EP0668965B1 - STEUERSYSTEM FüR EIN HOCHDRUCK-KRAFTSTOFFEINSPRITZSYSTEM FüR EINE BRENNKRAFTMASCHINE - Google Patents

STEUERSYSTEM FüR EIN HOCHDRUCK-KRAFTSTOFFEINSPRITZSYSTEM FüR EINE BRENNKRAFTMASCHINE Download PDF

Info

Publication number
EP0668965B1
EP0668965B1 EP94926233A EP94926233A EP0668965B1 EP 0668965 B1 EP0668965 B1 EP 0668965B1 EP 94926233 A EP94926233 A EP 94926233A EP 94926233 A EP94926233 A EP 94926233A EP 0668965 B1 EP0668965 B1 EP 0668965B1
Authority
EP
European Patent Office
Prior art keywords
generating
injection
pressure
value
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94926233A
Other languages
English (en)
French (fr)
Other versions
EP0668965A1 (de
Inventor
Riccardo Buratti
Paolo Tubetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0668965A1 publication Critical patent/EP0668965A1/de
Application granted granted Critical
Publication of EP0668965B1 publication Critical patent/EP0668965B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems

Definitions

  • the present invention relates to an injection control system for internal combustion engine high-pressure injection systems.
  • a high-pressure injection system substantially comprises a fuel tank, and a high-pressure injector supply circuit in turn comprising a pump for supplying fuel at high pressure to a manifold in turn supplying a number of injectors.
  • the pump presents a pressure regulating solenoid valve for supplying fuel at a predetermined pressure.
  • the EP-A-501 463 discloses a common rail high pressure fuel injection system, which comprises a fuel tank, and a high-pressure injector supply circuit in turn comprising a pump for supplying fuel at high pressure to a manifold in turn supplying a number of injectors.
  • the pump presents a pressure regulating solenoid valve for supplying fuel at a predetermined pressure.
  • the fuel pressure is PID feed-back controlled using the input from a pressure sensor by controlling the on time of a solenoid valve.
  • One table is used for determining the fuel injection quantity as a function of engine parameters.
  • Injection pressure in particular affects several injection parameters, such as fuel injection quantity for a given injection time; the fuel injection plan (volume per unit of time); fuel atomization; jet penetration; actual injection time; and duration of the electric signal; which parameters greatly affect engine performance, especially in terms of output, exhaust, noise level and drivability.
  • an injection control system for internal combustion engine high-pressure injection systems comprising a number of injectors for injecting fuel at high pressure on the basis of injection control quantities; characterized in that it comprises regulation generating means for generating values regulating the injection control quantities on the basis of engine parameters; and control means for controlling the injection control quantities on the basis of said regulating values, according to claim 1.
  • FIG. 1 A general description will now be given, with reference to Figure 1, of a high-pressure injection system for internal combustion engines.
  • the system indicated by 1, comprises a tank 2 at atmospheric pressure, connected by a delivery line 5 to a radial-piston pump 6 presenting a pressure regulating solenoid valve (or pressure regulator) 7 connected by drain line 8 to tank 2.
  • a solenoid valve or pressure regulator
  • Manifold 10 feeds the fuel at high pressure along line 11 to a manifold 10 which provides for distributing the fuel to the injectors and damping any fluctuation in pressure caused by the action of the pump and opening of the injectors.
  • Manifold 10 consists of a steel body in the form of a parallelepipedon and in which is formed a cylindrical cavity extending along the length of the manifold and connected to line 11 by a central hole 12.
  • Manifold 10 also presents four holes 13 spaced along the length of the manifold and connected to four high-pressure (up to 1500 bar) supply conduits 14 of four injectors 15 of an engine 16. Each injector 15 is also connected to a conduit 17 for recirculating the drive valve operating fuel into tank 2.
  • Manifold 10 is fitted at one end with a known pressure sensor 18.
  • Pressure regulator 7 is conveniently formed as shown in Figure 2, and comprises a body 20 defining a conical seat 21 for a spherical shutter 22.
  • shutter 22 is subjected to the combined force of a spring 24 and a solenoid 25 which cooperates with a core 26 integral with a rod 27 in turn integral with push rod 23.
  • Varying the current supply to solenoid 25 regulates the force exerted on spherical shutter 22 in the closing direction and, hence, the output pressure of pump 6.
  • Pressure is regulated by supplying solenoid 25 with a current whose duty cycle is modulated at a fixed oscillation frequency (PWM - Pulse Width Modulation - technique) and using a closed regulating loop which takes into account the actual pressure measured by pressure sensor 18, as shown in the Figure 3 diagram described below.
  • PWM Pulse Width Modulation - technique
  • the relationship between load and the quantity of fuel injected at each point in the operation of the engine may be determined by bench testing the engine and simultaneously measuring load and fuel consumption. Bench testing also provides for determining the best injection pressure, injection advance and injection time adjustments and so obtaining control maps as a function of load and engine speed, i.e. as a function of fuel injection quantity and engine speed.
  • operation of the engine is controlled using such maps. That is, on determining power demand by the user and the fuel quantity required for meeting it, the control system determines, by means of the maps, the adjustments to be made for ensuring correct operation of the engine.
  • the fuel injection quantity Q is calculated as shown in Figure 3. More specifically, during startup, a map 40 is used, having as inputs engine speed N and the temperature of the engine (e.g. of the coolant) or of the oil in the case of air-cooled engines. As such, output QO is in no way limited, and is independent of the position of the accelerator pedal.
  • a quantity QCARB is first calculated by means of a map 42 called a regulating map (by virtue of performing the same function as a normal mechanical pump regulator) and having as inputs engine speed N and a quantity Va related solely to the position of the accelerator pedal. If the closed-loop idling speed control is activated and engine speed is below a given threshold value, a parallel calculation is made of the fuel quantity QCMIN required to sustain the engine at zero power demand and low engine speed. QCMIN is calculated by means of a proportional-integral closed-loop control algorithm based on the error between a target idling speed and engine speed N; and, as a function of the error, a calculation is made of the fuel quantity QCMIN required to restore the target speed.
  • the control algorithm is represented in Figure 3 by idling speed control block 43. Subsequently, the QCARB value is compared with QCMIN in block 44 to give a value Q1 corresponding to the greater of the two.
  • the fuel quantity is finally limited by means of a one-dimensional (power limiting) map 47 having engine speed N as the input and in which are stored the maximum acceptable fuel quantities at high power (fully pressed accelerator pedal).
  • the output QCPOW of map 47 is compared with Q2 in block 48 to select the lesser of the two values, which represents the steady-state fuel injection quantity Q3.
  • Quantity Q3 is used during steady-state operation, as shown schematically in Figure 3 by switch 41 which represents, ideally, selection of value QO or Q3 according to the operating condition of the engine (startup or steady state).
  • Figure 3 of course merely illustrates the operating principle of the two processing operations performed respectively in the startup/steady-state condition, in that Q0 and Q3 are never calculated simultaneously, and switch 41 is purely indicative of enabling by the type of processing operation performed.
  • fuel quantity Q is used for regulating the engine, comprising regulation of injection pressure, injection advance and injection time, which will now be described with reference to Figures 4, 5 and 6 respectively.
  • the injection pressure regulating system is a closed-loop type, and comprises a pair of maps 31, 32 for calculating a reference pressure correlated to the state of the engine. More specifically, map 31 provides for calculating steady-state reference pressure P R1 on the basis of engine speed N and fuel injection quantity Q (corresponding to steady-state value Q3 calculated as described with reference to Figure 3); while map 32 provides for calculating startup reference pressure P R2 as a function of engine temperature T and engine speed N, to take into account the requirements of the engine at different startup temperatures.
  • comparator 34 presenting error signal E
  • regulating element 36 provides for controlling the duty cycle of the supply current to solenoid 25 ( Figure 2).
  • the output of regulating element 36 is connected to memory 37, and also controls an actuator 38 supplying solenoid 25.
  • the output of sensor 18 is conveniently read every 5 ms; the read pressure signal is filtered by filter 35 and compared with the reference pressure value from map 32 or 31, depending on whether the engine is in the startup or steady state respectively; the error E between the actual and reference pressure values is supplied to regulator 36 and to memory 37 which stores it for use in the following cycles; and regulator 36 calculates the duty cycle on the basis of a proportional-integral algorithm.
  • the regulating element determines a new duty cycle percentage value (ranging from 1 to 99%) which in turn affects the force generated by solenoid 25 on spherical shutter 22.
  • the sign and value of error E determine the amount by which the duty cycle is varied, which in turn provides for so varying pressure as to achieve the required pressure value (set by the maps).
  • the duty cycle of the current supply to solenoid 25 is increased, this increases the force exerted on shutter 22 and hence the pressure inside the hydraulic circuit (conduits 11, 14, manifold 10).
  • a reduction in the duty cycle provides for a reduction in pressure.
  • Injection advance is determined as shown in Figure 5. More specifically, during startup, injection advance is determined by means of a map 50 (startup advance map) having as inputs engine speed N and engine temperature T, and generating an output value ANT0.
  • startup advance map having as inputs engine speed N and engine temperature T, and generating an output value ANT0.
  • injection advance is calculated by means of two maps: a base map 51 and a correction map 52.
  • Base map 51 presents as inputs fuel injection quantity Q (corresponding to steady-state value Q3 calculated as described with reference to Figure 3) and engine speed N, and generates a base advance value normally used for high-temperature operation of the engine; while correction map 52 presents as inputs engine speed N and engine temperature T, and provides, as a function of the input quantities, for determining an advance correction for low-temperature operation of the engine.
  • Outputs ANT1 and ANT2 of maps 51 and 52 are added in adding block 53 to give a value ANT3 which is used during steady-state operation as shown schematically in Figure 5 by switch 54 which represents, ideally, selection of the ANT0 or ANT3 value, depending on the operating condition (startup or steady state) of the engine.
  • Injection time ET is determined as shown in Figure 6. More specifically, during startup, injection time is determined as a function of fuel injection quantity Q (corresponding to value Q0 in Figure 3) and pressure P (output of filter 35 in Figure 4) measured just prior to injection, by means of a map 60 (startup ET map) supplying an output value ET0. If ET0 equals zero, no fuel is injected; if ET0 is above a maximum permissible value (e.g. 3000 ⁇ s), injection time is limited to the maximum permissible value (in a manner not shown in Figure 6).
  • a maximum permissible value e.g. 3000 ⁇ s
  • injection time is determined as a function of fuel injection quantity Q (corresponding to value Q3 in Figure 3) and pressure P measured just prior to injection, by means of a map 61 supplying an output value ET1.
  • ET1 equals zero, no fuel is injected (cut-off condition); and the maximum injection time is limited to a maximum permissible value (e.g. 1500 ⁇ s) in a manner not shown.
  • the ET0 and ET1 values are calculated selectively, depending on whether the engine is in startup or the steady state, as shown schematically by switch 62.
  • the control system described thus provides for adapting the controlled injection variables to the operating condition of the engine, for ensuring the best values of the various injection parameters, such as atomization, jet penetration and injection plan, for each condition.
  • the system described also provides for a high degree of reliability, and may be implemented using easy-to-implement software with no major alterations to the injection system.
  • Injection pressure in particular which is of vital importance for controlling the other quantities, is closed-loop controlled to ensure the best values are achieved at all times.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (10)

  1. Einspritzsteuersystem für ein Hochdruckeinspritzsystem einer Brennkraftmaschine, mit einer Anzahl von Injektoren (15) zum Einspritzen von Kraftstoff mit hohem Druck (P) abhängig von Einspritzsteuergrößen (Q, P, ANT, ET), mit Mitteln (31, 32, 40 - 48, 50 - 53, 60, 61) zur Bildung von Größen zur Regelung der Einspritzsteuergrößen (Q, P, ANT, ET) ausgehend von Betriebsparametern (N, V, T, QA) der Brennkraftmaschinen, mit Regelmitteln (34 - 38) zur Steuerung der Einspritzsteuergrößen abhängig von diesen Größen zur Regelung, mit Druckmeßmitteln (18) zur Messung eines Istwerts des Einspritzdrucks, mit Fehlerermittlungsmitteln (34) zur Bildung eines Fehlersignals abhängig von der Differenz zwischen einem Sollwert und dem Istwert für den Einspritzdruck, wobei das Fehlersignal dem Regelmittel (36 - 38) zugeführt wird, um einen Einspritzdruck entsprechend dem Solldruck zu erhalten, dadurch gekennzeichnet, daß erste und zweite Speichermittel (31, 32) vorgesehen sind, um den Sollwert für den Einspritzdruck zu berechnen, wobei die Speichermittel als Eingangsgrößen die Parameter der Brennkraftmaschine verarbeiten, und mit Schaltmitteln (33), deren Ausgang mit dem Regelmittel (36 - 38) verbunden sind welche wahlweise abhängig vom Betriebszustand der Brennkraftmaschine das erste oder das zweite Speichermittel mit dem Regelmittel verbinden, wobei das erste und das zweite Speichermittel (31, 32) jeweils im Normalbetrieb und beim Start der Brennkraftmaschine verwendet werden, wobei dem ersten Speichermittel die Parameter Drehzahl und Einspritzmenge und dem zweiten Speichermittel die Parameter Drehzahl und Brennkraftmaschinentemperatur zugeführt werden.
  2. System nach Anspruch 1 mit einem Magnetventil (7) zur Regelung des Druckes einer Hochdruckpumpe (6), die die Injektoren (15) versorgt, dadurch gekennzeichnet, daß das Steuermittel Regelmittel (36 - 38) zur Veränderung des Tastverhältnisses des Stroms, mit dem das Magnetventil beaufschlagt wird, umfaßt.
  3. System nach Anspruch 1 oder 2, wobei das Einspritzsystem ein Druckspeicher (10) umfaßt, der zwischen der Pumpe (6) und den Injektoren (15) angeordnet ist, dadurch gekennzeichnet, daß das Druckmeßmittel (18) an dem Druckspeicher (10) angeordnet ist.
  4. System nach einem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Fehlerermittlungsmittel einen Komparator (34) umfaßt, dessen erster Eingang mit dem Druckmeßmittel (18) und dessen zweiter Eingang mit den Mitteln (31, 32) verbunden ist und daß das Regelmittel einen Proportional-Integralregler (36) umfaßt.
  5. System nach Anspruch 4, dadurch gekennzeichnet, daß dritte Speichermittel (37) vorgesehen sind, deren Eingang mit dem Fehlerermittlungsmittel (34) und dem Reglelmittel (36) und dessen Ausgang mit dem Reglelmittel (36) verbunden ist, wobei dieses dritte Speichermittel zurückliegende Fehlersignale speichert.
  6. System nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß Filtermittel (35) vorgesehen sind, die zwischen dem Druckmeßmittel (18) und dem Fehlerermittlungsmittel (34) angeordnet sind.
  7. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Regelmittel Startregelmittel (40), zur Bildung eines ersten Kraftstoffmengenwertes abhängig von der Drehzahl und der Brennkraftmaschinentemperatur umfaßt, mit Steuermitteln (42) zur Bildung eines zweiten Kraftstoffmengenwerts als Funktion der Drehzahl und der Last, mit Regelmittel (43) zur Bildung eines Minimalwerts als Funktion der Drehzahl und der Brennkraftmaschinentemperatur, mit Begrenzungsmittel (45) zur Bildung eines Rauchbegrenzungswert abhängig der angesaugten Luftmenge und der Drehzahl, mit Leistungsbegrenzungsmittel (47) zur Bildung eines Leistungsbegrenzungswerts abhängig von der Drehzahl, ersten Auswahlmitteln (44) zur Auswahl des größeren Wertes von dem zweiten Kraftstoffmengenwerts und dem Minimalwert, zweiten Auswahlmitteln (46) zur Auswahl des kleineren Ausgangssignals des ersten Auswahlmittels und des Rauchkennfeldes, und dritte Auswahlmittels (48) zur Auswahl des kleineren Werts des Ausgangsgrößen des zweiten Auswahlmittels (46) und des Leistungsbegrenzungswerts.
  8. System nach Anspruch 7, dadurch gekennzeichnet, daß das Regelmittel Spritzbeginnregelmittel (50) umfaßt, um einen ersten Spritzbeginnwert abhängig von der Brennkraftmaschinentemperatur und der Drehzahl zu bilden, mit Mitteln (51) zur Bildung zweiten Werts als Grundspritzbeginns abhängig von der Einspritzmenge und der Drehzahl, Mitteln (52) zur Bildung eines Korrekturwerts abhängig von der Brennkraftmaschinentemperatur und der Drehzahl und Korrekturmitteln (53) zur Verknüpfung des zweiten Wertes und des Korrekturwertes.
  9. System nach Anspruch 7, dadurch gekennzeichnet, daß ein Mittel (60) zur Bildung eines Einspritzdauerwertes vorgesehen ist, zur Bildung eines ersten Einspritzdauerwertes als Funktion der einzuspritzenden Kraftstoffmenge und des Einspritzdruckes, und ein Mittel (61) zur Bildung eines zweiten Einspritzdauerwertes als Funktion der Kraftstoffmenge und des Einspritzdruckes.
  10. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Mittel Kennfelder umfassen.
EP94926233A 1993-09-03 1994-09-02 STEUERSYSTEM FüR EIN HOCHDRUCK-KRAFTSTOFFEINSPRITZSYSTEM FüR EINE BRENNKRAFTMASCHINE Expired - Lifetime EP0668965B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITTO930645 1993-09-03
ITTO930645A IT1261574B (it) 1993-09-03 1993-09-03 Sistema di controllo dell'iniezione in impianti di iniezione ad alta pressione per motori a combustione interna
PCT/EP1994/002921 WO1995006813A1 (en) 1993-09-03 1994-09-02 Control system for high-pressure fuel injection system for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP0668965A1 EP0668965A1 (de) 1995-08-30
EP0668965B1 true EP0668965B1 (de) 1998-12-09

Family

ID=11411709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94926233A Expired - Lifetime EP0668965B1 (de) 1993-09-03 1994-09-02 STEUERSYSTEM FüR EIN HOCHDRUCK-KRAFTSTOFFEINSPRITZSYSTEM FüR EINE BRENNKRAFTMASCHINE

Country Status (5)

Country Link
EP (1) EP0668965B1 (de)
JP (1) JP3865767B2 (de)
DE (1) DE69415140T2 (de)
IT (1) IT1261574B (de)
WO (1) WO1995006813A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010040727A1 (de) 2010-09-14 2012-03-15 Robert Bosch Gmbh Verfahren zum Betreiben eines Druckregelventils einer Brennkraftmaschine mit Direkteinspritzung
DE102010040725A1 (de) 2010-09-14 2012-03-15 Robert Bosch Gmbh Verfahren zum Betreiben eines Druckregelventils einer Brennkraftmaschine mit Direkteinspritzung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19752025B4 (de) * 1997-11-24 2006-11-09 Siemens Ag Verfahren und Vorrichtung zum Regeln des Kraftstoffdruckes in einem Kraftstoffspeicher
DE59810332D1 (de) * 1998-01-13 2004-01-15 Siemens Ag Verfahren zur Vorgabe des Einspritzdruck-Sollwertes bei Speichereinspritzsystemen
CA2298305A1 (en) * 1999-07-07 2001-01-07 Jason Edward Yost System for detecting fuel injection timing
DE19934833A1 (de) * 1999-07-24 2001-01-25 Bosch Gmbh Robert Verfahren zur Steuerung eines Common-Rail-Einspritzsystems
KR101977512B1 (ko) * 2017-12-29 2019-05-10 주식회사 현대케피코 차량 연료펌프에서의 유량제어밸브 응답시간 편차 보상 방법 및 시스템
CN114233501A (zh) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 一种燃气喷射阀监测方法及相关设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2120409A (en) * 1982-05-14 1983-11-30 Lucas Ind Plc An apparatus for controlling a fuel pump
JPS59192840A (ja) * 1983-04-14 1984-11-01 Yanmar Diesel Engine Co Ltd 内燃機関の制御装置
US4841936A (en) * 1985-06-27 1989-06-27 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an internal combustion engine
JPH07122422B2 (ja) * 1986-05-02 1995-12-25 日本電装株式会社 燃料噴射装置
JP2861429B2 (ja) * 1991-02-27 1999-02-24 株式会社デンソー ディーゼル機関の蓄圧式燃料噴射装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010040727A1 (de) 2010-09-14 2012-03-15 Robert Bosch Gmbh Verfahren zum Betreiben eines Druckregelventils einer Brennkraftmaschine mit Direkteinspritzung
DE102010040725A1 (de) 2010-09-14 2012-03-15 Robert Bosch Gmbh Verfahren zum Betreiben eines Druckregelventils einer Brennkraftmaschine mit Direkteinspritzung

Also Published As

Publication number Publication date
EP0668965A1 (de) 1995-08-30
DE69415140D1 (de) 1999-01-21
WO1995006813A1 (en) 1995-03-09
JP3865767B2 (ja) 2007-01-10
JPH08503052A (ja) 1996-04-02
ITTO930645A0 (it) 1993-09-03
ITTO930645A1 (it) 1995-03-03
DE69415140T2 (de) 1999-06-02
IT1261574B (it) 1996-05-23

Similar Documents

Publication Publication Date Title
EP0980469B1 (de) Verfahren zum ausgleichen des luft-kraftstoffverhältnisses zu jedem zylinder einer brennkraftmaschine
JP4462315B2 (ja) 内燃機関制御装置
JP4588971B2 (ja) 内燃機関を制御するための方法及び装置
US6907861B2 (en) Injection quantity control device of diesel engine
EP1318288B1 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine
CN101403346B (zh) 缺陷喷射探测装置和具有该装置的燃料喷射系统
US7373918B2 (en) Diesel engine control system
US6863056B2 (en) Method and apparatus for trimming an internal combustion engine
US20110106409A1 (en) Method and device for the pressure wave compensation during consecutive injections in an injection system of an internal combustion engine
WO2015004988A1 (ja) 内燃機関の制御装置
JP4216349B2 (ja) 分割噴射中に液圧作動噴射器によって少量の燃料を供給する方法
US20130112172A1 (en) Fuel Injection Control Device for Internal Combustion Engine
JP2009085084A (ja) 燃料供給量推定装置及び燃料圧送噴射システム
EP0668965B1 (de) STEUERSYSTEM FüR EIN HOCHDRUCK-KRAFTSTOFFEINSPRITZSYSTEM FüR EINE BRENNKRAFTMASCHINE
US5901682A (en) Method for transitioning between different operating modes of an internal combustion engine
KR101414698B1 (ko) 분사 시스템의 동작 특성 결정 방법 및 장치
US5101797A (en) Control system for a diesel internal combustion engine
JPH11280530A (ja) 内燃機関の各シリンダへ噴射される燃料の量を均等化する方法
US7006910B2 (en) Engine power loss compensation
US11401884B2 (en) Methods and systems for controlling a fueling strategy for internal combustion engines
TH24262EX (th) ชุดควบคุมเครื่องยนต์
JPS63314337A (ja) 内燃機関の電子制御燃料噴射装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19950911

17Q First examination report despatched

Effective date: 19961113

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 69415140

Country of ref document: DE

Date of ref document: 19990121

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130920

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130920

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130925

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130918

Year of fee payment: 20

Ref country code: DE

Payment date: 20131121

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69415140

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140903

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140901