED FIBER CONTENT AND CHANGED SEED BOWL
EP1156117A2 (en) Methods for isolating modulators of carotenoid biosynthesis enzymes
DE10313795A1 (en) Altered PPase expression in sugar beet
DE19600357C1 (en) DNA sequence encoding a phosphoenolpyruvate phosphate translocator, plasmids, bacteria, yeasts and plants containing this transporter
WO1999011805A1 (en) Recombinant dna molecules and method for increasing oil content in plants
DE10063879B4 (en) Nucleic acids encoding vacuolar invertases, plant cells and plants containing them and their use
WO2000060101A1 (en) Metabolic selection markers for plants
DE19632121C2 (en) Transgenic plant cells and plants with altered acetyl-CoA formation
WO2001009355A2 (en) PLANT S-ADENOSYLMETHIONIN:Mg-PROTOPORPHYRIN-IX-O-METHYLTRANSFERASE, PLANTS WITH VARIABLE CHLOROPHYLL CONTENTS AND/OR HERBICIDE TOLERANCE, AND METHOD FOR THE PRODUCTION THEREOF
DE4438821A1 (en) DNA encoding plant citrate synthase
DE4435366A1 (en) DNA encoding plant citrate synthase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998954461

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2306205

Country of ref document: CA

Ref country code: CA

Ref document number: 2306205

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09564368

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 11563/99

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1998954461

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1998954461

Country of ref document: EP