EP0668604B1 - Method of manufacturing a cathode of a microtip fluorescent display and its product - Google Patents

Method of manufacturing a cathode of a microtip fluorescent display and its product Download PDF

Info

Publication number
EP0668604B1
EP0668604B1 EP95410012A EP95410012A EP0668604B1 EP 0668604 B1 EP0668604 B1 EP 0668604B1 EP 95410012 A EP95410012 A EP 95410012A EP 95410012 A EP95410012 A EP 95410012A EP 0668604 B1 EP0668604 B1 EP 0668604B1
Authority
EP
European Patent Office
Prior art keywords
layer
grid
cathode
microtips
resistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95410012A
Other languages
German (de)
French (fr)
Other versions
EP0668604A1 (en
Inventor
Jean-Frédéric Clerc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pixel International SA
Original Assignee
Pixel International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixel International SA filed Critical Pixel International SA
Publication of EP0668604A1 publication Critical patent/EP0668604A1/en
Application granted granted Critical
Publication of EP0668604B1 publication Critical patent/EP0668604B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/319Circuit elements associated with the emitters by direct integration

Definitions

  • the subject of the present invention is a method for manufacturing a cathode fluorescent screen with microtips, as well as a fluorescent screen with microtips.
  • It relates to the industrial sector of flat display screens with row-column matrix addressing, and more particularly of display screens using microtip technology, that is to say made up of a vacuum tube formed by two plates of thin glass, the back plate, or cathode plate, comprising a matrix array of field effect emitters deposited by thin film techniques, and the front plate, or anode plate, covered on its internal face with a transparent conductive layer carrying phosphors.
  • each light point (pixel) of the anode is associated with an emissive surface located opposite and made up of a large number of microtips.
  • This emissive surface is defined by the intersection of a line (grid) and a column (cathode conductor) of the matrix (eg EP-A-0 234 989).
  • the cathode of a conventional microtip screen consists essentially of four layers deposited successively on a glass or silicon substrate, then etched, namely: a conductive layer playing the role of cathode "column conductors", a resistive layer generally made of silicon intended to limit the value of the emission current, an insulating layer and finally a second conductive layer constituting the "line conductors" of the grid. After depositing these layers, holes are formed in the grid and the insulating layer in which the microtips are then deposited.
  • the production of the constituent layers of the cathode requires at least four, and preferably five, photolithographic masking and etching operations, namely an etching of the cathode columns, an etching of the holes, an etching grid lines, etching of cathode contacts, and preferably a partial etching of the resistive layer between the cathode columns to avoid leaks and couplings between columns.
  • the images formed by a microtip screen are observed through the anode plate and it is the side of the phosphors opposite to that which receives the electrons which is seen, that is to say the least bright.
  • An object of the present invention is to simplify the manufacture of the cathode of microtip fluorescent screens by reducing the number of masking levels to three instead of five.
  • Another object of the present invention is to make said cathode transparent to obtain an improvement in light efficiency by allowing the observation of the luminescent material from the side where the electrons strike it, through the cathode.
  • the column conductors can consist of fine metallic meshes.
  • microtip fluorescent screen cathode The method of manufacturing a microtip fluorescent screen cathode according to the invention is defined in claim 1.
  • the fluorescent microtip screen according to the invention is defined in claim 7.
  • intersection of a row and a column defines an image point 7 or pixel ( Figure 1).
  • a column conductor 2 consists of an openwork or mesh strip.
  • Each grid line is made of meshes consisting of square conductive elements 6 linked together by fine conductive bridges 8 (for the sake of simplification in FIG. 2, only the longitudinal bridges have been represented; it is clear that there are also two transverse bridges for each square as shown in Figure 8).
  • the microtips 4 are located in the grid squares and not in the conductive bridges.
  • Each image point 7 is made up of several squares (four in FIG. 1 but much more in practice). Each square carries several microtips (four in the figure but often 16 in a real device).
  • the respective dimensions of the meshes of the column conductors 2 and of the squares constituting the grid 6 are determined so as to provide empty areas 9 between said squares and each column conductor. We can thus observe the anode phosphors through the cathode plate.
  • the access resistance to the microtips is therefore essentially controlled by the geometry of the bars as well as by the resistivity of the resistive layer.
  • This access resistance must be high enough to standardize and limit the emission current of the tips while introducing only a few volts of voltage drop.
  • a screen was produced according to the invention.
  • the resistive layer was made of amorphous silicon offering a resistance of 100 megohms per square, four bars allowed access to each square mesh of 25 micrometers side; the bars had a length to width ratio of 2.
  • the emission measured was 500 mA per dm 2 . Results of the same order of magnitude can be obtained with neighboring values.
  • Figure 2 also shows that the electrical continuity along a grid line, from mesh to mesh is ensured by four conductive bridges 8 covering four insulating bars and four resistive bars 10. Since the mask which was used to engrave them is unique , the conductive bars ensuring the continuity of the grid lines and the resistive bars ensuring the access of the cathode current to the microtips have the same width and length.
  • the same shape of the bars must allow the passage of a large current in the grid lines and only allow the passage of a negligible leakage current from one column to another.
  • This leakage current is inversely proportional to the resistance of the resistive layer 3 while the current of polarization of the grids is inversely proportional to the resistance of the upper conductive layer.
  • a resistance per square of 100 megohms is enough to guarantee the emission rate required for a screen.
  • the resistance of the gate metal in comparison is very low: 1 ohm per square in the case of the device produced, thanks to a niobium grid 6 400 nm thick. The resistance ratio in the device was therefore 10 8 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Description

La présente invention a pour objet un procédé de fabrication de cathode d'écran fluorescent à micropointes, ainsi qu'un écran fluorescent à micropointes.The subject of the present invention is a method for manufacturing a cathode fluorescent screen with microtips, as well as a fluorescent screen with microtips.

Elle concerne le secteur industriel des écrans d'affichage plats à adressage matriciel lignes-colonnes, et plus particulièrement des écrans de visualisation utilisant la technologie des micropointes, c'est-à-dire constitués d'un tube à vide formé de deux plaques de verre mince, la plaque arrière, ou plaque cathode, comportant un réseau matriciel d'émetteurs à effet de champ déposés par les techniques de couches minces, et la plaque avant, ou plaque anode, recouverte sur sa face interne d'une couche conductrice transparente portant des luminophores.It relates to the industrial sector of flat display screens with row-column matrix addressing, and more particularly of display screens using microtip technology, that is to say made up of a vacuum tube formed by two plates of thin glass, the back plate, or cathode plate, comprising a matrix array of field effect emitters deposited by thin film techniques, and the front plate, or anode plate, covered on its internal face with a transparent conductive layer carrying phosphors.

Dans ce type d'écrans, à chaque point lumineux (pixel) de l'anode, est associé une surface émissive située vis-à-vis et constituée d'un grand nombre de micropointes. Cette surface émissive est définie par l'intersection d'une ligne (grille) et d'une colonne (conducteur cathodique) de la matrice (p. ex. EP-A-0 234 989).In this type of screens, each light point (pixel) of the anode is associated with an emissive surface located opposite and made up of a large number of microtips. This emissive surface is defined by the intersection of a line (grid) and a column (cathode conductor) of the matrix (eg EP-A-0 234 989).

La cathode d'un écran à micropointes classique est constituée pour l'essentiel de quatre couches déposées successivement sur un substrat de verre ou de silicium, puis gravées, à savoir : une couche conductrice jouant le rôle de "conducteurs colonnes" de cathode, une couche résistive généralement en silicium destinée à limiter la valeur du courant d'émission, une couche isolante et enfin une seconde couche conductrice constituant les "conducteurs lignes" de grille. Après dépôt de ces couches, on forme dans la grille et la couche isolante des trous dans lesquels sont ensuite déposées les micropointes.The cathode of a conventional microtip screen consists essentially of four layers deposited successively on a glass or silicon substrate, then etched, namely: a conductive layer playing the role of cathode "column conductors", a resistive layer generally made of silicon intended to limit the value of the emission current, an insulating layer and finally a second conductive layer constituting the "line conductors" of the grid. After depositing these layers, holes are formed in the grid and the insulating layer in which the microtips are then deposited.

Dans les procédés connus à ce jour, la réalisation des couches constitutives de la cathode nécessite au minimum quatre, et de préférence cinq, opérations de masquage et de gravure photolithographique, à savoir une gravure des colonnes de cathode, une gravure des trous, une gravure des lignes de grille, une gravure de contacts de cathode, et de préférence une gravure partielle de la couche résistive entre les colonnes de cathode pour éviter des fuites et des couplages entre colonne.In the methods known to date, the production of the constituent layers of the cathode requires at least four, and preferably five, photolithographic masking and etching operations, namely an etching of the cathode columns, an etching of the holes, an etching grid lines, etching of cathode contacts, and preferably a partial etching of the resistive layer between the cathode columns to avoid leaks and couplings between columns.

Par ailleurs, les images formées par un écran à micropointes sont observées au travers de la plaque anode et c'est la face des luminophores opposée à celle qui reçoit les électrons qui est vue, c'est-à-dire la moins brillante.Furthermore, the images formed by a microtip screen are observed through the anode plate and it is the side of the phosphors opposite to that which receives the electrons which is seen, that is to say the least bright.

Un objet de la présente invention est de simplifier la fabrication de la cathode des écrans fluorescents à micropointes en ramenant à trois au lieu de cinq le nombre de niveaux de masquage.An object of the present invention is to simplify the manufacture of the cathode of microtip fluorescent screens by reducing the number of masking levels to three instead of five.

Un autre objet de la présente invention est de rendre transparente ladite cathode pour obtenir une amélioration de l'efficacité lumineuse en permettant l'observation du matériau luminescent du côté où les électrons le frappent, à travers la cathode.Another object of the present invention is to make said cathode transparent to obtain an improvement in light efficiency by allowing the observation of the luminescent material from the side where the electrons strike it, through the cathode.

Ces objets sont atteints en gravant ensemble les trois couches supérieures de la cathode (la grille, l'isolant de grille et la couche résistive), selon un motif unique ajouré qui définit à la fois les lignes de grille et les résistances d'accès aux micropointes par la couche résistive. Les conducteurs colonnes peuvent être constitués de mailles métalliques fines.These objects are achieved by etching together the three upper layers of the cathode (the grid, the grid insulator and the resistive layer), according to a single openwork pattern which defines both the grid lines and the access resistances to the microtips by the resistive layer. The column conductors can consist of fine metallic meshes.

Le procédé de fabrication d'une cathode d'écran fluorescent à micropointes selon l'invention est defini dans la revendication 1. L'écran fluorescent à micropointes selon l'invention est defini dans la revendication 7.The method of manufacturing a microtip fluorescent screen cathode according to the invention is defined in claim 1. The fluorescent microtip screen according to the invention is defined in claim 7.

Sur les dessins annexés, donnés à titre d'exemple non limitatif d'une des formes de réalisation de l'objet de la présente invention :

  • la figure 1 représente, vu de dessus et de façon schématique, un point image (pixel) défini comme le croisement d'une ligne et d'une colonne du réseau matriciel,
  • la figure 2 est une vue en perspective cavalière illustrant schématiquement une structure de cathode selon la présente invention, et
  • les figures 3 à 8 illustrent des étapes successives de fabrication de cathode selon l'invention.
In the appended drawings, given by way of nonlimiting example of one of the embodiments of the object of the present invention:
  • FIG. 1 represents, seen from above and schematically, an image point (pixel) defined as the crossing of a line and a column of the matrix network,
  • FIG. 2 is a perspective view showing schematically a cathode structure according to the present invention, and
  • Figures 3 to 8 illustrate successive stages of cathode manufacturing according to the invention.

Les figures 1 et 2 représentent une structure de cathode d'écran à micropointes selon la présente invention. Cette stucture comporte successivement sur une plaque support 1 constitué d'une plaque de verre :

  • des "conducteurs colonnes" 2 constitués de bandes ajourées (ou maillées) d'une couche de niobium, d'aluminium ou autre conducteur,
  • une couche résistive 3 sur laquelle seront formées les micropointes 4,
  • une couche isolante 5 (SiO2 par exemple) qui constitue l'isolant de la grille,
  • une couche conductrice, en niobium ou autre, qui constitue la grille 6 formant les conducteurs lignes.
Figures 1 and 2 show a microtip screen cathode structure according to the present invention. This structure comprises successively on a support plate 1 consisting of a glass plate:
  • "column conductors" 2 made up of perforated (or mesh) strips of a layer of niobium, aluminum or other conductor,
  • a resistive layer 3 on which the microtips 4 will be formed,
  • an insulating layer 5 (SiO 2 for example) which constitutes the grid insulator,
  • a conductive layer, made of niobium or the like, which constitutes the grid 6 forming the line conductors.

Le croisement d'une ligne et d'une colonne définit un point image 7 ou pixel (figure 1).The intersection of a row and a column defines an image point 7 or pixel (Figure 1).

Un conducteur de colonne 2 est constitué d'une bande ajourée ou maillée. Chaque ligne de grille est faite de mailles consistant en éléments carrés conducteurs 6 reliés entre eux par des ponts conducteurs fins 8 (par souçi de simplification de la figure 2, seuls les ponts longitudinaux ont été représentés ; il est clair qu'il existe aussi deux ponts transversaux pour chaque carré comme le montre la figure 8). Les micropointes 4 sont situées dans les carrés de grille et non dans les ponts conducteurs. Chaque point image 7 est constitué de plusieurs carrés (quatre sur la figure 1 mais beaucoup plus en pratique). Chaque carré porte plusieurs micropointes (quatre sur la figure mais souvent 16 dans un dispositif réel).A column conductor 2 consists of an openwork or mesh strip. Each grid line is made of meshes consisting of square conductive elements 6 linked together by fine conductive bridges 8 (for the sake of simplification in FIG. 2, only the longitudinal bridges have been represented; it is clear that there are also two transverse bridges for each square as shown in Figure 8). The microtips 4 are located in the grid squares and not in the conductive bridges. Each image point 7 is made up of several squares (four in FIG. 1 but much more in practice). Each square carries several microtips (four in the figure but often 16 in a real device).

Les dimensions respectives des mailles des conducteurs colonnes 2 et des carrés constituant la grille 6 sont déterminées de manière à ménager des zones vides 9 entre lesdits carrés et chaque conducteur de colonne. On peut ainsi observer les luminophores d'anode à travers la plaque de cathode.The respective dimensions of the meshes of the column conductors 2 and of the squares constituting the grid 6 are determined so as to provide empty areas 9 between said squares and each column conductor. We can thus observe the anode phosphors through the cathode plate.

La liaison électrique entre la base de chaque micropointe et les quatre côtés d'une maille de cathode est assurée par le passage de courant dans l'épaisseur de chacun des quatre barreaux résistifs 10 et dans l'épaisseur du carré résistif 3.The electrical connection between the base of each microtip and the four sides of a cathode mesh is ensured by the passage of current through the thickness of each of the four resistive bars 10 and through the thickness of the resistive square 3.

La résistance d'accès aux micropointes est donc contrôlée essentiellement par la géométrie des barreaux ainsi que par la résistivité de la couche résistive.The access resistance to the microtips is therefore essentially controlled by the geometry of the bars as well as by the resistivity of the resistive layer.

Cette résistance d'accès doit être assez élevée pour uniformiser et limiter le courant d'émission des pointes tout en n'introduisant que quelques volts de chute de tension.This access resistance must be high enough to standardize and limit the emission current of the tips while introducing only a few volts of voltage drop.

Un écran a été réalisé selon l'invention. A titre indicatif, la couche résistive a été réalisée en silicium amorphe offrant une résistance de 100 mégohms par carré, quatre barreaux permettaient l'accès à chaque maille carrée de 25 micromètres de côté ; les barreaux avaient un rapport longueur sur largeur de 2. Sous 80 volts de polarisation grille/cathode, l'émission mesurée était de 500 mA par dm2. Des résultats du même ordre de grandeur pourront être obtenus avec des valeurs voisines.A screen was produced according to the invention. As an indication, the resistive layer was made of amorphous silicon offering a resistance of 100 megohms per square, four bars allowed access to each square mesh of 25 micrometers side; the bars had a length to width ratio of 2. Under 80 volts of grid / cathode polarization, the emission measured was 500 mA per dm 2 . Results of the same order of magnitude can be obtained with neighboring values.

La figure 2 montre également que la continuité électrique le long d'une ligne de grille, de maille à maille est assurée par quatre ponts conducteurs 8 recouvrant quatre barreaux isolants et quatre barreaux résistifs 10. Puisque le masque qui a servi à les graver est unique, les barreaux conducteurs assurant la continuité des lignes de grille et les barreaux résistifs assurant l'accès du courant cathodique jusqu'aux micropointes ont les mêmes largeur et longueur.Figure 2 also shows that the electrical continuity along a grid line, from mesh to mesh is ensured by four conductive bridges 8 covering four insulating bars and four resistive bars 10. Since the mask which was used to engrave them is unique , the conductive bars ensuring the continuity of the grid lines and the resistive bars ensuring the access of the cathode current to the microtips have the same width and length.

La même forme des barreaux doit permettre le passage d'un courant important dans les lignes de grille et ne permettre le passage que d'un courant de fuite négligeable d'une colonne à une autre. Ce courant de fuite est inversement proportionnel à la résistance de la couche résistive 3 alors que le courant de polarisation des grilles est inversement proportionnel à la résistance de la couche conductrice supérieure. Or, comme il a été déjà mentionné, une résistance par carré de 100 mégohms suffit à garantir le taux d'émission requis pour un écran. Par ailleurs, la résistance du métal de grille, en comparaison est très faible : 1 ohm par carré dans le cas du dispositif réalisé, grace à une grille 6 en niobium de 400 nm d'épaisseur. Le rapport des résistances dans le dispositif était donc de 108. Il a alors été expérimentalement démontré que, pour un taux de multiplexage de plusieurs centaines de lignes, un rafraîchissement d'image à 60 Hz, un nombre de niveaux de gris supérieur à 256 par couleur, l'image obtenue est exempte de défauts visuels du type couplage de colonne à colonne ou de ligne à ligne. Il est par ailleurs envisageable de remplacer le niobium par un métal plus conducteur (l'aluminium est 10 fois plus conducteur).The same shape of the bars must allow the passage of a large current in the grid lines and only allow the passage of a negligible leakage current from one column to another. This leakage current is inversely proportional to the resistance of the resistive layer 3 while the current of polarization of the grids is inversely proportional to the resistance of the upper conductive layer. However, as already mentioned, a resistance per square of 100 megohms is enough to guarantee the emission rate required for a screen. Furthermore, the resistance of the gate metal, in comparison is very low: 1 ohm per square in the case of the device produced, thanks to a niobium grid 6 400 nm thick. The resistance ratio in the device was therefore 10 8 . It was then experimentally demonstrated that, for a multiplexing rate of several hundred lines, an image refresh at 60 Hz, a number of gray levels greater than 256 per color, the image obtained is free from visual defects of the column-to-column or row-to-row coupling type. It is also possible to replace niobium with a more conductive metal (aluminum is 10 times more conductive).

Les figures 3 à 8 illustrent des étapes successives d'un procédé de fabrication selon l'invention :

  • dépôt d'une couche métallique 11 de cathode (figure 3),
  • gravure des colonnes maillées de conducteurs de cathode 2 au moyen d'un premier masque (figure 4),
  • dépôt des couches résistive 3, isolante 5, et de grille 6 (figure 5),
  • gravure des trous 12 des micropointes 4 grâce à un deuxième masque (figure 6),
  • dépôt des micropointes (figure 7),
  • gravure simultanée des grilles 6 et des couches isolante 5 et résistive 3 en lignes ajourées (figure 8) au moyen d'un troisième et dernier masque qui sert également à définir les zones de contact de lignes et de colonnes.
Figures 3 to 8 illustrate successive stages of a manufacturing process according to the invention:
  • depositing a metal layer 11 of cathode (FIG. 3),
  • etching of the mesh columns of cathode conductors 2 by means of a first mask (FIG. 4),
  • deposition of the resistive 3, insulating 5, and grid 6 layers (FIG. 5),
  • etching of the holes 12 of the microtips 4 using a second mask (FIG. 6),
  • microtip deposition (Figure 7),
  • simultaneous etching of the grids 6 and of the insulating 5 and resistive 3 layers in openwork lines (FIG. 8) by means of a third and last mask which also serves to define the contact zones of rows and columns.

Ainsi, avec trois étapes de gravure seulement, on obtient un résultat aussi bon qu'avec cinq étapes de gravure dans l'art antérieur. On obtient de plus un écran observable à partir de la cathode.Thus, with only three etching steps, one obtains a result as good as with five etching steps in the prior art. In addition, an observable screen is obtained from the cathode.

Claims (9)

  1. A method for manufacturing a fluorescent display screen cathode including microtips, including a supporting plate (1) bearing cathode conductors in meshed columns (2), a resistive layer (3) bearing microtips (4), an insulating layer (5) and a grid conductive layer (6) in rows, characterized in that the three upper grid layer (6), insulating layer (5) and resistive layer (3) are simultaneously etched according to a single perforated pattern defining both the grid rows and the access resistance to the microtips (4) through said resistive layer.
  2. The method of claim 1, characterized in that it includes only three etching steps.
  3. The method of claim 2, charaterized in that it includes the following steps:
    - depositing a cathode metal layer (11),
    - etching meshed columns of conductors (2) in said metal layer through a first mask,
    - depositing a resistive layer (3), an insulating layer (5), and a grid conductive layer (6),
    - etching holes (12) for forming microtips (4) with a second mask,
    - depositing microtips (4),
    - simultaneously etching the grid layer (6), the insulating layer (5) and the resistive layer (3) in perforated rows with a third and last mask which also serves to define the contact areas of the rows and columns.
  4. The method of any of the former claims, charaterized in that the pattern of the grid conductive layer (6), insulating layer (5) and resistive layer (3) is formed by squares mutually interconnected by thin bridges thus forming meshes, each pixel (7) being constituted by a plurality of meshes.
  5. The method of claim 4, characterized in that the path of the current flowing through the resistive layer (3), from the thin meshing formint a column conductor (2) to the base of a microtip (4), is defined by four resistive bars (10) surrounding each mesh and formed simultaneously as the conductive bridges (8) of the grid (6).
  6. The method of claim 4, characterized in that the respective sizes of the meshes of the column conductors (2) and of the grid squares (6) are selected so that, after etching empty areas (9) remain between said squares and said meshes allowing the observation, through the cathode structure, of the phosphor elements formed on an anode plate.
  7. A microtip fluorescent display screen having a cathode plate including a transparent supporting plate (1) bearing cathode conductors in meshed columns (2), a resistive layer (3) bearing microtips (4), an insulating layer (5) and a grid conductive layer (6) disposed in rows, charaterized in that the grid layer (6), insulating layer (5) and resistive layer (3) are etched according to a single pattern forming predetermined elements so that empty areas (9) remain between said elements and the column meshes, thus allowing the observation of the phosphor elements of an anode plate through the cathode plate.
  8. The microtip fluorescent display screen of claim 7, charaterized in that the elements constituting the pattern of the grid (6), the insulating layer (5) and the resistive layer (3) are squares into which the microtips (4) are positioned, the squares being interconnected through thin conductive bridges (8) for the grid (6) and through resistive or insulating bars (10) to form meshes, each pixel (7) being formed by a plurality of meshes, and each meshes bearing several microtips (4).
  9. The microtip fluorescent display screen of claim 8, charaterized in that the grid (6) is made of niobium or aluminum having a thickness of approximately 400 nm, and wherein the resistive layer (3) is made of amorphous silicon having a resistance of approximately 100 megohms per square, four respective bars (10) with a length/width ratio of 2 providing on access to each square mesh, the sides of the squares being approximately 25 micrometers.
EP95410012A 1994-02-22 1995-02-20 Method of manufacturing a cathode of a microtip fluorescent display and its product Expired - Lifetime EP0668604B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9402291A FR2716571B1 (en) 1994-02-22 1994-02-22 Method for manufacturing a microtip fluorescent screen cathode and product obtained by this method.
FR9402291 1994-02-22

Publications (2)

Publication Number Publication Date
EP0668604A1 EP0668604A1 (en) 1995-08-23
EP0668604B1 true EP0668604B1 (en) 1997-06-25

Family

ID=9460512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95410012A Expired - Lifetime EP0668604B1 (en) 1994-02-22 1995-02-20 Method of manufacturing a cathode of a microtip fluorescent display and its product

Country Status (5)

Country Link
US (1) US5574333A (en)
EP (1) EP0668604B1 (en)
JP (1) JP3616418B2 (en)
DE (1) DE69500372T2 (en)
FR (1) FR2716571B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510588A (en) * 1993-01-19 1996-11-05 ダニロビッチ カルポフ,レオニド Field emission device
US5952987A (en) * 1996-01-18 1999-09-14 Micron Technology, Inc. Method and apparatus for improved gray scale control in field emission displays
FR2756969B1 (en) * 1996-12-06 1999-01-08 Commissariat Energie Atomique DISPLAY SCREEN COMPRISING A SOURCE OF MICROPOINT ELECTRONS, OBSERVABLE THROUGH THE SUPPORT OF MICROPOINTS, AND METHOD FOR MANUFACTURING THE SOURCE
US6144144A (en) * 1997-10-31 2000-11-07 Candescent Technologies Corporation Patterned resistor suitable for electron-emitting device
US6414428B1 (en) 1998-07-07 2002-07-02 Candescent Technologies Corporation Flat-panel display with intensity control to reduce light-centroid shifting
FR2783633B1 (en) * 1998-09-18 2003-02-07 Pixtech Sa LOW-GAS MICROPOINT CATHODE
US6879097B2 (en) * 2001-09-28 2005-04-12 Candescent Technologies Corporation Flat-panel display containing electron-emissive regions of non-uniform spacing or/and multi-part lateral configuration
JP3892769B2 (en) * 2002-07-08 2007-03-14 株式会社 日立ディスプレイズ Display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2593953B1 (en) * 1986-01-24 1988-04-29 Commissariat Energie Atomique METHOD FOR MANUFACTURING A DEVICE FOR VIEWING BY CATHODOLUMINESCENCE EXCITED BY FIELD EMISSION
NL9100122A (en) * 1991-01-25 1992-08-17 Philips Nv DISPLAY DEVICE.
US5259799A (en) * 1992-03-02 1993-11-09 Micron Technology, Inc. Method to form self-aligned gate structures and focus rings
US5186670A (en) * 1992-03-02 1993-02-16 Micron Technology, Inc. Method to form self-aligned gate structures and focus rings
KR0129678B1 (en) * 1992-05-22 1998-04-06 Futaba Denshi Kogyo Kk Fluorescent display device

Also Published As

Publication number Publication date
US5574333A (en) 1996-11-12
DE69500372T2 (en) 1997-10-09
FR2716571A1 (en) 1995-08-25
DE69500372D1 (en) 1997-07-31
JP3616418B2 (en) 2005-02-02
EP0668604A1 (en) 1995-08-23
FR2716571B1 (en) 1996-05-03
JPH0850852A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
EP0461990B1 (en) Micropoint cathode electron source
EP0704877B1 (en) Electric protection of an anode of a plat viewing screen
EP0234989B1 (en) Method of manufacturing an imaging device using field emission cathodoluminescence
EP0558393A1 (en) Micropoint cathode electron source and display device with cathodo-luminescence excited by field emission using same source
EP0668604B1 (en) Method of manufacturing a cathode of a microtip fluorescent display and its product
EP0349426B1 (en) Microtip fluorescent display with a reduced number of addressing circuits, and addressing method for this display
EP0506528B1 (en) Matrix driving structure for display screen
FR2707795A1 (en) Improvement to a method of manufacturing a microtip electron source.
EP0734042B1 (en) Anode of a flat viewing screen with resistive strips
EP1139374A1 (en) Cathode plate of a flat viewing screen
EP0671755B1 (en) Electron source comprising emissive cathodes with microtips
EP0697710B1 (en) Manufacturing method for a micropoint-electron source
EP1023741B1 (en) Electron source with microtips, with focusing grid and high microtip density, and flat screen using same
EP0884753A1 (en) Method for making spacers for a flat panel display
FR2711273A1 (en) Flat screen with double switched anode, using colored bands in the direction of the lines.
EP0905670A1 (en) Simplification of the addressing of a microtips display with resetting electrode
FR2761522A1 (en) STANDARDIZATION OF THE POTENTIAL ELECTRONIC TRANSMISSION OF A MICROPOINT FLAT SCREEN CATHODE
FR2770683A1 (en) METHOD FOR MANUFACTURING A MICROPOINT ELECTRON SOURCE
EP1956625B1 (en) Field-effect electron emission structure with emission focussing
FR2797092A1 (en) METHOD FOR MANUFACTURING AN ANODE OF A FLAT VISUALIZATION SCREEN
WO1998042005A1 (en) Display screen free from screen pattern
FR2754633A1 (en) Manufacture of plasma screen displays using two electrode networks
FR2673311A1 (en) Device for display by high-contrast plasma panel
WO2008074825A1 (en) Cathode structure for a flat screen with refocusing grid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19960201

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960802

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970626

REF Corresponds to:

Ref document number: 69500372

Country of ref document: DE

Date of ref document: 19970731

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080130

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090212 AND 20090218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120203

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120229

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120127

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130220

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69500372

Country of ref document: DE

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130220