EP0672835B1 - Micro fluid diode - Google Patents

Micro fluid diode Download PDF

Info

Publication number
EP0672835B1
EP0672835B1 EP95101737A EP95101737A EP0672835B1 EP 0672835 B1 EP0672835 B1 EP 0672835B1 EP 95101737 A EP95101737 A EP 95101737A EP 95101737 A EP95101737 A EP 95101737A EP 0672835 B1 EP0672835 B1 EP 0672835B1
Authority
EP
European Patent Office
Prior art keywords
fluid
micro
silicon
diode
capillaries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95101737A
Other languages
German (de)
French (fr)
Other versions
EP0672835A1 (en
Inventor
Minh Tan Dr. Pham
Steffen Dr. Howitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Dresden Rossendorf eV
Original Assignee
Forschungszentrum Dresden Rossendorf eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Dresden Rossendorf eV filed Critical Forschungszentrum Dresden Rossendorf eV
Publication of EP0672835A1 publication Critical patent/EP0672835A1/en
Application granted granted Critical
Publication of EP0672835B1 publication Critical patent/EP0672835B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C4/00Circuit elements characterised by their special functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2224Structure of body of device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87571Multiple inlet with single outlet
    • Y10T137/87652With means to promote mixing or combining of plural fluids

Definitions

  • the invention relates to a micro-fluid diode that is only permeable to fluid in one direction directional coupling of submicroliter amounts of one fluid medium into another standing or flowing target fluid in a closed system.
  • Appropriate Requirements exist when dosing, mixing and injecting fluids in the sub-microliter range for applications in particular in the field of biomedical engineering and chemical microsensor technology.
  • Liquid is a widely used procedure in the field of medical technology and Flow injection analysis. It is known to be by injecting through a rubber septum [P. W. Alexander et al., Analyst 107 (1982) 1335] or using rotary injection valves [M. D. Luque de Castro et al., Analyst 109 (1984) 413] or based on the hydrodynamic injection [J. Ruzicka et al., Anal. Chim. Acta, 145 (1983) 1].
  • the devices that use these techniques and are currently commercially available are based exclusively on costly precision mechanical manufacturing technologies.
  • the aim of the invention is to avoid adhering to the micromechanical valves Problems a technical solution for coupling a dosing fluid into a standing one or flowing target fluid can be found, which has a high dosing accuracy in the Has submicroliter range and maximum security against penetration of the target fluid into the dosing fluid.
  • the object is achieved by a micro-fluid diode which is only permeable to fluid in one direction and which consists of one or a system of a plurality of microcapillaries which are open on both sides and are in direct contact on the output side with the target fluid and whose input side facing the metering fluid is provided by an air or gas cushion is separated from the metering fluid so that the target fluid that expands in the capillaries is prevented from advancing due to the surface tension with the formation of a meniscus.
  • the metering fluid is applied to this meniscus discontinuously, preferably as a self-supporting fluid jet, and is coupled into the target fluid as a result of diffusion or convection processes.
  • the micro-fluid diode according to the invention is preferably integrated into a microtechnical flow channel, whereby it reliably prevents the liquid (target fluid) standing or flowing in the flow channel from escaping and at the same time ensures the entry of a second liquid (metering fluid) to be applied to the micro-fluid diode from the outside.
  • a coupling surface for the introduction of microdrops of a metering fluid is formed by the large number of open capillaries directed outwards.
  • the gas-liquid interface at each end of the microcapillaries is a mandatory prerequisite for the maintenance of the micro-fluid diode function at all times for the component functions and thus part of the component.
  • the microcapillaries have three-dimensional dimensions in the ⁇ m range and, due to the high precision requirements for their geometry, are preferably manufactured by anisotropic etching on ⁇ 100> or ⁇ 110> silicon substrates.
  • the length of each individual microcapillary is to be dimensioned such that the target fluid extends up to the capillary ends, and there, under the influence of the surface tension and the acting fluidic gravity pressures, forms a defined liquid-gas interface in the form of a meniscus at each microcapillary end.
  • each meniscus With the formation of each meniscus, the process of spreading the liquid in the corresponding microcapillary is completed and the coupling surface is thus brought into a reproducible state.
  • This state represents the prevailing equilibrium between the static gravity pressures and, in the event that the target fluid moves in the flow channel, the dynamic hydrostatic pressures. As long as the equilibrium conditions of the pressures are met, the desired directional dependence exists on all menisci of the entire coupling area. This means that the target fluid moved or standing in the flow channel does not leave the microcapillaries in the direction of the droplet chamber, but a metering fluid sprayed through the gas space of the droplet chamber onto any meniscus can get into the interior of the microcapillary and thus the flow channel.
  • the unhindered entry of the second liquid into the flow channel via the meniscus of the first liquid takes place via diffusion and / or convection mechanisms.
  • the flow velocity in the flow channel is exactly zero or the microcapillaries of the micro fluid diode are chosen long enough, only the diffusion component comes into play when the metering and target fluids are mixed. All flow velocities other than zero in the channel lead directly to the formation of convection components in the microcapillary, which are also superimposed by diffusion components.
  • the rate of inflow of the metering fluid through the microcapillaries of the coupling surface into the flow channel can be adjusted by choosing their geometric dimensions.
  • the figure shows the sectional view of the planar construction of a complete MFD component containing the actual inventive micro fluid diode (hereinafter referred to as MFD).
  • the MFD is a chip-shaped component 1 made entirely of ⁇ 100> or ⁇ 110> silicon. It is etched on one side as a lattice structure 6 and on the other side as a continuous flow channel 9.
  • the MFD chip 1 is mounted with the spacer chip 2, which is also made of silicon, in the glass-silicon flow cell 3 in such a way that a target fluid 7 can move past the MFD unhindered, thereby forming 6 small micromenisci in the lattice structure.
  • the lattice structure forms the coupling surface of the microfluidic diode in the direction of the spacer chip 2.
  • the entire component of the MFD comprises the stack arrangement of fluidic flow cell 3, 4 with flow channel 7, 9 and channel stopper 8, the MFD chip 1 with its microcapillary array 6 and the spacer chip 2, which is connected to the adjacent gas or air cushion over the microcapillary array.
  • the spacer chip 2, which forms the droplet chamber, is also produced by anisotropic etching in ⁇ 100> silicon. If the flow channel 7 is now flowed through by the target fluid, it wets the microcapillaries and spreads up to their opposite opening, where it forms a target fluid meniscus 6 independently of the flow speed depending on its surface tension and the system-internal gravity pressures, the total field of the capillary openings providing a coupling area for one Dosing fluid forms. If the metering fluid 5 is now sprayed onto this coupling surface 6 by means of a microtechnical pump, it can pass through the MFD arrangement 1 and directly reach the flow channel of the target fluid.
  • the micro fluid diode according to the invention provides a new element for microfluid handling without mechanical valves.
  • the construction of the micro fluid diode according to the invention is much simpler than that of the micromechanical valves, so that in addition to the smaller space requirement, the production is more cost-effective.
  • they can be used to implement a new concept for coupling unsupported fluid jets into a flowing target fluid located in a closed system.

Abstract

The micro flow line is taken through a channel (7) etched into a substrate (1) and past an array of micro capillaries where the fluid forms a pattern of micro meniscuses (6), with the fluid contained in the duct via the surface tension in the capillaries. Small amounts of the fluid (5) to be injected into the main flow are dosed into the capillaries from where they spread into the flow. The diode is assembled from a sandwich of etched substrates including silicon, glass, ceramic, metal, etc. and bonded together using conventional thin/thick film techniques. For silicon an orientation of <100> or <110> is used.

Description

Die Erfindung betrifft eine nur in einer Richtung fluiddurchlässige Mikro-Fluiddiode zur gerichteten Einkopplung von Submikrolitermengen eines Fluidmediums in ein anderes stehendes oder strömendes, in einem geschlossenen System befindliches Zielfluid. Entsprechende Anforderungen bestehen beim Dosieren, Mischen und Injizieren von Fluiden im Submikroliter-Bereich für Anwendungen insbesondere im Bereich der Biomedizintechnik und der chemischen Mikrosensorik.The invention relates to a micro-fluid diode that is only permeable to fluid in one direction directional coupling of submicroliter amounts of one fluid medium into another standing or flowing target fluid in a closed system. Appropriate Requirements exist when dosing, mixing and injecting fluids in the sub-microliter range for applications in particular in the field of biomedical engineering and chemical microsensor technology.

Die Einkopplung einer Flüssigkeit in eine andere, in einem geschlossenen System befindliche Flüssigkeit ist eine weit verbreitete Prozedur im Bereich der Medizintechnik und der Fließinjektionsanalyse. Sie wird bekannterweise durch Injizieren durch ein Gummiseptum [P. W. Alexander et al., Analyst 107 (1982) 1335] oder mit Hilfe von Rotationsinjektionsventilen [M. D. Luque de Castro et al., Analyst 109 (1984) 413] oder auf der Basis der hydrodynamischen Injektion [J. Ruzicka et al., Anal. Chim. Acta, 145 (1983) 1] realisiert. Die diese Techniken nutzenden, und derzeit kommerziell verfügbaren Geräte basieren ausschließlich auf kostenaufwendigen feinmechanischen Fertigungstechnologien. Bekannt sind weiterhin Entwicklungsarbeiten, die sich mit piezoelektrisch angetriebenen mikromechanischen Ventilen auf der Basis der Silizium-Technologie, insbesondere für den Einsatz in chemischen Mikroanalysatoren befassen [Van der Schoot et al., A Silicon Integrated Miniature Chemical Analysis System, Sensors and Actuators B6 (1992) 57-60]. Der Problemkreis diesbezüglich ist gegenwärtig noch nicht vollständig erfaßbar, da die Entwicklung noch ganz am Anfang steht. Momentan erkennbar sind folgende Probleme. Mechanische Ventile können nicht absolut schließen. Die Dosiergenauigkeit ist dadurch eingeschränkt. Das zweite Problem ist der große Platzbedarf von solchen mikromechanischen Elementen. Das dritte Problem ist die aufwendige Herstellungstechnologie, da Ventilstrukturen kompliziert sind.The coupling of one liquid into another, in a closed system Liquid is a widely used procedure in the field of medical technology and Flow injection analysis. It is known to be by injecting through a rubber septum [P. W. Alexander et al., Analyst 107 (1982) 1335] or using rotary injection valves [M. D. Luque de Castro et al., Analyst 109 (1984) 413] or based on the hydrodynamic injection [J. Ruzicka et al., Anal. Chim. Acta, 145 (1983) 1]. The devices that use these techniques and are currently commercially available are based exclusively on costly precision mechanical manufacturing technologies. Known are still development work dealing with piezoelectrically driven micromechanical Valves based on silicon technology, especially for use in chemical microanalysers [Van der Schoot et al., A Silicon Integrated Miniature Chemical Analysis System, Sensors and Actuators B6 (1992) 57-60]. Of the The problem area in this regard is currently not fully comprehensible, since the Development is just beginning. The following problems are currently recognizable. Mechanical valves cannot close absolutely. The dosing accuracy is thereby limited. The second problem is the large space requirement of such micromechanical Elements. The third problem is the complex manufacturing technology there Valve structures are complicated.

Mit der Erfindung soll unter Vermeidung der den mikromechanischen Ventilen anhaftenden Probleme eine technische Lösung zur Einkopplung eines Dosierfluides in ein stehendes oder strömendes Zielfluid gefunden werden, welches eine hohe Dosiergenauigkeit im Submikroliterbereich aufweist und höchste Sicherheit gegen ein Eindringen des Zielfluids in das Dosierfluid bietet.The aim of the invention is to avoid adhering to the micromechanical valves Problems a technical solution for coupling a dosing fluid into a standing one or flowing target fluid can be found, which has a high dosing accuracy in the Has submicroliter range and maximum security against penetration of the target fluid into the dosing fluid.

Die Aufgabe wird erfindungsgemäß durch eine nur in einer Richtung fluiddurchlässige Mikro-Fluiddiode gelöst, welche aus einer, oder einem System von mehreren beidseitig offenen Mikrokapillaren besteht, welche ausgangsseitig mit dem Zielfluid in direktem Kontakt stehen, und deren dem Dosierfluid zugewandte Eingangsseite durch ein Luft- bzw. Gaspolster vom Dosierfluid so getrennt ist, daß das in den Kapillaren emporspreitende Zielfluid infolge der Oberflächenspannung unter Ausbildung eines Meniskus am Weiterdringen gehindert wird. Das Dosierfluid wird diskontinuierlich, vorzugsweise als freitragender Fluidstrahl auf diesen Meniskus aufgebracht und infolge Diffusions- bzw. Konvektionsvorgängen in das Zielfluid eingekoppelt.
Die erfindungsgemäße Mikro-Fluiddiode wird vorzugsweise in einen mikrotechnischen Strömungskanal integriert, wobei sie den Austritt der im Strömungskanal stehenden oder strömenden Flüssigkeit ( Zielfluid ) sicher verhindert und gleichzeitig den Eintritt einer von außen auf die Mikro-Fluiddiode aufzubringenden zweiten Flüssigkeit ( Dosierfluid ) gewährleistet. Bei der erfindungsgemäßen Anordnung einer siebartigen Struktur von Mikrokapillaren an einen Strömungskanal wird durch die große Anzahl der nach außen gerichteten offenen Kapillaren eine Einkopplungsfläche für den Eintrag von Mikrotropfen eines Dosierfluides gebildet. Die Gas-Flüssigkeits-Grenzfläche an jedem Ende der Mikrokapillaren ist dabei für die Aufrechterhaltung der Mikro-Fluiddiodenfunktion zu jedem Moment zwingende Voraussetzung für die Bauelementefunktionen und somit Teil des Bauelementes.
Die Mikrokapillaren haben dreidimensionale Abmessungen im µm-Bereich und werden aufgrund der hohen Präzisionsanforderungen an deren Geometrie vorzugsweise durch anisotropes Ätzen an <100>- oder <110>-Siliciumsubstraten gefertigt. Die Länge jeder einzelnen Mikrokapillare ist so zu bemessen, daß das Zielfluid bis zu den Kapillarenden emporspreitet, und dort unter dem Einfluß der Oberflächenspannung und den einwirkenden fluidischen Schweredrücken an jedem Mikrokapillarende eine definierte Flüssigkeits-Gas-Grenzfläche in Form eines Meniskus ausbildet. Mit der Ausbildung jedes Meniskus wird der Vorgang des Spreitens der Flüssigkeit in der entsprechenden Mikrokapillare abgeschlossen und so die Einkopplungsfläche in einen reproduzierbaren Zustand versetzt. Dieser Zustand repräsentiert das herrschende Gleichgewicht zwischen den statischen Schweredrücken und für den Fall das sich das Zielfluid im Strömungskanal bewegt, der dynamischen hydrostatischen Drücke. Solange die Gleichgewichtsbedingungen der Drücke erfüllt sind, existiert die gewünschte Richtungsabhänigkeit an allen Menisken der gesamten Einkopplungsfläche. Dies bedeutet, daß das im Strömungskanal bewegte oder stehende Zielfluid die Mikrokapillaren in Richtung Tröpfchenkammer nicht verlassen, sehr wohl aber ein durch den Gasraum der Tröpfchenkammer auf einen beliebigen Meniskus gespritztes Dosierfluid in das Innere der Mikrokapillare und somit des Strömungskanales gelangen kann. Der ungehinderte Eintritt der zweiten Flüssigkeit über den Meniskus der ersten Flüssigkeit in den Strömungskanal erfolgt über Diffusions- und/oder Konvektionsmechanismen. Für den Fall, daß die Strömungsgeschwindigkeit im Strömungskanal genau Null ist oder die Mikrokapillaren der Mikro-Fluiddiode lang genug gewählt werden, kommt allein die Diffusionskomponente bei der Vermischung von Dosier- und Zielfluid zum Tragen. Alle von Null verschiedenen Strömungsgeschwindigkeiten im Kanal führen direkt zur Ausprägung von Konvektionskomponenten in der Mikrokapillare, die ebenfalls von Diffusionskomponenten überlagert werden. Die Einströmgeschwindigkeit des Dosierfluides über die Mikrokapillaren der Einkopplungsfläche in den Strömungskanal läßt sich durch Wahl deren geometrischer Abmessungen einstellen.
According to the invention, the object is achieved by a micro-fluid diode which is only permeable to fluid in one direction and which consists of one or a system of a plurality of microcapillaries which are open on both sides and are in direct contact on the output side with the target fluid and whose input side facing the metering fluid is provided by an air or gas cushion is separated from the metering fluid so that the target fluid that expands in the capillaries is prevented from advancing due to the surface tension with the formation of a meniscus. The metering fluid is applied to this meniscus discontinuously, preferably as a self-supporting fluid jet, and is coupled into the target fluid as a result of diffusion or convection processes.
The micro-fluid diode according to the invention is preferably integrated into a microtechnical flow channel, whereby it reliably prevents the liquid (target fluid) standing or flowing in the flow channel from escaping and at the same time ensures the entry of a second liquid (metering fluid) to be applied to the micro-fluid diode from the outside. In the arrangement according to the invention of a sieve-like structure of microcapillaries on a flow channel, a coupling surface for the introduction of microdrops of a metering fluid is formed by the large number of open capillaries directed outwards. The gas-liquid interface at each end of the microcapillaries is a mandatory prerequisite for the maintenance of the micro-fluid diode function at all times for the component functions and thus part of the component.
The microcapillaries have three-dimensional dimensions in the µm range and, due to the high precision requirements for their geometry, are preferably manufactured by anisotropic etching on <100> or <110> silicon substrates. The length of each individual microcapillary is to be dimensioned such that the target fluid extends up to the capillary ends, and there, under the influence of the surface tension and the acting fluidic gravity pressures, forms a defined liquid-gas interface in the form of a meniscus at each microcapillary end. With the formation of each meniscus, the process of spreading the liquid in the corresponding microcapillary is completed and the coupling surface is thus brought into a reproducible state. This state represents the prevailing equilibrium between the static gravity pressures and, in the event that the target fluid moves in the flow channel, the dynamic hydrostatic pressures. As long as the equilibrium conditions of the pressures are met, the desired directional dependence exists on all menisci of the entire coupling area. This means that the target fluid moved or standing in the flow channel does not leave the microcapillaries in the direction of the droplet chamber, but a metering fluid sprayed through the gas space of the droplet chamber onto any meniscus can get into the interior of the microcapillary and thus the flow channel. The unhindered entry of the second liquid into the flow channel via the meniscus of the first liquid takes place via diffusion and / or convection mechanisms. In the event that the flow velocity in the flow channel is exactly zero or the microcapillaries of the micro fluid diode are chosen long enough, only the diffusion component comes into play when the metering and target fluids are mixed. All flow velocities other than zero in the channel lead directly to the formation of convection components in the microcapillary, which are also superimposed by diffusion components. The rate of inflow of the metering fluid through the microcapillaries of the coupling surface into the flow channel can be adjusted by choosing their geometric dimensions.

Der besondere Vorteil dieser Anordnung besteht darin, daß fluidische Einströmungs- oder Mischstellen realisiert werden können, die auf den Einsatz konventioneller Ventile-Pumpe-Anordnungen verzichten können, welche bislang durch mechanisch aufeinanderliegende Lippendichtungen mit plastischen oder elastischen Dichtungsmaterialien hergestellt wurden. Solche Anordnungen sind in makrotechnischen Konstruktionen aufwendig und in mikrotechischen Bauelementen nur unter Inkaufnahme wesentlicher Nachteile nutzbar. So sind die aus der Literatur bekannten Anordnungen, die sich an den makrotechischen Konstruktionsprinzipien orientieren, generell mit Leckraten behaftet. Gerade für den Einsatz in Mikrosystemen der Umwelt- und biomedizinischen Technik ist aber durch die notwendige Applizierung von hochkonzentrierten Wirkstoffen im Pikoliter- bis Nanoliterbereich das Auftreten von Leckraten nicht mehr tolerierbar. The particular advantage of this arrangement is that fluidic inflow or Mixing points can be realized using conventional valve-pump arrangements can do without, which was previously due to mechanically superimposed Lip seals were made with plastic or elastic sealing materials. Such arrangements are complex in macro-technical constructions and in microtech Components can only be used if significant disadvantages are accepted. That's how they are Arrangements known from the literature, which are based on the macrotech construction principles orient, generally with leak rates. Especially for use in microsystems of environmental and biomedical technology is due to the necessary application of highly concentrated active ingredients in the picoliter to nanoliter range Leakage rates no longer tolerable.

Die Herstellung definierter und gegenüber Schweredruckschwankungen im Strömungskanal relativ unempfindlicher Gas-Flüssigkeits-Grenzflächen im Bereich der Tröpfchenkammer, hier in Form des Meniskus an der Mikro-Fluiddiode zum Einsatz kommend, sind eine ebenso einfache wie wirkungsvolle Konstruktionsform, die auch zum Aufbau von Anordnungen geeignet sind, welche hinsichtlich ihrer Wirkungen mit konventionellen Ventil-Pumpe-Anordnungen vergleichbar sind, dabei ideal keine Leckraten aufweisen.The production of defined and against gravitational pressure fluctuations in the flow channel relatively insensitive gas-liquid interfaces in the area of the droplet chamber, used here in the form of the meniscus on the micro fluid diode are one construction form that is as simple as it is effective, and that can also be used to set up arrangements which are suitable in terms of their effects with conventional valve-pump arrangements are comparable, ideally have no leakage rates.

Nachfolgend wird die Erfindung anhand des in der Zeichnung dargestellten Ausführungsbeispieles näher erläutert.The invention based on the embodiment shown in the drawing explained in more detail.

Die Figur zeigt die Schnittarstellung der planaren Konstruktion eines die eigentliche erfindungsgemäße Mikro-Fluiddiode (im weiteren MFD) enthaltenden kompletten MFD-Bauelementes. Die MFD ist ein vollständig aus <100>- oder <110>-Silicium hergestelltes chipförmiges Bauelement 1. Sie wird einseitig als Gitterstruktur 6 und anderseitig als fortgesetzter Strömungskanal 9 geätzt. Das MFD-Chip 1 wird mit dem ebenfalls aus Silicium bestehenden Spacerchip 2 so in die Glas-Silicium-Durchflußzelle 3 montiert, daß sich ein Zielfluid 7 ungehindert an der MFD vorbei bewegen kann und dabei in der Gitterstruktur 6 kleine Mikromenisken ausbildet. Die Gitterstruktur bildet in Richtung des Spacerchips 2 die Einkopplungsfläche der Mikrofluiddiode. Die Herstellung des MFD-Chips 1 erfolgt durch zweiseitiges anisotropes Ätzen in KOH-Lösung. Dabei entstehen ein Strömungskanal 9 im MFD-Chip 1 der Geometrie L:B:H= 1000 µm : 500 µm : 250 µm, sowie die Mikrokapillaren der Geometrie L:B:H= 50 µm : 50 µm : 150 µm. Die Geometrie des Strömungskanales in der durch anodisches Bonden hergestellten Glas-Silicium-Durchflußzelle 3, 4 beträgt B:H = 500 µm : 250 µm.
Das gesamte Bauelement der MFD umfaßt die durch Waferbonden oder Kleben miteinander verbundene Stapelanordnung aus fluidischer Durchflußzelle 3, 4 mit Strömungskanal 7, 9 und Kanalstopper 8, dem MFD-Chip 1 mit seinem Mikrokapillarenarray 6 und dem Spacerchip 2, der das angrenzende Gas- oder Luftpolster über dem Mikrokapillarenarray bildet. Auch der Spacerchip 2, welcher die Tröpfchenkammer bildet, wird durch anisotropes Ätzen in <100>-Silicium hergestellt.
Wird nun der Strömungskanal 7 vom Zielfluid durchströmt, benetzt dieses die Mikrokapillaren und spreitet zu deren gegenüberliegender Öffnung empor, wo es unabhänig von der Strömungsgeschwindigkeit in Abhänigkeit von seiner Oberflächensspannung und den systeminneren Schweredrücken einen Zielfluidmeniskus 6 ausbildet, wobei das Gesamtfeld der Kapillaröffnungen eine Einkopplungsfläche für ein Dosierfluid bildet. Wird nun das Dosierfluid 5 mittels einer mikrotechnischen Pumpe auf diese Einkopplungsfläche 6 gespritzt, kann es die MFD-Anordnung 1 durchlaufen und direkt den Strömungskanal des Zielfluides erreichen.
The figure shows the sectional view of the planar construction of a complete MFD component containing the actual inventive micro fluid diode (hereinafter referred to as MFD). The MFD is a chip-shaped component 1 made entirely of <100> or <110> silicon. It is etched on one side as a lattice structure 6 and on the other side as a continuous flow channel 9. The MFD chip 1 is mounted with the spacer chip 2, which is also made of silicon, in the glass-silicon flow cell 3 in such a way that a target fluid 7 can move past the MFD unhindered, thereby forming 6 small micromenisci in the lattice structure. The lattice structure forms the coupling surface of the microfluidic diode in the direction of the spacer chip 2. The MFD chip 1 is produced by double-sided anisotropic etching in KOH solution. This creates a flow channel 9 in the MFD chip 1 with the geometry L: W: H = 1000 µm: 500 µm: 250 µm, and the microcapillaries with the geometry L: W: H = 50 µm: 50 µm: 150 µm. The geometry of the flow channel in the glass-silicon flow cell 3, 4 produced by anodic bonding is W: H = 500 µm: 250 µm.
The entire component of the MFD comprises the stack arrangement of fluidic flow cell 3, 4 with flow channel 7, 9 and channel stopper 8, the MFD chip 1 with its microcapillary array 6 and the spacer chip 2, which is connected to the adjacent gas or air cushion over the microcapillary array. The spacer chip 2, which forms the droplet chamber, is also produced by anisotropic etching in <100> silicon.
If the flow channel 7 is now flowed through by the target fluid, it wets the microcapillaries and spreads up to their opposite opening, where it forms a target fluid meniscus 6 independently of the flow speed depending on its surface tension and the system-internal gravity pressures, the total field of the capillary openings providing a coupling area for one Dosing fluid forms. If the metering fluid 5 is now sprayed onto this coupling surface 6 by means of a microtechnical pump, it can pass through the MFD arrangement 1 and directly reach the flow channel of the target fluid.

Mit der erfindungsgemäßen Mikro-Fluiddiode wird ein neues Element zum Mikrofluidhandling ohne mechanische Ventile bereitgestellt. Die Konstruktion der erfindungsgemäßen Mikro-Fluiddiode ist wesentlich einfacher als die der mikromechanischen Ventile, so daß neben dem kleineren Platzbedarf die Herstellung kostengünstiger ist.
Im besonderen läßt sich mit deren Hilfe ein neues Konzept zur Einkopplung von freitragenden Fluidstrahlen in ein strömendes, in einem geschlossenen System befindliches Zielfluid realisieren.
The micro fluid diode according to the invention provides a new element for microfluid handling without mechanical valves. The construction of the micro fluid diode according to the invention is much simpler than that of the micromechanical valves, so that in addition to the smaller space requirement, the production is more cost-effective.
In particular, they can be used to implement a new concept for coupling unsupported fluid jets into a flowing target fluid located in a closed system.

Claims (3)

  1. Micro fluid diode (1) to directionally inject a dosing fluid (5) into another standing or flowing target fluid (7) found in a contained system, particularly in the submicrolitre range, distinguished by a planar arrangement of a microcapillary open at both ends or a system of microcapillaries (6) open at both ends and arranged closely beside each other, which at the outlet end are in direct contact with the target fluid and at the input side are separated by an air or gas buffer from the dosing fluid, which is to be fed intermittently, forming a curved meniscus in accordance with the surface tension.
  2. Micro fluid diode (1) as in claim 1, a distinguishing feature of which is that its components are composed of silicon, glass, ceramics, metal or a combination of these materials and produced by means of microscopic processes and micro systems engineering building and connecting means.
  3. Micro fluid diode (1) as in claim 1, a distinguishing feature of which is that it is produced of silicon with <100> - <110> - orientation.
EP95101737A 1994-02-17 1995-02-09 Micro fluid diode Expired - Lifetime EP0672835B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4405005 1994-02-17
DE4405005A DE4405005A1 (en) 1994-02-17 1994-02-17 Micro fluid diode

Publications (2)

Publication Number Publication Date
EP0672835A1 EP0672835A1 (en) 1995-09-20
EP0672835B1 true EP0672835B1 (en) 1999-05-12

Family

ID=6510442

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95101737A Expired - Lifetime EP0672835B1 (en) 1994-02-17 1995-02-09 Micro fluid diode

Country Status (7)

Country Link
US (1) US5730187A (en)
EP (1) EP0672835B1 (en)
JP (1) JP3786421B2 (en)
AT (1) ATE180044T1 (en)
DE (2) DE4405005A1 (en)
DK (1) DK0672835T3 (en)
WO (1) WO1995022696A1 (en)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530886C1 (en) * 1995-08-11 1996-10-02 Inst Bioprozess Analysenmesst Sterile sampling appts., esp. for bio-technical processes
DE19611270A1 (en) * 1996-03-22 1997-09-25 Gesim Ges Fuer Silizium Mikros Micro-mixer for very small volumes of liquids or suspensions
US6033544A (en) * 1996-10-11 2000-03-07 Sarnoff Corporation Liquid distribution system
US5964997A (en) * 1997-03-21 1999-10-12 Sarnoff Corporation Balanced asymmetric electronic pulse patterns for operating electrode-based pumps
US6117396A (en) * 1998-02-18 2000-09-12 Orchid Biocomputer, Inc. Device for delivering defined volumes
JP2981547B1 (en) * 1998-07-02 1999-11-22 農林水産省食品総合研究所長 Cross-flow type microchannel device and method for producing or separating emulsion using the device
JP3012608B1 (en) * 1998-09-17 2000-02-28 農林水産省食品総合研究所長 Microchannel device and method for producing emulsion using the same
US6601613B2 (en) 1998-10-13 2003-08-05 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
WO2000022436A1 (en) * 1998-10-13 2000-04-20 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
US6637463B1 (en) 1998-10-13 2003-10-28 Biomicro Systems, Inc. Multi-channel microfluidic system design with balanced fluid flow distribution
US6591852B1 (en) 1998-10-13 2003-07-15 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
US6360775B1 (en) 1998-12-23 2002-03-26 Agilent Technologies, Inc. Capillary fluid switch with asymmetric bubble chamber
US6561208B1 (en) * 2000-04-14 2003-05-13 Nanostream, Inc. Fluidic impedances in microfluidic system
US6481453B1 (en) * 2000-04-14 2002-11-19 Nanostream, Inc. Microfluidic branch metering systems and methods
US6296452B1 (en) 2000-04-28 2001-10-02 Agilent Technologies, Inc. Microfluidic pumping
US6615856B2 (en) * 2000-08-04 2003-09-09 Biomicro Systems, Inc. Remote valving for microfluidic flow control
JP3511238B2 (en) 2000-10-13 2004-03-29 独立行政法人食品総合研究所 Microsphere manufacturing method and manufacturing apparatus
WO2002068823A1 (en) 2000-11-06 2002-09-06 Nanostream Inc. Uni-directional flow microfluidic components
US6649078B2 (en) 2000-12-06 2003-11-18 The Regents Of The University Of California Thin film capillary process and apparatus
US20020186263A1 (en) * 2001-06-07 2002-12-12 Nanostream, Inc. Microfluidic fraction collectors
US7179423B2 (en) 2001-06-20 2007-02-20 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20020195343A1 (en) * 2001-06-20 2002-12-26 Coventor, Inc. Microfabricated separation device employing a virtual wall for interfacing fluids
US20020197733A1 (en) * 2001-06-20 2002-12-26 Coventor, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US7211442B2 (en) * 2001-06-20 2007-05-01 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20030015425A1 (en) * 2001-06-20 2003-01-23 Coventor Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
EP1314479A3 (en) * 2001-11-24 2004-03-24 GeSIM Gesellschaft für Silizium-Mikrosysteme mbH Device for the transfer of liquid samples
US6932502B2 (en) * 2002-05-01 2005-08-23 Hewlett-Packard Development Company, L.P. Mixing apparatus
US20050032238A1 (en) * 2003-08-07 2005-02-10 Nanostream, Inc. Vented microfluidic separation devices and methods
KR100540143B1 (en) * 2003-12-22 2006-01-10 한국전자통신연구원 Microfluidic control device and method for controlling microfluidic
JP4520166B2 (en) * 2004-02-02 2010-08-04 独立行政法人農業・食品産業技術総合研究機構 Resin microchannel substrate and manufacturing method thereof
CN101014697B (en) * 2004-08-12 2012-03-14 独立行政法人农业·食品产业技术综合研究机构 Micro channel array
US7572640B2 (en) * 2004-09-28 2009-08-11 Singulex, Inc. Method for highly sensitive detection of single protein molecules labeled with fluorescent moieties
US8685711B2 (en) 2004-09-28 2014-04-01 Singulex, Inc. Methods and compositions for highly sensitive detection of molecules
US9040305B2 (en) * 2004-09-28 2015-05-26 Singulex, Inc. Method of analysis for determining a specific protein in blood samples using fluorescence spectrometry
US20060088449A1 (en) * 2004-10-26 2006-04-27 Massachusetts Institute Of Technology Systems and methods for transferring a fluid sample
US7838250B1 (en) * 2006-04-04 2010-11-23 Singulex, Inc. Highly sensitive system and methods for analysis of troponin
EP3156799B1 (en) 2006-04-04 2024-01-24 Novilux, LLC Analyzer and method for highly sensitive detection of analytes
EP3168618B1 (en) 2006-04-04 2018-11-21 Singulex, Inc. Highly sensitive methods for analysis of troponin
KR101419312B1 (en) * 2006-09-01 2014-07-14 도소 가부시키가이샤 Microchannel structure and fine-particle production method using the same
US8931501B2 (en) * 2006-12-20 2015-01-13 Applied Biosystems, Llc Devices and methods for flow control in microfluidic structures
US20090087860A1 (en) * 2007-08-24 2009-04-02 Todd John A Highly sensitive system and methods for analysis of prostate specific antigen (psa)
JP2011508219A (en) 2007-12-19 2011-03-10 シンギュレックス・インコーポレイテッド Single molecule scanning analyzer and method of use thereof
JP2011513753A (en) * 2008-03-05 2011-04-28 シンギュレックス・インコーポレイテッド Method and composition for sensitive detection of molecules
GB2464183A (en) * 2008-09-19 2010-04-14 Singulex Inc Sandwich assay
WO2010144358A1 (en) 2009-06-08 2010-12-16 Singulex, Inc. Highly sensitive biomarker panels
CA2798149A1 (en) 2010-05-06 2011-11-10 Singulex, Inc Methods for diagnosing, staging, predicting risk for developing and identifying treatment responders for rheumatoid arthritis
CN103240023B (en) * 2013-05-09 2015-01-07 四川大学 Method for triggering droplet fusion through micro scalpel
WO2018111765A1 (en) 2016-12-12 2018-06-21 xCella Biosciences, Inc. Methods and systems for screening using microcapillary arrays
US11085039B2 (en) 2016-12-12 2021-08-10 xCella Biosciences, Inc. Methods and systems for screening using microcapillary arrays
CN110382439A (en) 2016-12-30 2019-10-25 埃克切拉生物科学公司 Multistage sample retrieval system
US20180304266A1 (en) * 2017-04-24 2018-10-25 miDiagnostics NV Channel and a capillary trigger valve comprising the same
WO2021144396A1 (en) 2020-01-17 2021-07-22 F. Hoffmann-La Roche Ag Microfluidic device and method for automated split-pool synthesis
JP2023510961A (en) 2020-01-22 2023-03-15 エフ. ホフマン-ラ ロシュ アーゲー Microfluidic Bead Trapping Devices and Methods for Next Generation Sequencing Library Preparation
EP4228793A1 (en) 2020-10-15 2023-08-23 Kapa Biosystems, Inc. Electrophoretic devices and methods for next-generation sequencing library preparation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777344A (en) * 1969-05-28 1973-12-11 Cava Ind Method of fabricating fluidic elements by assembling together a plurality of plastic strips
US3865136A (en) * 1971-04-29 1975-02-11 Eke Verschuur Oil/water pipeline inlet with oil supply via a large chamber
US4027407A (en) * 1975-11-24 1977-06-07 Kiss Sandor G Jet flow alternator
US4761077A (en) * 1987-09-28 1988-08-02 Barrett, Haentjens & Co. Mixing apparatus
DE4003063A1 (en) * 1990-01-24 1991-07-25 Hopf Rolf Conventional valve replacement method - using piezoelectric or ferroelectric material, deformed by applied voltage to open or close holes or slits to modulate fluid flow
US5094594A (en) * 1990-04-23 1992-03-10 Genomyx, Incorporated Piezoelectric pumping device
US5165440A (en) * 1991-12-30 1992-11-24 Conoco Inc. Process and apparatus for blending viscous polymers in solvent

Also Published As

Publication number Publication date
ATE180044T1 (en) 1999-05-15
JP3786421B2 (en) 2006-06-14
US5730187A (en) 1998-03-24
JPH09509466A (en) 1997-09-22
EP0672835A1 (en) 1995-09-20
DE4405005A1 (en) 1995-08-24
DK0672835T3 (en) 1999-11-29
WO1995022696A1 (en) 1995-08-24
DE59505877D1 (en) 1999-06-17

Similar Documents

Publication Publication Date Title
EP0672835B1 (en) Micro fluid diode
DE19847952C2 (en) Fluid flow switch
DE19648695C2 (en) Device for the automatic and continuous analysis of liquid samples
EP2531760B1 (en) Micro-fluidic component for manipulating a fluid, and microfluidic chip
EP1320686B1 (en) Micro valve normally in a closed position
DE60201580T2 (en) DEVICE FOR CONNECTING CAPILLARY TUBES WITH A MICROFLUIDIC SYSTEM
DE4422743A1 (en) Micropump
DE112005000445T5 (en) Microchemical system
EP1331538A1 (en) Piezo-electrically controlled micro actuator for fluids
EP2731721B1 (en) Microfluidic device and method for producing a microfluidic device
EP0725267A2 (en) Electrically controlled micro-pipette
DE60201017T2 (en) MICRO-CHANNEL DEVICE AND METHOD
DE102011078770B4 (en) Microfluidic device, microfluidic system and method of transporting fluids
EP0672834B1 (en) Micro fluid manipulator
EP0668500A2 (en) Chemical microanalyser
DE102009001257A1 (en) Apparatus and method for handling liquids
WO2006069730A1 (en) Device for pumping fluids method for production thereof and pipette with said device
DE4223067A1 (en) Micromechanical flow limiter with multilayer structure, e.g. for medical infusion system - has intermediate diaphragm layer which deflects w.r.t. amount of flowing medium, and blocks flow for large flow amounts
EP1161294B1 (en) Active micromixer
DE19611270A1 (en) Micro-mixer for very small volumes of liquids or suspensions
EP0943076B1 (en) Micromechanically produced flow-restriction device
DE102022125010A1 (en) Microfluidic component
DE10335492B4 (en) Method for selectively connecting microstructured parts
DE10154822A1 (en) Device for the automatic and continuous analysis of liquid samples comprises a micro-pump, valves and fluid channels on both sides of the surface of a glass ceramic channel body
EP1700036B1 (en) Micropump and method for the production thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19960222

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980731

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 180044

Country of ref document: AT

Date of ref document: 19990515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59505877

Country of ref document: DE

Date of ref document: 19990617

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990810

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20021203

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021230

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030109

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030131

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030203

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030205

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030207

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20030212

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030822

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040209

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM *ROSSENDORF E.V.

Effective date: 20040228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050209