EP0675003A1 - Formation d'images par transfert thermique - Google Patents
Formation d'images par transfert thermique Download PDFInfo
- Publication number
- EP0675003A1 EP0675003A1 EP95302102A EP95302102A EP0675003A1 EP 0675003 A1 EP0675003 A1 EP 0675003A1 EP 95302102 A EP95302102 A EP 95302102A EP 95302102 A EP95302102 A EP 95302102A EP 0675003 A1 EP0675003 A1 EP 0675003A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- receptor
- bleaching agent
- thermal
- colourant
- donor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 title description 7
- 239000007844 bleaching agent Substances 0.000 claims abstract description 60
- 239000006096 absorbing agent Substances 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000004061 bleaching Methods 0.000 claims abstract description 18
- 230000005855 radiation Effects 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 150000001412 amines Chemical group 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 9
- 239000012038 nucleophile Substances 0.000 claims description 6
- -1 amine salts Chemical class 0.000 claims description 5
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 238000012986 modification Methods 0.000 claims 1
- 230000004048 modification Effects 0.000 claims 1
- 239000000975 dye Substances 0.000 description 41
- 230000009102 absorption Effects 0.000 description 19
- 238000010521 absorption reaction Methods 0.000 description 19
- 238000000576 coating method Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 239000000049 pigment Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 5
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 231100000489 sensitizer Toxicity 0.000 description 4
- 238000000859 sublimation Methods 0.000 description 4
- 230000008022 sublimation Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GTHRMVRJWIZZIC-UHFFFAOYSA-N [N+](=O)([O-])C(C(=O)[O-])S(=O)(=O)C1=CC=CC=C1.CN(C(N(C)C)=[NH2+])C Chemical compound [N+](=O)([O-])C(C(=O)[O-])S(=O)(=O)C1=CC=CC=C1.CN(C(N(C)C)=[NH2+])C GTHRMVRJWIZZIC-UHFFFAOYSA-N 0.000 description 3
- 238000002679 ablation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- JLZIIHMTTRXXIN-UHFFFAOYSA-N 2-(2-hydroxy-4-methoxybenzoyl)benzoic acid Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1C(O)=O JLZIIHMTTRXXIN-UHFFFAOYSA-N 0.000 description 2
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 2
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 238000012505 colouration Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- DPRMFUAMSRXGDE-UHFFFAOYSA-N ac1o530g Chemical compound NCCN.NCCN DPRMFUAMSRXGDE-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000000649 benzylidene group Chemical group [H]C(=[*])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-O guanidinium Chemical compound NC(N)=[NH2+] ZRALSGWEFCBTJO-UHFFFAOYSA-O 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- RSAZYXZUJROYKR-UHFFFAOYSA-N indophenol Chemical compound C1=CC(O)=CC=C1N=C1C=CC(=O)C=C1 RSAZYXZUJROYKR-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000009823 thermal lamination Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/382—Contact thermal transfer or sublimation processes
- B41M5/392—Additives, other than colour forming substances, dyes or pigments, e.g. sensitisers, transfer promoting agents
Definitions
- This invention relates to methods of thermal transfer imaging in which a donor element comprising a colourant and an infrared (IR) absorber is assembled in face-to-face contact with a receptor element and the assembly exposed imagewise to IR radiation to effect transfer of colourant from the donor to the receptor.
- IR infrared
- a donor sheet comprising a layer of colourant and an IR absorber is placed in contact with a receptor and the assembly exposed to a pattern of IR radiation, normally from a scanning laser source.
- the radiation is absorbed by the IR absorber, causing a rapid build-up of heat in the exposed areas of the donor which in turn causes transfer of colourant from those areas to the receptor.
- a multi-colour image can be assembled on a common receptor.
- the system is particularly suited to the colour proofing industry, where colour separation information is routinely generated and stored electronically and the ability to convert such data into hardcopy via digital address of "dry" media is seen as a great advantage.
- the heat generated in the donor element may cause colourant transfer by a variety of mechanisms.
- the colourant and associated binder materials may transfer in a molten state (“melt-stick transfer”), as disclosed in JP63-319192. Both of these mechanisms produce mass transfer, i.e. there is essentially 0% or 100% transfer of colourant depending on whether the applied energy exceeds a certain threshold.
- Diffusion or sublimation transfer involves a different mechanism in which a colourant is diffused (or sublimed) to the receptor without co-transfer of binder. This process enables the amount of colourant transferred to vary continuously with the input energy. Examples of this process are disclosed in U.S. 5,126,760 and numerous other patents.
- U.S. 5,219,703 discloses laser-induced thermal dye transfer using heat transferable dyes, bleachable and heat transferable near-infrared absorbing sensitisers, acid photogenerating compounds and optional near-ultraviolet absorbing sensitisers.
- the combination of the near-infrared absorbing sensitiser and acid photogenerating compounds effects transfer of the heat transferable dyes and bleaching of the near-infrared absorbing sensitiser to eliminate unwanted visible light absorption.
- the acid photogenerating compound may be present in either the dye donor or dye receiver element. If the acid photogenerator is in the dye donor, bleaching will occur upon initial exposure of the dye donor to near-infrared or near-ultraviolet radiation. If present in the dye receiver element, bleaching will occur upon subsequent exposure of the dye receiver to near-infrared or near-ultraviolet radiation.
- thermal bleaching agents with bleachable IR absorbers provides an effective system for reducing residual absorption for IR absorber in a thermal transfer imaging process.
- thermal bleaching agent used herein refers to bleaching agents which do not require exposure to light to become active but will bleach dyes at ambient or elevated temperatures.
- bleaching means a substantial reduction in absorption(s) giving rise to colour visible to the human eye, regardless of how this is achieved. For example, there may be an overall reduction in the intensity of the absorption, or it may be shifted to non-interfering wavelengths, or a change in shape of the absorption band (a narrowing) may be sufficient to render the IR absorber colourless.
- the thermal bleaching agent is present in a receptor layer on the surface of the receptor element, or in the donor element, but it is also possible to deposit the thermal bleaching agent on the transferred image by appropriate means in an additional step subsequent to step (iii) or step (iv).
- the image residing on the receptor element after step (iii) or step (iv) may be further transferred to a second receptor which comprises a layer containing a thermal bleaching agent.
- Thermal bleaching of IR dyes is known in fields unrelated to that of thermal transfer imaging, notably in antihalation layers of IR-sensitive photothermographic media, as described, for example, in U.S. 5,135,842 and U.S. Patent Application Serial No. 07/993650, filed 21st December, 1992.
- U.S. Patent Application Serial No. 07/993642, filed 21st December, 1992 discloses thermal carbanion generating agents for use in such systems.
- various patents disclose IR dye-bleach systems for optical data storage, e.g., U.S. 5,166,041 and U.S. 5,185,233, and Japanese Patent Application 05-024342 discloses laser addressed recording materials involving an amine dye-bleach step subsequent to the laser exposure, but colourant transfer is not involved.
- the IR absorber should have the properties normally required for use in thermal transfer media, i.e., strong absorption in the desired region (normally in the range 650 to 1200 nm), ability to be incorporated in a uniform layer in the donor (with or without other ingredients), stability to normal conditions of heat, light, humidity etc., yet should be rapidly and irreversibly bleached by the action of the bleaching agent.
- the bleaching agent should be compatible with the resins commonly used in donor and receptor elements for thermal colourant transfer, should be stable under normal conditions of temperature, light and humidity, and must not give rise to any visible colouration of the receptor, yet it should, when required, react rapidly and irreversibly with the IR absorber to cause bleaching of the latter.
- IR absorber/bleaching agent combinations are possible.
- U.S. 5,185,233 discloses the bleaching of IR dyes by free radicals released by thermal decomposition of species such as azo compounds, diacyl peroxides, dialkyl peroxides, hydroperoxides, carbonyl compounds, halogen compounds, organometallic compounds and persulphates.
- species such as azo compounds, diacyl peroxides, dialkyl peroxides, hydroperoxides, carbonyl compounds, halogen compounds, organometallic compounds and persulphates.
- the preferred bleaching method for use in this invention is bleaching by nucleophiles, such as, amines and carbanions.
- nucleophiles such as, amines and carbanions.
- a large number of dyes of different structural types are known to be bleached by amines, see for example, EP 0518470.
- Dyes known in the art to be amine-bleachable include triarylmethane, styryl, benzylidene, indophenol, polymethine, merocyanine and azine dyes, hence IR-absorbing members of these classes are potentially suitable for use in the invention.
- IR absorbing dyes that is known to be bleachable by nucleophiles are the tetraarylpolymethine (TAPM) dyes. These generally absorb in the 700 to 900 nm region, making them suitable for diode laser address.
- TAPM tetraarylpolymethine
- none of these references addresses the problem of co-transfer of these dyes with the colourant which gives a blue cast to the transferred image because the TAPM dyes generally have absorption peaks which tail into the red region of the spectrum.
- TAPM dyes The general formula for TAPM dyes is disclosed in U.S. 5,125,842. Dyes of this class have been shown to be bleachable by free amines (EP 05118470), thermally-generated amines (U.S. 5,135,842) and thermally-generated carbanions (U.S. Serial No. 07/993650).
- a preferred dye of this class is Dye I:-
- Dye I has the unexpected property of partially autobleaching during the imaging process, so that the bleaching process requires lower concentrations of bleaching agent and/or shorter reaction times.
- Another class of dye found to be susceptible to nucleophilic bleaching is that of the diamine dication dyes, disclosed for example in WO90/012342 and JP51-88016, an example of which is commercially available under the trade name CYASORB IR165 (American Cyanamid). Although these dyes show peak absorptions at relatively long wavelengths (ca. 1050 nm, suitable for YAG laser address), the absorption band is broad and tails into the red region. This unwanted absorption may be bleached in the manner described for the TAPM dyes, but in some cases a new absorption appears at around 450nm, which restricts the usefulness unless further bleaching agents or optical brighteners are employed.
- the donor element apart from the choice of IR absorber the only constraint is that the colourant should be substantially inert towards the bleaching agent.
- the donor element may be adapted for sublimation transfer, ablation transfer or melt-stick transfer.
- the donor element comprises a substrate (such as polyester sheet), a layer of colourant and the IR absorber, which may be in the same layer as the colourant, in a separate layer, or both.
- Other layers may be present, such as dynamic release layers as disclosed in U.S. 5,171,650.
- the donor may be self-sustaining, as taught in EP 0491564.
- the colourant generally comprises one or more dyes or pigments of the desired colour dissolved or dispersed in a binder, although binder-free colourant layers are also possible, as disclosed in International Patent Application No. PCTGB92/01489.
- the colourant comprises dyes or pigments that reproduce the colours shown by standard printing ink references provided by the International Prepress Proofing Association, known as SWOP colour references.
- the preferred bleaching agents for use with the invention are amines and carbanions, and many types of dye are known to be bleachable by such species. Therefore, colourant dyes, e.g., for sublimation transfer, must be chosen with care and screened for possible interactions with the bleaching agent. For this reason, preferred donor elements comprise a colourant layer in the form of a dispersion of pigment particles in a binder as this greatly reduces the likelihood of unwanted colourant bleaching. Particularly preferred donor elements are of the type disclosed in British Patent Application No. 9225724 in which the colourant layer comprises a fluorocarbon compound in addition to pigment and binder.
- the bleaching agent is incorporated in the donor element.
- the bleaching agent in "masked" form, i.e., a compound that decomposes thermally to release the active bleaching agent.
- a compound that decomposes thermally to release the active bleaching agent examples include the free-radical generators disclosed in U.S. 5,185,233 and thermal amine and carbanion generators referred to previously. These include salts which decompose thermally to release amines. Suitable examples include the salts of arylsulphonylacetic acids with amines such as guanidine, dicyclohexylamine etc., as disclosed in U.S.
- the preferred class of bleaching agent for incorporation in the donor are quaternary ammonium phenylsulphonylacetates, such as tetramethylguanidinium nitrophenylsulphonylacetate, as disclosed in U.S. Serial No. 07/993642. These compounds are stable at room temperature, but decompose rapidly at elevated temperatures to produce carbanionic species which react rapidly and irreversibly with dyes of the TAPM class to give colourless products.
- Masked bleaching agents can be coated in the same layer of the donor element as the IR absorber. If a "free" bleaching agent is included in the donor, then it must be contained in a layer separate from that containing the IR absorber, e.g., by adopting the technology described in EP 0518470.
- the receptor elements used in the invention are entirely conventional.
- the elements typically comprise a substrate, such as paper or plastic sheet, bearing one or more resin coatings containing the thermal bleaching agent.
- the choice of the resin for the receptor layer e.g. in terms of Tg, softening point etc., may depend on the type of transfer involved (ablation, melt-stick or sublimation), but for use with the preferred donor elements, Butvar B76 (Monsanto) and similar thermoplastic materials are highly suitable.
- the receptor need not comprise a resin layer, e.g., plain paper may be used as the receptor.
- the preferred bleaching agents are nucleophiles such as amines and carbanions. If a free amine is incorporated in the receptor layer, it is preferably non-volatile. Suitable examples are disclosed in EP 0518470, e.g., diethylenetetramine, triethylenepentamine etc. Polymeric amines such as polyethyleneimine are also suitable. An alternative to the use of free amines is the use of amine salts which decompose thermally to release amines. Suitable examples include the salts of arylsulphonylacetic acids with amines such as guanidine, dicyclohexylamine etc. as disclosed in U.S. 5,135,842.
- the preferred class of bleaching agent for incorporation in the receptor layer are quaternary ammonium phenylsulphonylacetates, such as tetramethylguanidinium nitrophenylsulphonylacetate, as described in U.S. Serial No. 07/993642. These compounds are stable at room temperature, but decompose rapidly at elevated temperatures to produce carbanionic species which react rapidly and irreversibly with dyes of the TAPM class to give colourless products.
- the amount of bleaching agent employed may vary considerably, depending on the concentration and characteristics of the IR absorber used, e.g. its propensity for co-transfer with the colourant, the intensity of its visible colouration etc. Generally, loadings of from 1 to 10 wt% of the solids in the receptor layer are suitable, normally 3 to 5 wt%.
- the procedure for imagewise transfer of colourant from donor to receptor is conventional.
- the two elements are assembled in intimate face-to-face contact, e.g. by vacuum hold down or alternatively by means of the cylindrical lens apparatus described in British Patent Application No. 9220271 and scanned by a suitable laser.
- the assembly may be imaged by any of the commonly used lasers, depending on the absorber used, but address by near infrared emitting lasers such as diode lasers and YAG lasers, is preferred.
- Any of the known scanning devices may be used, e.g. flat-bed scanners, external drum scanners or internal drum scanners.
- the assembly to be imaged is secured to the drum or bed, e.g., by vacuum hold-down, and the laser beam is focused to a spot, e.g., of about 20 microns diameter on the IR-absorbing layer of the donor.
- This spot is scanned over the entire area to be imaged while the laser output is modulated in accordance with electronically stored image information.
- Two or more lasers may scan different areas of the donor receptor assembly simultaneously, and if necessary, the output of two or more lasers may be combined optically into a single spot of higher intensity.
- Laser address is normally from the donor side, but may be from the receptor side if the receptor is transparent to the laser radiation.
- peeling apart the donor and receptor reveals a monochrome image on the receptor that will in most cases be contaminated by co-transfer of the IR absorber.
- the process may be repeated one or more times using donor sheets of different colours so as to build a multi-colour image on a common receptor.
- all that is required to produce a "clean" image is an overall heat treatment of the image to activate or accelerate the bleach chemistry.
- further thermal treatment may not be necessary.
- the bleaching agent is present initially in neither the donor nor the receptor, and an additional step is required to bring it into contact with the contaminated image. Whilst this technique requires an extra step, it does allow the use of an uncoated receptor, such as plain paper. Any suitable means may be employed to apply the bleaching agent to the transferred image, but "wet" methods such as dipping, spraying etc. are not preferred. A suitable dry method is thermal lamination and subsequent peeling of a separate donor sheet containing the thermal bleaching agent. Any of the thermal bleaching agents described previously are suitable for use in this embodiment.
- the receptor to which the colourant image is initially transferred is not the final substrate on which the image is viewed.
- U.S. 5,126,760 discloses thermal transfer of the image from the first receptor to a second receptor for viewing purposes. In such cases, it may be convenient to provide the thermal bleaching agent in the second receptor. The invention will now be illustrated by the following Examples.
- FC refers to N-methyl perfluorooctanesulphonamide (U.S. 2,732,398).
- Millbase refers to a dispersion produced from 36 parts by weight 2-butanone and 4 parts by weight pigment chips. The pigment chips were made by conventional methods and comprised pigment particles and VAGH resin in 3 : 2 ratio by weight.
- VAGH resin is a copolymer of vinyl chloride and vinyl acetate which is partially hydrolysed and commercially available from Union Carbide).
- Coatings were made using wire-wound bars and were dried at ambient temperature.
- the first four ingredients were mixed for 1 hour before adding the FC.
- the resulting coating showed an absorption maximum at 830nm due to the IR dye with a shoulder at 750nm and a tail extending below 700nm (in addition to the magenta pigment absorptions).
- a sheet comprising a layer of bleaching agent was prepared by coating plain photocopier paper with the following solution at 36 micron wet thickness: 0.2g tetramethylguanidinium nitrophenylsulphonylacetate 2.5g methanol 5.0g Butvar B76 (10 wt% solution in 2-butanone)
- This Example demonstrates the selective bleaching of the IR dye, and that the bleaching agent can be applied from a separate sheet.
- This Example demonstrates the selective bleaching of a different class of IR dye.
- the following dispersion was prepared:- 27.5g magenta millbase 7.5g 2-butanone 2.5g ethanol 1.0g Cyasorb IR165
- Example 1 A sample of the yellow coating from Example 1 was assembled with a plain paper receptor on an external drum scanner with vacuum hold down, and imaged via a laser diode delivering 100mW at 810nm focused to a 20 micron spot, and scanned at 200cm/sec. A 2mm stripe image was transferred to the receptor, and contamination by the IR dye was apparent both visually and by spectrometric analysis.
- Example 1 The process was repeated using the coated paper of Example 1 as receptor, and the transferred image was subjected to 30 second heating from a hot air blower. In this case no contamination by the IR dye was detectable.
- the process was repeated using the yellow, magenta and cyan coatings of Example 1 singly and in all possible overprinted combinations. In each case, transfer to the guanidinium-coated paper, followed by heat treatment, produced pure, uncontaminated colours.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9406175A GB9406175D0 (en) | 1994-03-29 | 1994-03-29 | Thermal transfer imaging |
GB9406175 | 1994-03-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0675003A1 true EP0675003A1 (fr) | 1995-10-04 |
EP0675003B1 EP0675003B1 (fr) | 1997-09-10 |
Family
ID=10752668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19950302102 Expired - Lifetime EP0675003B1 (fr) | 1994-03-29 | 1995-03-29 | Formation d'images par transfert thermique |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0675003B1 (fr) |
JP (1) | JPH07323664A (fr) |
DE (1) | DE69500668T2 (fr) |
GB (1) | GB9406175D0 (fr) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0738930A2 (fr) * | 1995-04-20 | 1996-10-23 | Minnesota Mining And Manufacturing Company | Eléments absorbants dans l'UV et blanchissable à la lumière infra-rouge |
EP0738609A1 (fr) * | 1995-04-20 | 1996-10-23 | Minnesota Mining And Manufacturing Company | Compositions photoblanchissables, absorbant des lasers |
WO1998007576A1 (fr) * | 1996-08-20 | 1998-02-26 | Minnesota Mining And Manufacturing Company | Compositions photoblanchissables absorbables par laser |
WO1998007575A1 (fr) * | 1996-08-20 | 1998-02-26 | Minnesota Mining And Manufacturing Company | Systeme de transfert sur film induit par laser |
WO1998007574A1 (fr) * | 1996-08-20 | 1998-02-26 | Minnesota Mining And Manufacturing Company | Blanchiment thermique de colorants infrarouges |
WO1998047718A1 (fr) * | 1997-04-22 | 1998-10-29 | Minnesota Mining And Manufacturing Company | Production d'images demi-ton par transfert de film par laser sur un recepteur texture |
US5856061A (en) * | 1997-08-14 | 1999-01-05 | Minnesota Mining And Manufacturing Company | Production of color proofs and printing plates |
US6001530A (en) * | 1997-09-02 | 1999-12-14 | Imation Corp. | Laser addressed black thermal transfer donors |
EP1092561A2 (fr) * | 1999-10-15 | 2001-04-18 | E.I. Du Pont De Nemours And Company | Procédé pour l'enregistrement par transfert thermique induit par laser |
US6589451B1 (en) | 1999-11-03 | 2003-07-08 | Optodot Corporation | Optical shutter |
WO2003098351A1 (fr) * | 2002-05-17 | 2003-11-27 | E.I. Du Pont De Nemours And Company | Element filtre de rayonnement et procedes de fabrication dudit filtre |
US6757094B2 (en) | 1999-11-03 | 2004-06-29 | Optodot Corporation | Optical shutter assembly |
EP1433820A1 (fr) * | 2002-12-26 | 2004-06-30 | Eastman Kodak Company | Molécules bichromophores |
EP1433620A2 (fr) | 2002-12-26 | 2004-06-30 | Eastman Kodak Company | Elément formateur d'image contenant un colorant bichromophore absorbant l'infrarouge |
US6855474B1 (en) | 2004-05-03 | 2005-02-15 | Kodak Polychrome Graphics Llc | Laser thermal color donors with improved aging characteristics |
US6899988B2 (en) | 2003-06-13 | 2005-05-31 | Kodak Polychrome Graphics Llc | Laser thermal metallic donors |
US7147902B2 (en) | 2004-02-27 | 2006-12-12 | Eastman Kodak Company | Multi-layer laser thermal image receptor sheet with internal tie layer |
US7172992B2 (en) | 2003-09-26 | 2007-02-06 | Eastman Kodak Company | Biguanide bleaching agent for a thermal-imaging receptor element |
EP2535201A1 (fr) | 2011-06-17 | 2012-12-19 | Agfa-Gevaert | Marquage laser en couleur d'articles et documents de sécurité |
CN103228455A (zh) * | 2010-12-07 | 2013-07-31 | 爱克发-格法特公司 | 防伪文件前体的彩色激光标记方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005502074A (ja) | 2001-09-04 | 2005-01-20 | コダック ポリクロウム グラフィクス リミティド ライアビリティ カンパニー | ハイブリッド校正法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63185680A (ja) * | 1987-01-28 | 1988-08-01 | Oki Electric Ind Co Ltd | 感熱転写材 |
EP0535608A1 (fr) * | 1991-10-04 | 1993-04-07 | Konica Corporation | Matériau pour le transfert thermique et procédé de formation d'image utilisant ce matériau |
EP0563886A1 (fr) * | 1992-04-01 | 1993-10-06 | Eastman Kodak Company | Amines tertiaires non-volatiles dans l'élément donneur pour transfert thermique induit par laser |
-
1994
- 1994-03-29 GB GB9406175A patent/GB9406175D0/en active Pending
-
1995
- 1995-03-29 EP EP19950302102 patent/EP0675003B1/fr not_active Expired - Lifetime
- 1995-03-29 JP JP7071250A patent/JPH07323664A/ja active Pending
- 1995-03-29 DE DE1995600668 patent/DE69500668T2/de not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63185680A (ja) * | 1987-01-28 | 1988-08-01 | Oki Electric Ind Co Ltd | 感熱転写材 |
EP0535608A1 (fr) * | 1991-10-04 | 1993-04-07 | Konica Corporation | Matériau pour le transfert thermique et procédé de formation d'image utilisant ce matériau |
EP0563886A1 (fr) * | 1992-04-01 | 1993-10-06 | Eastman Kodak Company | Amines tertiaires non-volatiles dans l'élément donneur pour transfert thermique induit par laser |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 12, no. 459 (M - 770)<3306> 2 December 1988 (1988-12-02) * |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5773170A (en) * | 1995-04-20 | 1998-06-30 | Minnesota Mining And Manufacturing Co. | UV-absorbing media bleachable by IR-radiation |
EP0738609A1 (fr) * | 1995-04-20 | 1996-10-23 | Minnesota Mining And Manufacturing Company | Compositions photoblanchissables, absorbant des lasers |
EP0738930A3 (fr) * | 1995-04-20 | 1997-11-26 | Minnesota Mining And Manufacturing Company | Eléments absorbants dans l'UV et blanchissable à la lumière infra-rouge |
EP0738930A2 (fr) * | 1995-04-20 | 1996-10-23 | Minnesota Mining And Manufacturing Company | Eléments absorbants dans l'UV et blanchissable à la lumière infra-rouge |
WO1998007576A1 (fr) * | 1996-08-20 | 1998-02-26 | Minnesota Mining And Manufacturing Company | Compositions photoblanchissables absorbables par laser |
WO1998007574A1 (fr) * | 1996-08-20 | 1998-02-26 | Minnesota Mining And Manufacturing Company | Blanchiment thermique de colorants infrarouges |
WO1998007575A1 (fr) * | 1996-08-20 | 1998-02-26 | Minnesota Mining And Manufacturing Company | Systeme de transfert sur film induit par laser |
US5843617A (en) * | 1996-08-20 | 1998-12-01 | Minnesota Mining & Manufacturing Company | Thermal bleaching of infrared dyes |
WO1998047718A1 (fr) * | 1997-04-22 | 1998-10-29 | Minnesota Mining And Manufacturing Company | Production d'images demi-ton par transfert de film par laser sur un recepteur texture |
US5856061A (en) * | 1997-08-14 | 1999-01-05 | Minnesota Mining And Manufacturing Company | Production of color proofs and printing plates |
US6001530A (en) * | 1997-09-02 | 1999-12-14 | Imation Corp. | Laser addressed black thermal transfer donors |
EP1092561A2 (fr) * | 1999-10-15 | 2001-04-18 | E.I. Du Pont De Nemours And Company | Procédé pour l'enregistrement par transfert thermique induit par laser |
EP1092561A3 (fr) * | 1999-10-15 | 2003-05-21 | E.I. Du Pont De Nemours And Company | Procédé pour l'enregistrement par transfert thermique induit par laser |
US6569585B2 (en) | 1999-10-15 | 2003-05-27 | E.I. Du Pont De Nemours And Company | Thermal imaging process and products using image rigidification |
EP1634720A3 (fr) * | 1999-10-15 | 2007-01-17 | E.I.Du pont de nemours and company | Procédé pour l'enregistrement par transfert thermique induit par laser |
US6757094B2 (en) | 1999-11-03 | 2004-06-29 | Optodot Corporation | Optical shutter assembly |
US6589451B1 (en) | 1999-11-03 | 2003-07-08 | Optodot Corporation | Optical shutter |
US7018751B2 (en) | 2002-05-17 | 2006-03-28 | E. I. Du Pont De Nemours And Company | Radiation filter element and manufacturing processes therefore |
WO2003098351A1 (fr) * | 2002-05-17 | 2003-11-27 | E.I. Du Pont De Nemours And Company | Element filtre de rayonnement et procedes de fabrication dudit filtre |
EP1433820A1 (fr) * | 2002-12-26 | 2004-06-30 | Eastman Kodak Company | Molécules bichromophores |
EP1433620A2 (fr) | 2002-12-26 | 2004-06-30 | Eastman Kodak Company | Elément formateur d'image contenant un colorant bichromophore absorbant l'infrarouge |
US6831163B2 (en) | 2002-12-26 | 2004-12-14 | Eastman Kodak Company | Bichromophoric molecules |
US6841514B2 (en) | 2002-12-26 | 2005-01-11 | Eastman Kodak Company | Thermal transfer imaging element containing infrared bichromophoric colorant |
US6899988B2 (en) | 2003-06-13 | 2005-05-31 | Kodak Polychrome Graphics Llc | Laser thermal metallic donors |
US7172992B2 (en) | 2003-09-26 | 2007-02-06 | Eastman Kodak Company | Biguanide bleaching agent for a thermal-imaging receptor element |
US7147902B2 (en) | 2004-02-27 | 2006-12-12 | Eastman Kodak Company | Multi-layer laser thermal image receptor sheet with internal tie layer |
US6855474B1 (en) | 2004-05-03 | 2005-02-15 | Kodak Polychrome Graphics Llc | Laser thermal color donors with improved aging characteristics |
CN103228455A (zh) * | 2010-12-07 | 2013-07-31 | 爱克发-格法特公司 | 防伪文件前体的彩色激光标记方法 |
CN103228455B (zh) * | 2010-12-07 | 2015-04-01 | 爱克发-格法特公司 | 防伪文件前体的彩色激光标记方法 |
EP2535201A1 (fr) | 2011-06-17 | 2012-12-19 | Agfa-Gevaert | Marquage laser en couleur d'articles et documents de sécurité |
WO2012171728A1 (fr) | 2011-06-17 | 2012-12-20 | Agfa-Gevaert | Marquage laser couleur d'objets et de documents de sécurité |
US8921266B2 (en) | 2011-06-17 | 2014-12-30 | Agfa-Gevaert N.V. | Colour laser marking of articles and security documents |
Also Published As
Publication number | Publication date |
---|---|
DE69500668D1 (de) | 1997-10-16 |
GB9406175D0 (en) | 1994-05-18 |
JPH07323664A (ja) | 1995-12-12 |
DE69500668T2 (de) | 1998-01-15 |
EP0675003B1 (fr) | 1997-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0675003B1 (fr) | Formation d'images par transfert thermique | |
EP0920384B1 (fr) | Blanchiment thermique de colorants infrarouges | |
US5401618A (en) | Infrared-absorbing cyanine dyes for laser ablative imaging | |
EP0920386B1 (fr) | Compositions photoblanchissables absorbables par laser | |
US5387496A (en) | Interlayer for laser ablative imaging | |
JP2002514140A (ja) | レーザ誘起フィルム転写系 | |
JPH022074A (ja) | 赤外吸収性シアニン染料を含有するレーザ誘起熱転写用の染料供与体要素 | |
JPH0852948A (ja) | アブレイティブ記録要素 | |
EP0636490B1 (fr) | Couche barrière pour un procédé de formation d'images par ablation au laser | |
JP2648568B2 (ja) | 色素アブレーション画像の形成方法 | |
EP1017570B1 (fr) | Donneurs de noir, utiles dans un transfert thermique adresse par laser | |
US5989772A (en) | Stabilizing IR dyes for laser imaging | |
JP2908212B2 (ja) | レーザー誘導感熱色素転写用多色多層色素供与体素子 | |
US5633118A (en) | Laser ablative imaging method | |
JP3715362B2 (ja) | シングル・シート式色素アブレーション画像の形成方法 | |
EP0603568B1 (fr) | Mélange de perles contenant un colorant pour le transfert thermique de colorant induit par laser | |
JPH068642A (ja) | 感熱転写用色素供与体要素 | |
JP3776532B2 (ja) | レーザー色素除去型記録要素 | |
EP0756942A1 (fr) | Procédé de formation d'images par ablation à laser | |
EP0755802A1 (fr) | Procédé de formation d'images par ablation à laser | |
JPH09104172A (ja) | 単色アブレーション像の形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19960322 |
|
17Q | First examination report despatched |
Effective date: 19960424 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 69500668 Country of ref document: DE Date of ref document: 19971016 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990302 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990303 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19991229 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000329 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050329 |