EP0668500A2 - Chemical microanalyser - Google Patents
Chemical microanalyser Download PDFInfo
- Publication number
- EP0668500A2 EP0668500A2 EP95101811A EP95101811A EP0668500A2 EP 0668500 A2 EP0668500 A2 EP 0668500A2 EP 95101811 A EP95101811 A EP 95101811A EP 95101811 A EP95101811 A EP 95101811A EP 0668500 A2 EP0668500 A2 EP 0668500A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid
- micro
- chemical
- manipulators
- calibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502738—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/026—Fluid interfacing between devices or objects, e.g. connectors, inlet details
- B01L2200/027—Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/14—Process control and prevention of errors
- B01L2200/148—Specific details about calibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0433—Moving fluids with specific forces or mechanical means specific forces vibrational forces
- B01L2400/0439—Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/02—Burettes; Pipettes
- B01L3/0241—Drop counters; Drop formers
- B01L3/0268—Drop counters; Drop formers using pulse dispensing or spraying, eg. inkjet type, piezo actuated ejection of droplets from capillaries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5025—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
Definitions
- the invention relates to a chemical micro-analyzer for multi-ion detection in fluid media using chemical microsensors based on the difference measurement.
- micropumps for transporting fluids based on the principle of electrohydrodynamics [A. Richter, A. Plettner, K.A. Hofmann and H. Sandmaier, Electrohydrodynamic pumping and flow measurement, 4th IEEE Workshop on Micro Electro-Mechanical Systems, 30.1 - 2.2.1991, Nara, Japan] and electroosmotic and electrophoretic pumping [C. S. Effenhauser, A. Manz and H. M. Widmer, Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights, Anal. Chem. 65 (1993) 2637-2642; D. J. Harrison, Z. Fan, K. Seiler and K.
- the invention has for its object to implement a chemical micro-analyzer with a new concept of fluid handling to eliminate the problems mentioned.
- An improvement is to be achieved with regard to the manageability of the system, the manufacturing costs and the accuracy in fluid metering and transport.
- microfluid manipulators with a planar design are used to cope with the fluid handling, each of which consists of micro droplet emitters connected to a microfluidic diode via a closed droplet chamber, each of which chemical micro sensors provided for the actual analysis, preferably 2 micro fluid manipulators connected with calibration solutions, are connected upstream as an injector.
- microfluid manipulators according to the invention with the microsensors produced in the same technology enables fluid handling without diaphragm pumps and micromechanical valves, with which absolute freedom from leaks is achieved since a complete fluidic decoupling between the metering fluid and the microfluidic diode is ensured when the microdrop emitter is off. Due to the use according to the invention of microdrop emitters which can emit fluids in individual droplets by means of the control frequency of piezoelectric actuators, an injection accuracy in the picoliter range is achieved.
- micro-drop emitter and the micro-fluid diode which are components of the micro-fluid manipulator, is much simpler than that of micromechanical diaphragm pumps and valves, so that in addition to the smaller space requirement, the production is more cost-effective.
- micro fluid manipulator MMF
- MTE micro drop emitter
- MFD micro fluid diode
- the MFM consists of two main functional units, the MTE and the MFD.
- dosing fluid droplets become into the droplet chamber 5 consisting of a gas-filled, closed cavity.
- the fluid droplets emitted into the droplet chamber by the microdrop emitter wet the entrance surface of the MFD 6 which is used to couple the dosing fluid into the flow channel.
- This microfluidic diode consists of a microcapillary open on both sides or a system of closely spaced microcapillaries, the ends of which adjoin the flow channel are inevitably wetted by the flowing liquid, the capillary action spreading the flowing liquid up to the opposite open end of the microcapillaries.
- a defined liquid-gas interface a so-called meniscus, forms on each of these microcapillaries on the side of the droplet chamber. With the formation of each meniscus, the process of spreading the liquid in the corresponding microcapillary is abruptly completed and the flowing out of the flowing liquid from this microcapillary is completely prevented.
- the MFD 6 is designed here, for example, as a network structure etched through Si with a mesh size of, for example, 30 ⁇ 30 ⁇ m 2 .
- the outlet-side opening 7 of the MFD establishes the connection to a flowing target fluid.
- the chemical microsensor 12 arranged in the further course of the capillary is constructed, for example, as already proposed in DE P 43 18 407, from an ISFET 12 installed in a fluid capillary, the sensitive surface of which is arranged in a sectional plane to the direction of flow in order to achieve optimum wetting with the measuring medium .
- the capillary stopper 11 allows the required redirection of the flow direction while maintaining a planar construction.
- FIGS. 3 and 4 show flow diagrams for configurations of chemical microanalysers, both of which can carry out the detection of an ion type on a pair (see FIG. 3) or parallel (see FIG. 4) of a pair of chemical microsensors.
- the measuring fluid is continuously conveyed through the system through an independent flow channel from the MTE2.
- This channel is shown at the top in FIGS. 3 and 4 and, with MTE1, positioned above the MFD, has the possibility of injecting the measuring fluid into the lower flow channel for the purpose of ionometric measurement.
- FIG. 5 schematically shows the exemplary coupling between the upper and lower flow channels in the area of the MFD.
- the lower flow channel of both FIGS. 3 and 4 also has two MTE elements, these are the MTE3 for injecting the calibration fluid K2 and the MTE4 for transporting all fluids through the lower flow channel.
- the sensor pairs S1 / S2 in FIG. 3 and S / RE in FIG. 4 form the measuring points operated in the differential measuring mode.
- the particular advantage of these two-channel arrangements is the constant refreshing of the measuring fluid at the injection point MTE1, i.e. H.
- the measuring fluid which changes in its ion concentration, can be injected and measured at any time.
- Chemical microanalysers as shown in FIGS. 3 and 4, thus consist of two separate flow channels, the flow channel for transporting and updating the measuring fluid and the flow channel for carrying out the measurement. Both flow channels are coupled to one another via a common MFD.
- MTE1 to MTE4 there are active and passive states, are responsible for the existence of the corresponding procedure. During the active state, the MTE in question injects a fluid; in the passive state, this does not happen. H. Each MTE combines the functions of transporting and shutting off a fluid.
- the representation of the procedures of the measuring systems from FIGS. 3 and 4 as a function of the MTE states is listed below.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
Die Erfindung betrifft einen chemischen Mikro-Analysator zur Multiionendetektion in Fluidmedien unter Verwendung von chemischen Mikrosensoren auf der Basis der Differenzmessung.The invention relates to a chemical micro-analyzer for multi-ion detection in fluid media using chemical microsensors based on the difference measurement.
Das Problem Mikrofluidhandling mittels mikrotechnisch hergestellter Aktoren für chemische Analytik tauchte erstmals 1990 in dem Konzept "Miniaturized total chemical analysis system: a novel concept for chemical sensing" von Manz et al. auf [Sensors and Actuators B, 1 (1990) 244-248]. Bekannt ist bisher der Einsatz von Membranpumpen und mikromechanischen Ventilen auf der Basis der Si-Technologie in den Entwicklungsarbeiten von Mikroanalysesystemen. Van der Schoot et al. [A silicon integrated miniature chemical analysis system, Sensors and Actuators B6 (1992) 57-60] berichteten über die Verwendung von piezoelektrisch angetriebenen Mikropumpen und Mikroventilen auf mikromechanischem Wirkprinzip. Der Problemkreis diesbezüglich ist gegenwärtig noch nicht vollständig erfaßbar, da die Entwicklung noch am Anfang steht. Erkennbar sind momentan folgende Probleme. Mechanische Ventile können nicht absolut schließen. Leckraten von 0,25 bis 2,5 ul/min sind in der zitierten Arbeit angegeben worden. Die Nachweisgrenze ist dadurch eingeschränkt. Das zweite Problem ist der große Platzbedarf von solchen mikromechanischen Elementen. Das dritte Problem ist die aufwendige Technologie der Aufbau- und Verbindungstechnik, da die Pumpen- und Ventilstrukturen sehr kompliziert sind.The problem of microfluid handling using microtechnologically manufactured actuators for chemical analysis first appeared in 1990 in the concept "Miniaturized total chemical analysis system: a novel concept for chemical sensing" by Manz et al. on [Sensors and Actuators B, 1 (1990) 244-248]. The use of diaphragm pumps and micromechanical valves based on Si technology has so far been known in the development work of microanalysis systems. Van der Schoot et al. [A silicon integrated miniature chemical analysis system, Sensors and Actuators B6 (1992) 57-60] reported on the use of piezoelectrically driven micropumps and micro valves on a micromechanical principle. The problem area in this regard cannot yet be fully grasped, since the development is still at the beginning. The following problems can currently be identified. Mechanical valves cannot close absolutely. Leakage rates from 0.25 to 2.5 ul / min have been given in the cited work. This limits the detection limit. The second problem is the large space requirement of such micromechanical elements. The third problem is the complex technology of the assembly and connection technology, since the pump and valve structures are very complicated.
Bezüglich des Mikro-Fluidhandlings sind weiterhin Mikropumpen zum Transportieren von Fluiden nach dem Prinzip der Elektrohydrodynamik [A. Richter, A. Plettner, K. A. Hofmann and H. Sandmaier, Electrohydrodynamic pumping and flow measurement, 4th IEEE Workshop on Micro Electro-Mechanical Systems, 30.1 - 2.2.1991, Nara, Japan] und des elektroosmotischen und elektrophoretischen Pumpens [C. S. Effenhauser, A. Manz und H. M. Widmer, Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights, Anal. Chem. 65 (1993) 2637-2642; D. J. Harrison, Z. Fan, K. Seiler and K. Flurri, Miniaturized Chemical Analysis Systems based on Electrophoretic Separations and Electroosmotic Pumping, 7th Inter. Conf. on Solid-State Sensors and Actuators, June 7 - 10, 1993 Yokohama, Japan, Digest of technical papers, pp. 403-406] vorgestellt worden. In den zitierten Arbeiten werden Labormuster auf der Basis der mikrotechnischen Verfahren der Si-Technologie beschrieben. Beiden Prinzipien gemeinsam ist die Voraussetzung, daß ein starkes elektrisches Feld innerhalb des Fluids besteht, für dessen Erzeugung Spannungen von einigen hundert Volt bis Kilovolt und Elektroden in direktem Kontakt mit dem Fluidmedium erforderlich sind. Der Einsatz beschränkt sich auf nichtwässrige oder niederleitfähige Fluidmedien. Darüber hinaus besteht das Problem der Leckrate, die die Dosiergenauigkeit im Submikroliter-Bereich einschränkt.With regard to micro-fluid handling, micropumps for transporting fluids based on the principle of electrohydrodynamics [A. Richter, A. Plettner, K.A. Hofmann and H. Sandmaier, Electrohydrodynamic pumping and flow measurement, 4th IEEE Workshop on Micro Electro-Mechanical Systems, 30.1 - 2.2.1991, Nara, Japan] and electroosmotic and electrophoretic pumping [C. S. Effenhauser, A. Manz and H. M. Widmer, Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights, Anal. Chem. 65 (1993) 2637-2642; D. J. Harrison, Z. Fan, K. Seiler and K. Flurri, Miniaturized Chemical Analysis Systems based on Electrophoretic Separations and Electroosmotic Pumping, 7th Inter. Conf. on Solid-State Sensors and Actuators, June 7-10, 1993 Yokohama, Japan, Digest of technical papers, pp. 403-406]. In the cited works, laboratory samples are described based on the microtechnical processes of Si technology. Common to both principles is the prerequisite that there is a strong electric field within the fluid, for the generation of which voltages of a few hundred volts to kilovolts and electrodes in direct contact with the fluid medium are required. The use is limited to non-aqueous or low-conductivity fluid media. There is also the problem of the leak rate, which limits the dosing accuracy in the submicroliter range.
Der Erfindung liegt die Aufgabe zur Realisierung eines chemischen Mikro-Analysators mit einem neuen Konzept des Fluidhandlings zur Beseitigung der genannten Probleme zugrunde. Erreicht werden soll eine Verbesserung bezüglich der Handhabbarkeit des Systems, der Herstellungskosten sowie der Genauigkeit bei Fluiddosierung und Transport.The invention has for its object to implement a chemical micro-analyzer with a new concept of fluid handling to eliminate the problems mentioned. An improvement is to be achieved with regard to the manageability of the system, the manufacturing costs and the accuracy in fluid metering and transport.
Die Aufgabe wird entsprechen den Patentansprüchen erfindungsgemäß dadurch gelöst, daß unter Verzicht auf das bisherige Konzept mit mikromechanischen Membranpumpen und Ventilen, zur Bewältigung des Fluidhandlings planar aufgebaute Mikrofluidmanipulatoren eingesetzt werden, die aus jeweils über eine geschlossene Tröpfchenkammer mit einer Mikrofluiddiode verbundenen Mikrotropfenemittern bestehen, wobei jedem der für die eigentliche Analyse vorgesehenen chemischen Mikro-Sensoren vorzugsweise 2, mit Kalibrierlösungen verbundene Mikro-Fluidmanipulatoren als Injektor vorgeschaltet sind.The object is achieved in accordance with the invention in that, while dispensing with the previous concept with micromechanical diaphragm pumps and valves, microfluid manipulators with a planar design are used to cope with the fluid handling, each of which consists of micro droplet emitters connected to a microfluidic diode via a closed droplet chamber, each of which chemical micro sensors provided for the actual analysis, preferably 2 micro fluid manipulators connected with calibration solutions, are connected upstream as an injector.
Die erfindungsgemäße Kombination der Mikrofluidmanipulatoren mit den in gleicher Technik hergestellten Mikrosensoren ermöglicht ein Fluidhandling ohne Membranpumpen und mikromechanische Ventile, womit eine absolute Leckfreiheit erzielt wird, da im Aus-Zustand des Mikrotropfenemitters eine vollständige fluidische Entkopplung zwischen dem Dosierfluid und der Mikrofluiddiode gewährleistet ist. Auf Grund der erfindungsgemäßen Verwendung von Mikrotropfenemittern, welche mittels Steuerfrequenz piezoelektrischer Aktoren Fluide in Einzeltröpfchen emittieren können, wird eine Injektionsgenauigkeit im Pikoliter-Bereich erreicht. Die Konstruktion des Mikro-Tropfenemitter und der Mikro-Fluiddiode, welche Bestandteile des Mikro-Fluidmanipulators sind, ist wesentlich einfacher als jene bei mikromechanischen Membranpumpen und Ventilen, so daß neben des kleineren Platzbedarfs die Herstellung kostengünstiger ist.The combination of the microfluid manipulators according to the invention with the microsensors produced in the same technology enables fluid handling without diaphragm pumps and micromechanical valves, with which absolute freedom from leaks is achieved since a complete fluidic decoupling between the metering fluid and the microfluidic diode is ensured when the microdrop emitter is off. Due to the use according to the invention of microdrop emitters which can emit fluids in individual droplets by means of the control frequency of piezoelectric actuators, an injection accuracy in the picoliter range is achieved. The construction of the micro-drop emitter and the micro-fluid diode, which are components of the micro-fluid manipulator, is much simpler than that of micromechanical diaphragm pumps and valves, so that in addition to the smaller space requirement, the production is more cost-effective.
Unter Bezugnahme auf die beiliegenden Zeichnungen wird die erfindungsgemäße Lösung an folgenden bevorzugten Ausführungsbeispielen näher erläutert. Dabei wird für die Konstruktionselemente Mikro-Fluidmanipulator (MFM), Mikro-Tropfenemitter (MTE) sowie Mikro-Fluiddiode (MFD) die jeweilige Abkürzung verwendet.With reference to the accompanying drawings, the solution according to the invention is explained in more detail using the following preferred exemplary embodiments. The abbreviation is used for the construction elements micro fluid manipulator (MFM), micro drop emitter (MTE) and micro fluid diode (MFD).
In Fig. 1 ist der Schnitt durch eine beispielhafte Ankopplung eines MFM an eine mit dem Meßfluid durchströmte Kapillare, in deren weiterem Verlauf ein chemischer Mikrosensor 12 angeordnet ist, dargestellt. Der MFM besteht aus den zwei Haupt-Funktionseinheiten, dem MTE und der MFD. Die mit einer externen oder aber in den Chip integrierten Vorratskammer 13 für das Dosierfluid verbundene Kapillare 1, die Fluidkammer 2, die Emitterdüse 3 und der piezoelektrisch angetriebene auf der Fluidkammer 2 plazierte Aktor 4, bilden den MTE. Durch eine Spannungsbeaufschlagung des Aktors 4 werden Dosierfluidtröpfchen in die aus einem gasgefüllten, abgeschlossenen Hohlraum bestehende Tröpfchenkammer 5 emittiert Die vom Mikrotropfenemitter in die Tröpfchenkammer emittierten Fluidtröpfchen benetzen dort die Eingangsoberfläche der MFD 6 die zur Einkopplung des Dosierfluids in den Strömungskanal eingesetzt wird. Diese Mikrofluiddiode besteht aus einer beidseitig offenen Mikrokapillare oder einem System von dicht nebeneinander angeordneten Mikrokapillaren, deren im Strömungskanal anliegende Enden zwangsläufig von der strömenden Flüssigkeit benetzt werden, wobei durch die Kapillarwirkung die strömende Flüssigkeit bis zum gegenüberliegenden offenen Ende der Mikrokapillaren emporspreitet. Unter dem Einfluß der Oberflächenspannung der emporspreitenden Flüssigkeit bildet sich auf jeder dieser Mikrokapillaren auf der Seite der Tröpfchenkammer eine definierte Flüssigkeit-Gas-Grenzfläche, ein sogenannter Meniskus aus. Mit der Ausbildung jedes Meniskus wird der Vorgang des Spreitens der Flüssigkeit in der entsprechenden Mikrokapillare abrupt abgeschlossen und das Herausfließen der strömenden Flüssigkeit aus dieser Mikrokapillare vollständig verhindert. Wird nun das Dosierfluid in den Meniskusbereich der MFD emittiert, kommt es zur schlagartigen Benetzung zwischen beiden Flüssigkeiten und das Dosierfluid kann ohne Hinderung durch die Mikrokapillare in das Innere des Strömungskanales gelangen. Der ungehinderte Eintritt des Dosierfluids über den Meniskus erfolgt über Diffusion und Konvektion. Die MFD 6 ist hier beispielhaft als eine in Si durchätzte Netzstruktur mit einer Maschenweite von z.B. 30 x 30 u.m2 ausgebildet. Die ausgangsseitige Öffnung 7 der MFD stellt die Verbindung zu einem fließenden Ziel-Fluid her. Der im weiteren Verlauf der Kapillare angeordnete chemische Mikrosensor 12 ist z.B. wie in DE P 43 18 407 bereits vorgeschlagen aus, einem in einer Fluidkapillare installierten ISFET 12 aufgebaut, dessen sensitive Fläche zur Erzielung einer optimalen Benetzung mit dem Meßmedium in einer Schnittebene zur Strömungsrichtung angeordnet ist. Der Kapillar-Stopper 11 gestattet die geforderte Umlenkung der Strömungsrichtung unter Bewahrung einer planaren Konstruktion.1 shows the section through an exemplary coupling of an MFM to a capillary through which the measuring fluid flows, in the further course of which a
Fig. 2 zeigt ein Fließdiagramm für die beispielhafte gesamte Konfiguration eines chemischen Mikro- Analysators zur Detektion von 2 lonenkomponenten, z.B. NOa- und H+. Als chemische Mikrosensoren dienen ISFETs (ionensensitive Feldeffekttransistoren). pH-ISFETs sind an S1 und S2, und pN03-ISFETs an S3 und S4 plaziert. S2 und S3 sind jeweils 2 MFM vorgeschaltet, welche fluidisch mit Vorratsgefäßen für Kalibrierlösungen K1, K2 (für pH) und K3, K4 (für pN03) verbunden sind. Ausgangsseitig sind alle ISFETs fluidisch miteinander verbunden. ISFETs an S1 und S4 werden nur von Kalibrierlösung K2 bzw. K4 angeströmt und dienen als Referenzsensoren. ISFETs an S2 und S3 werden von Meß- und Kalibrierfluiden angeströmt und als Indikator-Sensoren benannt. Der MFM 5 am Eingang dient zur Einkopplung des Meß- bzw. Trägerfluids in den Analysator. Am Ausgang ist ein Mikrotropfenemitter (MTE - eine Komponente des MFM) installiert, welcher für den Fluidtransport durch das System sorgt. Die Differenzmessung erfolgt jeweils zwischen S1 und S2 bzw. zwischen S3 und S4 unter Verwendung einer Pseudoreferenzelektrode aus Platin (RE), welche am Ausgang der Fluidkapillare plaziert ist. Im Meßmodus erfolgt die Einkopplung des Meßfluids über den MFM 5. Im Kalibriermodus werden Kalibrierfluide durch den MFM 1/2 bzw. 3/4 in das System injiziert, während der MFM 5 in dieser Zeit kein Meßfluid einkoppelt. Die Steuerung des Fluidhandlings wird beispielhaft wie folgt organisiert:
- MTE ist ständig aktuiert. Während der Kalibrierung bleibt MFM5 im Aus-Zustand, MFM 1...4 sind aktuiert. Im Meßmodus bleiben MFM 1...4 im Aus-Zustand und MFM 5 ist aktuiert. Während der Messung der Sensor-Offset-Signale bleiben MFM5, MFM1 und MFM3 im Aus-Zustand, dagegen arbeiten MFM2, MFM4 und der MTE.
- MTE is constantly updated. During the calibration, MFM5 remains in the off state, MFM 1 ... 4 are activated. In measuring mode,
MFM 1 ... 4 remain in the off state andMFM 5 is activated. During the measurement of the sensor offset signals, MFM5, MFM1 and MFM3 remain in the off state, while MFM2, MFM4 and the MTE work.
In den Figuren 3 und 4 sind Fließdiagramme für Konfigurationen chemischer Mikroanalysatoren dargestellt, welche beide die Detektion einer lonensorte an einem seriell (vgl. Fig. 3) bzw. parallel (vgl. Fig. 4) liegenden Paar chemischer Mikrosensoren vornehmen können. In beiden Anordnungen wird das Meßfluid durch einen unabhängigen Strömungskanal vom MTE2 permanent durch das System gefördert. Dieser Kanal ist in den Figuren 3 und 4 jeweils oben dargestellt und besitzt mit MTE1, positioniert über der MFD, die Möglichkeit, daß Meßfluid zum Zwecke der ionometrischen Vermessung in den unteren Strömungskanal zu injizieren.FIGS. 3 and 4 show flow diagrams for configurations of chemical microanalysers, both of which can carry out the detection of an ion type on a pair (see FIG. 3) or parallel (see FIG. 4) of a pair of chemical microsensors. In both arrangements, the measuring fluid is continuously conveyed through the system through an independent flow channel from the MTE2. This channel is shown at the top in FIGS. 3 and 4 and, with MTE1, positioned above the MFD, has the possibility of injecting the measuring fluid into the lower flow channel for the purpose of ionometric measurement.
In Figur 5 ist die beispielhafte Verkopplung zwischen dem oberen und dem unteren Strömungskanal im Bereich der MFD schematisch dargestellt.FIG. 5 schematically shows the exemplary coupling between the upper and lower flow channels in the area of the MFD.
Der untere Strömungskanal beider Figuren 3 und 4 besitzt neben den Sensoren zur Kalibrierung und Vermessung ebenfalls zwei MTE-Elemente, dies sind der MTE3 zur Injektion des Kalibrierfluides K2 und der MTE4 zum Transport aller Fluide durch den unteren Strömungskanal. Die Sensorpaare S1/S2 in Fig. 3 und S/RE in Fig. 4 bilden die im Differenzmeßmodus betriebenen Meßstellen.In addition to the sensors for calibration and measurement, the lower flow channel of both FIGS. 3 and 4 also has two MTE elements, these are the MTE3 for injecting the calibration fluid K2 and the MTE4 for transporting all fluids through the lower flow channel. The sensor pairs S1 / S2 in FIG. 3 and S / RE in FIG. 4 form the measuring points operated in the differential measuring mode.
Der besondere Vorteil dieser Zweikanalanordnungen besteht in der ständigen Auffrischung des Meßfluids an der Injektionsstelle MTE1, d. h. das in seiner lonenkonzentration veränderliche Meßfluid kann zu jedem Zeitpunkt aktuell injiziert und vermessen werden.The particular advantage of these two-channel arrangements is the constant refreshing of the measuring fluid at the injection point MTE1, i.e. H. The measuring fluid, which changes in its ion concentration, can be injected and measured at any time.
Chemische Mikroanalysatoren, wie sie in den Figuren 3 und 4 dargestellt werden, bestehen damit aus zwei getrennten Strömungskanälen, dem Strömungskanal zum Transport und zur Aktualisierung des Meßfluides und dem Strömungskanal zur Ausführung der Messung. Beide Strömungskanäle sind über eine gemeinsame MFD miteinander verkoppelt.Chemical microanalysers, as shown in FIGS. 3 and 4, thus consist of two separate flow channels, the flow channel for transporting and updating the measuring fluid and the flow channel for carrying out the measurement. Both flow channels are coupled to one another via a common MFD.
Zur Erläuterung der Funktionsweise der Meßsysteme in Fig. 3 und 4 muß zwischen Offset-Kalibier- und Meßprozeduren differenziert werden. Die Zustände der MTE1 bis MTE4, es gibt den aktiven und den passiven Zustand, sind für das Vorliegen der entsprechenden Prozedur verantwortlich. Während des aktiven Zustandes injiziert der betreffende MTE ein Fluid, im passiven Zustand geschieht dies nicht, d. h. jeder MTE vereint in sich die Funktionen des Transports und der Absperrung eines Fluides. Die Darstellung der Prozeduren der Meßsysteme aus Figur 3 und 4 in Abhängigkeit der MTE-Zustände ist nachstehend aufgelistet.3 and 4, a distinction must be made between offset calibration and measurement procedures. The states of MTE1 to MTE4, there are active and passive states, are responsible for the existence of the corresponding procedure. During the active state, the MTE in question injects a fluid; in the passive state, this does not happen. H. Each MTE combines the functions of transporting and shutting off a fluid. The representation of the procedures of the measuring systems from FIGS. 3 and 4 as a function of the MTE states is listed below.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19944405004 DE4405004A1 (en) | 1994-02-17 | 1994-02-17 | Chemical micro-analyzer |
DE4405004 | 1994-02-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0668500A2 true EP0668500A2 (en) | 1995-08-23 |
EP0668500A3 EP0668500A3 (en) | 1998-06-17 |
Family
ID=6510441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95101811A Withdrawn EP0668500A3 (en) | 1994-02-17 | 1995-02-10 | Chemical microanalyser |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0668500A3 (en) |
DE (1) | DE4405004A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997001085A1 (en) * | 1995-06-21 | 1997-01-09 | Pharmacia Biotech Ab | Flow-through sampling cell and use thereof |
WO1997021381A2 (en) * | 1995-12-13 | 1997-06-19 | Institut für Chemo- und Biosensorik Münster E.V. | Measuring cartridge for analytical chemical measurements and method of operating said measuring cartridge |
WO1998023376A1 (en) * | 1996-11-22 | 1998-06-04 | Evotec Biosystems Ag | Micromechanical ejection pump for extracting small fluid volumes from a flowing sample fluid |
EP0875755A1 (en) * | 1997-04-29 | 1998-11-04 | Eastman Kodak Company | Device for electrochemical detection or measurement |
EP0892678A1 (en) * | 1996-04-09 | 1999-01-27 | Sarnoff Corporation | Apportioning system |
WO1999041606A1 (en) * | 1998-02-16 | 1999-08-19 | Stichting Voor Fundamenteel Onderzoek Der Materie | Microdialysis-probe integrated with a si-chip |
US6649078B2 (en) | 2000-12-06 | 2003-11-18 | The Regents Of The University Of California | Thin film capillary process and apparatus |
WO2004083843A1 (en) * | 2003-03-18 | 2004-09-30 | Cambridge University Technical Services Limited | Electrochemical microfluidic sensor and method of creation of its microchannels by embossing |
WO2005048350A2 (en) * | 2003-11-07 | 2005-05-26 | Qinetiq Limited | A molecular single electron transistor (mset) detector device |
US20120170608A1 (en) * | 2010-12-30 | 2012-07-05 | Stmicroelectronics S.R.L. | Method of calibrating a temperature sensor of a chemical microreactor and analyzer for biochemical analyses |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3582316B2 (en) * | 1997-08-20 | 2004-10-27 | 株式会社日立製作所 | Chemical analyzer |
DE10001116C2 (en) * | 2000-01-13 | 2002-11-28 | Meinhard Knoll | Device and method for the optical or electrochemical quantitative determination of chemical or biochemical substances in liquid samples |
DE10002500A1 (en) * | 2000-01-21 | 2001-07-26 | Univ Albert Ludwigs Freiburg | Capillary action mixer for mixing components which are analyzed during reaction, e.g. in DNA sequencing, uses capillary action to feed the reactants into the mixer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0025005A1 (en) * | 1979-08-18 | 1981-03-11 | Schaldach, Max, Prof. Dr. Ing. | Device for delivering and dosing very small quantities of liquid |
US5121132A (en) * | 1989-09-29 | 1992-06-09 | Hewlett-Packard Company | Ink delivery system for printers |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3915920A1 (en) * | 1989-05-16 | 1990-11-22 | Messerschmitt Boelkow Blohm | Micro-mechanical structures for storing and testing substances - e.g. for disease diagnosis, is made of inert material, e.g. glass, and has defined pattern of depressions, cavities, etc. |
AU677781B2 (en) * | 1992-05-01 | 1997-05-08 | Trustees Of The University Of Pennsylvania, The | Microfabricated sperm handling devices |
DE4227323A1 (en) * | 1992-08-18 | 1994-02-24 | Ekf Ind Elektronik Gmbh | Semi-automatic liquid analysis - involves passing measurement liquid, air and cleaning and/or buffer soln. past biosensor in defined repeated sequence |
-
1994
- 1994-02-17 DE DE19944405004 patent/DE4405004A1/en not_active Withdrawn
-
1995
- 1995-02-10 EP EP95101811A patent/EP0668500A3/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0025005A1 (en) * | 1979-08-18 | 1981-03-11 | Schaldach, Max, Prof. Dr. Ing. | Device for delivering and dosing very small quantities of liquid |
US5121132A (en) * | 1989-09-29 | 1992-06-09 | Hewlett-Packard Company | Ink delivery system for printers |
Non-Patent Citations (3)
Title |
---|
EFFENHAUSER C S ET AL: "GLASS CHIPS FOR HIGH-SPEED CAPILLARY ELECTROPHORESIS SEPARATIONS WITH SUBMICROMETER PLATE HEIGHTS" ANALYTICAL CHEMISTRY, Bd. 65, Nr. 19, 1.Oktober 1993, Seiten 2637-2642, XP000413548 * |
MANZ A ET AL: "Miniaturized total chemical analysis systems: a novel concept for chemical sensing" 5TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS AND ACTUATORS AND EUROSENSORS III, MONTREUX, SWITZERLAND, 25-30 JUNE 1989, Bd. B1, Nr. 1-6, ISSN 0925-4005, SENSORS AND ACTUATORS B (CHEMICAL), JAN. 1990, SWITZERLAND, Seiten 244-248, XP002062625 * |
VAN DER SCHOOT B H ET AL: "A SILICON INTEGRATED MINIATURE CHEMICAL ANALYSIS SYSTEM" SENSORS AND ACTUATORS B, Bd. B06, Nr. 1 / 03, 1.Januar 1992, Seiten 57-60, XP000276297 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997001085A1 (en) * | 1995-06-21 | 1997-01-09 | Pharmacia Biotech Ab | Flow-through sampling cell and use thereof |
US6192768B1 (en) | 1995-06-21 | 2001-02-27 | Pharmacia Biotech Ab | Flow-through sampling cell and use thereof |
WO1997021381A2 (en) * | 1995-12-13 | 1997-06-19 | Institut für Chemo- und Biosensorik Münster E.V. | Measuring cartridge for analytical chemical measurements and method of operating said measuring cartridge |
WO1997021381A3 (en) * | 1995-12-13 | 1997-08-14 | Inst Chemo Biosensorik | Measuring cartridge for analytical chemical measurements and method of operating said measuring cartridge |
EP0892678A4 (en) * | 1996-04-09 | 2000-05-03 | Sarnoff Corp | Apportioning system |
EP0892678A1 (en) * | 1996-04-09 | 1999-01-27 | Sarnoff Corporation | Apportioning system |
US6213735B1 (en) | 1996-11-22 | 2001-04-10 | Evotec Biosystem Ag | Micromechanical ejection pump for separating small fluid volumes from a flowing sample fluid |
WO1998023376A1 (en) * | 1996-11-22 | 1998-06-04 | Evotec Biosystems Ag | Micromechanical ejection pump for extracting small fluid volumes from a flowing sample fluid |
EP0875755A1 (en) * | 1997-04-29 | 1998-11-04 | Eastman Kodak Company | Device for electrochemical detection or measurement |
NL1008315C2 (en) * | 1998-02-16 | 1999-08-25 | Stichting Fund Ond Material | Microdialysis probe integrated with Si chip. |
WO1999041606A1 (en) * | 1998-02-16 | 1999-08-19 | Stichting Voor Fundamenteel Onderzoek Der Materie | Microdialysis-probe integrated with a si-chip |
US6649078B2 (en) | 2000-12-06 | 2003-11-18 | The Regents Of The University Of California | Thin film capillary process and apparatus |
GB2416039B (en) * | 2003-03-18 | 2007-09-19 | Univ Cambridge Tech | Technique for producing microfluidic sensor |
GB2416039A (en) * | 2003-03-18 | 2006-01-11 | Univ Cambridge Tech | Electrochemical microfluidic sensor and method of creation of its microchannels by embossing |
WO2004083843A1 (en) * | 2003-03-18 | 2004-09-30 | Cambridge University Technical Services Limited | Electrochemical microfluidic sensor and method of creation of its microchannels by embossing |
US8080152B2 (en) | 2003-03-18 | 2011-12-20 | Cambridge Enterprise Ltd. | Embossing of microfluidic sensors |
WO2005048350A2 (en) * | 2003-11-07 | 2005-05-26 | Qinetiq Limited | A molecular single electron transistor (mset) detector device |
WO2005048350A3 (en) * | 2003-11-07 | 2005-11-17 | Qinetiq Ltd | A molecular single electron transistor (mset) detector device |
US7619265B2 (en) | 2003-11-07 | 2009-11-17 | Qinetiq Limited | Molecular single electron transistor (MSET) detector device |
US20120170608A1 (en) * | 2010-12-30 | 2012-07-05 | Stmicroelectronics S.R.L. | Method of calibrating a temperature sensor of a chemical microreactor and analyzer for biochemical analyses |
US9016936B2 (en) * | 2010-12-30 | 2015-04-28 | Stmicroelectronics S.R.L. | Method of calibrating a temperature sensor of a chemical microreactor and analyzer for biochemical analyses |
Also Published As
Publication number | Publication date |
---|---|
DE4405004A1 (en) | 1995-08-24 |
EP0668500A3 (en) | 1998-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0672835B1 (en) | Micro fluid diode | |
EP1108149B1 (en) | Miniaturized fluid flow switch | |
DE60214851T2 (en) | MICROFLUIDIC DEVICE AND METHOD FOR CHEMICAL TRIALS | |
DE19650115C1 (en) | Medication dosing device | |
EP0668500A2 (en) | Chemical microanalyser | |
DE19648695C2 (en) | Device for the automatic and continuous analysis of liquid samples | |
DE60301180T2 (en) | Microfluidic device consisting at least partially of elastic material | |
DE69735739T2 (en) | Variable monitoring of electroosmotic and / or electrophoretic forces in an assembly contained in a fluid by electrical forces | |
US20110146390A1 (en) | Process for Continuous On-Chip Flow Injection Analysis | |
DE19648458C1 (en) | Micromechanical ejection pump for separating the smallest fluid volumes from a flowing sample fluid | |
WO2004103565A2 (en) | Device and method for structuring liquids and for dosing reaction liquids into liquid compartments immersed in a separation medium | |
DE10010208C2 (en) | Microdosing device for the defined delivery of small, closed liquid volumes | |
EP0725267A2 (en) | Electrically controlled micro-pipette | |
DE4318407A1 (en) | Microcapillary with integrated chemical microsensors and process for their manufacture | |
DE69823904T2 (en) | Micromechanical pipetting device | |
EP0672834B1 (en) | Micro fluid manipulator | |
EP2191135A1 (en) | Micrometering system | |
EP2285492A2 (en) | Stopped-flow chip | |
WO2006069730A1 (en) | Device for pumping fluids method for production thereof and pipette with said device | |
DE102005061629B4 (en) | Apparatus and method for transporting and forming compartments | |
EP3649471B1 (en) | Fluid analysis module and fluid analyzer | |
DE10154822A1 (en) | Device for the automatic and continuous analysis of liquid samples comprises a micro-pump, valves and fluid channels on both sides of the surface of a glass ceramic channel body | |
DE10211204B4 (en) | Flow cell for planar structured sensors | |
DE19847869A1 (en) | Pipetting device | |
DE102013217959A1 (en) | Microfluidic analysis device and manufacturing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19981007 |
|
17Q | First examination report despatched |
Effective date: 20001030 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20010901 |