EP0662030A1 - Process and device for purifying the outgoing air from molten mass solidifying plants - Google Patents
Process and device for purifying the outgoing air from molten mass solidifying plantsInfo
- Publication number
- EP0662030A1 EP0662030A1 EP94923691A EP94923691A EP0662030A1 EP 0662030 A1 EP0662030 A1 EP 0662030A1 EP 94923691 A EP94923691 A EP 94923691A EP 94923691 A EP94923691 A EP 94923691A EP 0662030 A1 EP0662030 A1 EP 0662030A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- walls
- hood
- flow
- plates
- exhaust air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/10—Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
- B01D46/16—Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces arranged on non-filtering conveyors or supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D7/00—Sublimation
- B01D7/02—Crystallisation directly from the vapour phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D45/00—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
- B01D45/04—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
- B01D45/08—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D51/00—Auxiliary pretreatment of gases or vapours to be cleaned
- B01D51/10—Conditioning the gas to be cleaned
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/002—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/26—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic on endless conveyor belts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/10—Making granules by moulding the material, i.e. treating it in the molten state
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/02—Preparation of sulfur; Purification
- C01B17/0237—Converting into particles, e.g. by granulation, milling
Definitions
- the invention relates to a method and a device for cleaning the exhaust air from plants for the solidification of melts which are placed on cooling surfaces, in particular a cooling belt, and solidify there, in particular for the solidification of sulfur.
- the invention is based on the object of designing a method and a device of the type mentioned at the outset in such a way that less product content reaches the exhaust air from the outset, so that the cleaning process taking place there can be relieved.
- the method according to the invention proposes that a part of the product in vapor form behind the feed point of the melt crystallize out before the exhaust air is removed and is removed as a solid fraction.
- This measure already makes it possible to avoid a large part of the product waste which otherwise arises in the form of dust and, under certain circumstances, can also reuse the crystallized product quantities for the preparation of the melt.
- the size of the crystallization surfaces provided for the crystallization can be adapted to the vapor pressure profile above the product, so that where there is a higher vapor pressure there is also the possibility that larger quantities of the product are in the form of crystals on the surfaces.
- the new method can be provided in a device with a suction hood arranged above a cooling belt, which covers a feed device for the melt and has a suction nozzle, that the hood in the area between the feed device and the suction nozzle also has in the exhaust air flow projecting internals for crystallization of the product and is provided with adjustable openings for generating a targeted air flow in the area of the internals.
- This configuration allows the flow to be of the exhaust air in the area of the internals so that there is sufficient time for crystallization on the internals.
- the internals can be designed in a particularly simple manner as walls which are arranged in a labyrinthine manner transversely to the exhaust air flow.
- the walls for promoting the crystallization process can also consist of thermally conductive material and can be provided with channels for the passage of a heat-exchange medium which can be temperature-controlled or can be temperature-controlled in some other way. In this way it becomes possible to design the temperature of the crystallization surfaces in such a way that optimal conditions for crystallization are present.
- the walls can be arranged parallel to one another and at different distances in the direction of flow, which adapts to the vapor pressure profile above the product.
- the walls can protrude vertically from the hood ceiling into the flow. They can also protrude horizontally from the opposite side walls of the hood into the flow, specifically in such a way that a labyrinth of opposite flow gaps is formed, which leads to a flow around the walls serving as crystallization surfaces.
- the walls In order to be able to remove the product crystallized on the walls at certain intervals, it is advantageous to attach the walls firmly to transport elements which allow the walls to be led out from the side of the hood, with matching scraper openings in the area of the side walls of the hood being assigned, on which the crystals can be scraped off.
- the walls can be pulled out for the purpose of cleaning by hand or automatically at certain intervals, for example by pneumatic or hydraulic means Cylinder or by drive motors.
- the design is carried out in such a way that there is no thorough cleaning of the crystallization surfaces of the walls in order to leave behind crystallization nuclei which promote the crystallization when they are put into operation again.
- a particularly simple possibility of arranging the walls is obtained if the walls themselves form the transport elements and are designed as one or more endless belts which cross the hood at right angles to the direction of flow and cross stripping slots and slots between tempering plates on the hood side walls , which in turn ensure the temperature of the continuously rotating belts which form the crystallization surfaces.
- the circulation speed can be selected accordingly, so that a continuous circulation is possible.
- a possibility is provided to be able to collect and remove the scraped off crystals. For example, it can be returned to the preparation of the melt for product manufacture. This configuration makes it possible to avoid a not inconsiderable part of the dust content in the exhaust air from the outset.
- the cleaning systems for the exhaust air can therefore be relieved.
- 1 is a schematic representation of the production of a granulate from a melt, with the associated device being assigned an exhaust air extraction,
- FIG. 2 shows part of the device of FIG. 1 with a rotating cooling belt, a feed device for the melt and with the crystallization surfaces according to the invention
- 3 shows the enlarged detailed representation of a first embodiment of the crystallization walls of the device of FIG. 2
- FIG. 4 shows a perspective view of an example of the crystal walls of FIG. 3, FIG.
- FIG. 5 shows the top view of part of the hood of the device of FIG. 2 and of the crystallization walls arranged there,
- FIG. 6 shows the representation of an embodiment similar to FIG. 5, but with crystallization walls which can be automatically pulled out laterally from the hood,
- FIG. 7 shows an exemplary embodiment of a device according to FIG. 5, in which, however, the crystallization walls are formed directly as bands crossing the hood,
- FIG. 8 shows a representation similar to FIG. 3, but with crystallization walls protruding laterally from the walls of the hood, and
- FIG. 9 is a top view similar to FIG. 5 of the embodiment of FIG. 8.
- FIG. 1 initially shows a plant in general, with which a melt, for example molten sulfur, can be processed into granules.
- the system according to FIG. 1 has a cooling belt (1) for this purpose, in which coolant is passed through the line (2) into a chamber (3) below the upper strand of the cooling belt (1) and sprayed onto it there, for example with the aid of spray nozzles Underside of the cooling belt (1) formed as a steel belt is sprayed on.
- the coolant is returned to a circuit through a drain line (2).
- the cooling belt (1) is guided around two deflection rollers (4) and rotates clockwise in the exemplary embodiment.
- suction hood (5) which has a suction nozzle (6) which, as only schematically indicated, is connected via a suction line (7) to a suction fan (8), which in the exemplary embodiment also includes a suction fan (8) Cleaning filter (9) or the like. is connected upstream.
- Molten sulfur is fed through the feed line (10) to a rotor former (11) which is known per se and which essentially consists of two tubes, one inside the other, of which the inner tube, filled with the melt and tempered, has a slot pointing downwards, and that outer tube is provided with openings on its entire circumference.
- the outer tube rotates counterclockwise around the inner tube during the execution, and as a result the sulfur melt in drop form is applied to the top of the cooling belt (1) so that the drops can solidify there to form solid granules.
- This granulate is brought at the end of the cooling belt (1) via a chute (12) onto a conveyor (13), which is only indicated schematically.
- the granules reach a collecting container (14) and can be brought from there into standard packaging.
- the advantage of this process is that the sulfur is already in granular form and does not, as is also known, have to be broken from a continuous solidified layer to a pourable product. In such a process, when the sulfur cake is broken open, considerable dust is generated, which should be avoided from an environmental point of view.
- the hood (5) - which will be explained in more detail with reference to FIG. 2 and the following figure - is provided in the area between the rotor former (11) and the suction nozzle (6) with sheet-like internals (15) which thus into the outflow caused by the suction above the cooling belt
- the hood (5) is also provided with openings (16) on the side of the suction connector (6) facing away from the internals (5), the cross-section of which can be regulated and which are used by the fan (8) through the suction connector
- 3 to 5 show a first example of the internals used in the hood (5), which are used to allow at least a portion of the product in vapor form behind the feed point (rotor former (11)) of the melt or removal of the exhaust air to crystallize out .
- 3 and 4 show that in a first exemplary embodiment, for this purpose, internals are provided in the hood (5) in the form of plane walls (17) aligned parallel to one another, the mutual spacings of which in the running direction of the cooling belt (1) keep getting bigger.
- Distance (a) exists between the first two walls (17), which are designed as plates the next two walls the distance (b), then the distance (c) and finally the distance (d).
- the surfaces of the walls (17) are larger in the area of the higher vapor pressure than in the area of the lower vapor pressure. If one now ensures that, as previously indicated, the flow rate of the exhaust air is selected accordingly, then sulfur crystallizes on the surface of the plates (17).
- the plates (17) can also be provided with channels (18), to which a coolant is supplied from the outside through the line (19) and discharged again through the line (20). If the plates (17) consist of thermally conductive material, then it is possible to temper their surface in this way. It would of course also be possible to temper the plates (17) in a different way, for example by heat conduction from the outside. The temperature can be chosen so that the crystallization process can take place optimally.
- the invention therefore creates the possibility of allowing the sulfur which occurs in vapor form behind the rotor former as a result of the melt release to crystallize out on the surfaces of the plates (17), so that this vaporous sulfur is not caused by the subsequent cooling becomes dusty and therefore does not get into the filter (9). Rather, it initially remains in a crystallized state on the surface of the plates (17) and must be removed from there from time to time.
- the plates (17) are all mounted together on a carrier plate (21) which extends transversely to the running direction of the cooling belt (1) in the hood on corresponding guides (5a) integrated into the ceiling of the hood (5) in a manner not shown in detail can be moved into the end position (21 ') shown in FIG. 5.
- the design is such that the hood (5) laterally from the cooling belt (1) a scraper wall (22) with slots (23) is assigned, the size and mutual spacing of which is adapted to the position and the dimensions of the plates (17).
- a space (24) is provided in front of the scraper plate (22) and can also be designed as a special suction space.
- the plate (21) with the plates (17) attached to it is therefore pulled into its position (21) outside the hood (5), which can be done, for example, by hand, then the one adhering to the surface of the plates (17) becomes Crystalline sulfur scraped off at the slots (23) and falls into the room (24). From there it can be removed and, for example, sent to the processing facility for the sulfur melt.
- the slots (23) are used for stripping and scraping the crystalline sulfur. However, they do not clean the surfaces of the plates (17) in such a way that crystallization nuclei do not remain on the surfaces, which then ensure further crystallization of sulfur vapor when the plate (21) is pushed back and the plates (17) are arranged again in the flow path .
- FIGS. 3 to 5 shows a variant of the embodiment of FIGS. 3 to 5, in this case the plates (170), which can be arranged in the same way as the plates (17) of the embodiment of FIGS. 3 to 5, are attached to a single plate (210) which is substantially wider than the hood, the side boundaries of which approximately terminate the side edges of the cooling belt (1).
- the plates (170) are guided in slots (230) in two side plates (220) which are arranged parallel to the outer edges of the cooling belt (1) and to the hood side walls.
- collecting spaces (240) are provided within the guide plates (220), which can serve to receive the sulfur scraped off at the slots (230).
- the plates (170) guided in the slots (230) on both sides in this embodiment are, as already explained, arranged on a common plate (210) and this
- the plate (210) can be pushed back and forth by means of pneumatic cylinders (25) arranged on both sides in the direction of the arrows (26) in such a way that it projects in each case around the dashed area (210 ').
- pneumatic cylinders (25) arranged on both sides in the direction of the arrows (26) in such a way that it projects in each case around the dashed area (210 ').
- a part of the surfaces of the plates (170), which are located in the hood (5) in the exhaust air stream can be scraped off and cleaned in the same manner as described with reference to FIGS. 3 to 5.
- the movement in the direction of the arrows (26) can be carried out discontinuously and automatically at certain intervals. A constant back and forth movement would also be possible, which would have to take place at corresponding speeds.
- FIG. 7 Another embodiment is shown in FIG. 7.
- three endless belts (27) are provided as crystallization surfaces, which are guided transversely to the running direction of the cooling belt (1) on the corresponding deflection roller (28).
- the belts (27) must otherwise run within the space in the suction hood (5) (not shown) and should therefore be designed so that the labyrinth-like belt course shown in FIG. 3 also arises between the individual belts, which the Exhaust air flow forces from bottom to top and again from top to bottom through the baffles then formed by the belts (27).
- the belts (27) leave the hood through plates (29) on one side and plates (30) on the other side, to which collecting spaces (31) are assigned on the side facing the cooling belt (1) .
- These plates (29 and 30) contain scraping slots which have the same function as the slots (23 and 230) of the previously described embodiments.
- the circulating belts (27) are also assigned cooling plates (32) before they enter the interior of the exhaust hood, which are so designed that the belts are guided in slot-like openings and come into thermal contact with the cooling plates (32) .
- the flow paths of the outlet between the plates (35) can be extended, so that there is sufficient time for the sulfur vapor to crystallize.
- the mutual spacing of the plates corresponds to that of FIG. 3.
- a stripping plate (22) is provided on the side, as in the exemplary embodiment of FIG. 5, and the plates (35) can then, if their transport plate (34) in the sense of arrows (36) is pulled into position (34 '), from which crystalline sulfur adhering to its surfaces is freed and which reaches the collecting space (24).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Processing Of Solid Wastes (AREA)
- Treating Waste Gases (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
A process and device are disclosed for purifying the outgoing air from molten mass solidifying plants. In known processes for producing granulates from molten masses, product fumes are formed at the feeding point of the molten mass. As they cool down, these product fumes form a powder in the outgoing air. In the area between the feeding point for the molten mass and an outgoing air pipe, flat baffles (15) are arranged in a fume hood. The baffles project into the flow, forming labyrinth-like crystallisation surfaces for the product fumes, which may then be removed in the solid form and do not reach the outgoing air. The invention is suitable for the granulation of chemical products, in particular sulphur.
Description
Verfahren und Vorrichtung zur Reinigung der Abluft von Anlagen zur Verfestigung von Schmelzen Process and device for cleaning the exhaust air from plants for solidifying melts
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Reinigung der Abluft von Anlagen zur Verfestigung von Schmel¬ zen, die auf Kühlflächen, insbesondere einem Kühlband aufgege¬ ben werden und dort erstarren, insbesondere zur Verfestigung von Schwefel.The invention relates to a method and a device for cleaning the exhaust air from plants for the solidification of melts which are placed on cooling surfaces, in particular a cooling belt, and solidify there, in particular for the solidification of sulfur.
Es ist bekannt, daß sich eine Reihe von Produkten, wie bei¬ spielsweise Harze, Kleber o.dgl., aber auch Schwefel dadurch transport- und handhabungsfähig machen lassen, daß man sie schmilzt und entweder in Streifen oder auch in der Form von Tropfen auf ein bewegtes Kühlband aufbringt, wo die Schmelze erstarrt. Wird sie bereits als Tropfenform aufgebracht, so ent¬ steht am Ende des Kühlbandes ein verpackungsfähiges Granulat. Bei einer Aufbringung in Streifenform bricht dieses in Stücke und kann ebenfalls verpackt werden.It is known that a number of products, such as resins, adhesives or the like, but also sulfur, can be made transportable and manageable by melting them and either in strips or in the form of drops applies a moving cooling belt where the melt solidifies. If it is already applied in the form of a drop, there is a packable granulate at the end of the cooling belt. When applied in strip form, this breaks into pieces and can also be packed.
Da bei dem Aufgeben der Schmelze, insbesondere bei Schwefel Dämpfe entstehen, die umweltschädigend sein können, ist es üb¬ lich, den Vorrichtungen zur Aufbringung der Schmelze Absaug¬ einrichtungen zuzuorden, die dafür sorgen, daß die entstehende Abluft definiert entnommen und gereinigt werden kann. Dies ge-
schieht mit Hilfe von Filtern, die relativ aufwendig sind. Ein gewisser Nachteil der bekannten Reinigungsverfahren muß auch darin gesehen werden, daß die mit der Abluft entnommenen Staub¬ mengen, die nicht unerheblich sein können, der Produkterzeugung verloren gehen.Since vapors which can be harmful to the environment arise when the melt is added, in particular in the case of sulfur, it is customary to assign the devices for applying the melt to suction devices which ensure that the resulting exhaust air can be removed and cleaned in a defined manner. This works with the help of filters, which are relatively complex. A certain disadvantage of the known cleaning methods must also be seen in the fact that the amounts of dust removed with the exhaust air, which cannot be negligible, are lost in the production of the product.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art so auszugestalten, daß von vorneherein weniger Produktanteil in die Abluft ge¬ langt, so daß der dort stattfindende Reinigungsvorgang ent¬ lastet werden kann.The invention is based on the object of designing a method and a device of the type mentioned at the outset in such a way that less product content reaches the exhaust air from the outset, so that the cleaning process taking place there can be relieved.
Zur Lösung dieser Aufgabe schlägt das erfindungsgemäße Verfah¬ ren vor, daß ein Teil des hinter der Aufgabestelle der Schmelze dampfförmig anfallenden Produktes vor der Entnahme der Abluft auskristallisiert und als fester Anteil entnommen wird. Durch diese Maßnahme gelingt es, bereits einen Großteil des sonst in der Form von Staub anfallenden Produktabfalles zu vermeiden und die auεkristallisierten Produktmengen unter Umständen auch wie¬ der zur Aufbereitung der Schmelze einzusetzen. Dabei können in Weiterbildung des erfindungsgemäßen Gedankens die für die Auskristallisation vorgesehenen Kristallisationsfiächen in ihrer Größe dem Dampfdruckprofil über dem Produkt angepaßt wer¬ den, so daß dort, wo ein größerer Dampfdruck herrscht, auch die Möglichkeit besteht, daß größere Mengen des Produktes sich in der Form von Kristallen an den Flächen absetzen können.To achieve this object, the method according to the invention proposes that a part of the product in vapor form behind the feed point of the melt crystallize out before the exhaust air is removed and is removed as a solid fraction. This measure already makes it possible to avoid a large part of the product waste which otherwise arises in the form of dust and, under certain circumstances, can also reuse the crystallized product quantities for the preparation of the melt. In a further development of the idea according to the invention, the size of the crystallization surfaces provided for the crystallization can be adapted to the vapor pressure profile above the product, so that where there is a higher vapor pressure there is also the possibility that larger quantities of the product are in the form of crystals on the surfaces.
Zur Durchführung des neuen Verfahrens kann bei einer Vorrich¬ tung mit einer über einem Kühlband angeordneten Absaughaube die eine Zuführeinrichtung für die Schmelze überdeckt und einen Ab- saugεtutzen aufweist, vorgesehen werden, daß die Haube im Be¬ reich zwischen der Zuführeinrichtung und dem Absaugstutzen mit in die Abluftströmung ragenden Einbauten zur Kristallisation des Produktes und mit regulierbaren Öffnungen zur Erzeugung einer gezielten Luftführung im Bereich der Einbauten versehen ist. Diese Ausgestaltung erlaubt es, die Strömungεgeεchwindig-
keit der Abluft im Bereich der Einbauten εo zu wählen, daß je¬ weils genügend Zeit für die Auεkristallisation an den Einbauten besteht. Dabei können die Einbauten in besonders einfacher Wei¬ se als Wände auεgebildet εein, die labyrinthartig quer zur Ab- luftεtrömung angeordnet sind. Die Abluftεtrömung wird daher ge¬ zwungen an den Wänden entlang zu strömen und zwar mit einer de¬ finierten Geschwindigkeit, εo daß die gewünschte Kristalliεa- tion eintritt. Vorteilhaft können die Wände zur Förderung deε Kriεtalliεationsvorganges auch auε wärmeleitfähigem Material bestehen und mit Kanälen zum Durchleiten eineε temperierbaren Wärmetauschmediums versehen oder auf sonstige Weise temperier¬ bar sein. Auf diese Weise wird es möglich, die Temperatur der Kristallisationsfiächen so auszulegen, daß optimale Verhält- niεεe für eine Kristallisation vorliegen.To carry out the new method, it can be provided in a device with a suction hood arranged above a cooling belt, which covers a feed device for the melt and has a suction nozzle, that the hood in the area between the feed device and the suction nozzle also has in the exhaust air flow projecting internals for crystallization of the product and is provided with adjustable openings for generating a targeted air flow in the area of the internals. This configuration allows the flow to be of the exhaust air in the area of the internals so that there is sufficient time for crystallization on the internals. The internals can be designed in a particularly simple manner as walls which are arranged in a labyrinthine manner transversely to the exhaust air flow. The exhaust air flow is therefore forced to flow along the walls and at a defined speed, so that the desired crystallization occurs. Advantageously, the walls for promoting the crystallization process can also consist of thermally conductive material and can be provided with channels for the passage of a heat-exchange medium which can be temperature-controlled or can be temperature-controlled in some other way. In this way it becomes possible to design the temperature of the crystallization surfaces in such a way that optimal conditions for crystallization are present.
Um eine Anpasεung an daε Dampfdruckprofil über dem Produkt zu erreichen, können die Wände parallel zueinander und in Strö¬ mungsrichtung in unterschiedlichem Abεtand angeordnet εein, der εich jeweilε dem Dampfdruckprofil über dem Produkt anpaßt. Die Wände können dabei senkrecht von der Haubendecke auε in die Strömung hereinragen. Sie können auch horizontal von den gegen¬ überliegenden Seitenwänden der Haube auε in die Strömung he¬ reinragen und zwar εo, daß in der Art eineε Labyrinthε jeweilε gegenüberliegende Durchströmspalte gebildet werden, die zu einer Umströmung der als Kristallisationsfiächen dienenden Wän¬ de führen.In order to achieve an adaptation to the vapor pressure profile above the product, the walls can be arranged parallel to one another and at different distances in the direction of flow, which adapts to the vapor pressure profile above the product. The walls can protrude vertically from the hood ceiling into the flow. They can also protrude horizontally from the opposite side walls of the hood into the flow, specifically in such a way that a labyrinth of opposite flow gaps is formed, which leads to a flow around the walls serving as crystallization surfaces.
Um das an den Wänden auεkriεtallisierte Produkt in bestimmten Abständen entnehmen zu können, ist es vorteilhaft, die Wände fest an Tranεportelementen anzubringen, die ein εeitliches Herausführen der Wände auε der Haube ermöglichen, wobei den Wänden angepaßte Abεtreiföffnungen im Bereich der Haubenεeiten- wände zugeordnet εind, an denen daε Kriεtalliεat abgeεchabt werden kann. Dieεeε Herauεziehen der Wände mit dem Zweck der Reinigung kann von Hand oder auch in gewissen Zeitabständen automatiεch erfolgen, z.B. durch pneumatiεche oder hydraulische
Zylinder oder auch durch Antriebε otoren. Die Auεgestaltung wird dabei in allen Fällen so getroffen, daß keine gründliche Reinigung der Kriεtalliεationsflachen der Wände erfolgt, um Kriεtallisationskeime zurückzulaεsen, die bei der erneuten In¬ betriebnahme die Auεkriεtallisation fördern. Eine besonders einfache Möglichkeit der Anordnung der Wände ergibt sich dann, wenn die Wände selbst die Transportelemente bilden und als ein oder mehrere endlose Bänder ausgebildet sind, die quer zur Strömungsrichtung die Haube durchqueren und an den Haubensei- tenwänden Abstreifschlitze und Schlitze zwischen Temperier¬ platten durchqueren, die wiederum für eine Temperierung der kontinuierlich umlaufenden Bänder sorgen, welche die Kri- εtalliεationεflachen bilden. Die Umlaufgeεchwindigkeit kann entεprechend gewählt werden, εo daß ein kontinuierlicher Umlauf möglich iεt. Natürlich wäre es auch möglich, die Bänder dis¬ kontinuierlich zu bewegen. In allen Fällen wird eine Möglich¬ keit vorgesehen, das abgeschabte Kristallisat auffangen und entfernen zu können. Es kann beispielsweiεe der Aufbereitung der Schmelze für die Produktherstellung wieder zugeführt wer¬ den. Durch diese Ausgestaltung wird es möglich, einen nicht unbeachtlichen Teil des Staubanteiles in der Abluft von vorne- herein zu vermeiden. Die Reinigungsanlagen für die Abluft können daher entlastet werden.In order to be able to remove the product crystallized on the walls at certain intervals, it is advantageous to attach the walls firmly to transport elements which allow the walls to be led out from the side of the hood, with matching scraper openings in the area of the side walls of the hood being assigned, on which the crystals can be scraped off. The walls can be pulled out for the purpose of cleaning by hand or automatically at certain intervals, for example by pneumatic or hydraulic means Cylinder or by drive motors. In all cases, the design is carried out in such a way that there is no thorough cleaning of the crystallization surfaces of the walls in order to leave behind crystallization nuclei which promote the crystallization when they are put into operation again. A particularly simple possibility of arranging the walls is obtained if the walls themselves form the transport elements and are designed as one or more endless belts which cross the hood at right angles to the direction of flow and cross stripping slots and slots between tempering plates on the hood side walls , which in turn ensure the temperature of the continuously rotating belts which form the crystallization surfaces. The circulation speed can be selected accordingly, so that a continuous circulation is possible. Of course, it would also be possible to move the belts continuously. In all cases, a possibility is provided to be able to collect and remove the scraped off crystals. For example, it can be returned to the preparation of the melt for product manufacture. This configuration makes it possible to avoid a not inconsiderable part of the dust content in the exhaust air from the outset. The cleaning systems for the exhaust air can therefore be relieved.
Die Erfindung ist in der Zeichnung anhand von Ausführungε- beispieln dargestellt und wird im folgenden erläutert. Es zeigen:The invention is illustrated in the drawing using exemplary embodiments and is explained below. Show it:
Fig. 1 eine schematische Darstellung der Herstellung eines Granulates aus einer Schmelze, wobei der zugeordneten Einrichtung eine Abluftabsaugung zugeordnet ist,1 is a schematic representation of the production of a granulate from a melt, with the associated device being assigned an exhaust air extraction,
Fig. 2 einen Teil der Einrichtung der Fig. 1 mit einem um¬ laufenden Kühlband, einer Aufgabevorrichtung für die Schmelze und mit den erfindungsgemäßen Kristallisa¬ tionsfiächen,
Fig. 3 die vergrößerte Detaildarεtellung eineε erεten Aus- führungεbeiεpieleε der Kriεtallisationswände der Ein¬ richtung der Fig. 2,2 shows part of the device of FIG. 1 with a rotating cooling belt, a feed device for the melt and with the crystallization surfaces according to the invention, 3 shows the enlarged detailed representation of a first embodiment of the crystallization walls of the device of FIG. 2,
Fig. 4 eine perεpektiviεche Darεtellung eines Auεführungε- beiεpieleε der Kriεtallisätionswände der Fig. 3,FIG. 4 shows a perspective view of an example of the crystal walls of FIG. 3, FIG.
Fig. 5 die Draufsicht auf einen Teil der Haube der Einrich¬ tung der Fig. 2 und auf die dort angeordneten Kri¬ stallisationswände,5 shows the top view of part of the hood of the device of FIG. 2 and of the crystallization walls arranged there,
Fig. 6 die Darstellung eines Ausführungsbeispieles ähnlich Fig. 5, jedoch mit automatisch seitlich aus der Haube herausziehbaren Kristalliεationswänden,6 shows the representation of an embodiment similar to FIG. 5, but with crystallization walls which can be automatically pulled out laterally from the hood,
Fig. 7 ein Ausführungεbeiεpiel einer Einrichtung nach Fig.5, bei der jedoch die Kriεtalliεationεwände unmittelbar alε die Haube durchquerende Bänder auεgebildet sind,7 shows an exemplary embodiment of a device according to FIG. 5, in which, however, the crystallization walls are formed directly as bands crossing the hood,
Fig. 8 eine Darstellung ähnlich Fig. 3, jedoch mit seitlich von den Wänden der Haube aus versetzt in deren Inne¬ res hineinragenden Kristallisationswänden, undFIG. 8 shows a representation similar to FIG. 3, but with crystallization walls protruding laterally from the walls of the hood, and
Fig. 9 die Draufsicht ähnlich Fig. 5 auf das Ausführungε- beispiel der Fig. 8.9 is a top view similar to FIG. 5 of the embodiment of FIG. 8.
Die Fig. 1 zeigt zunächst ganz allgemein eine Anlage, mit der eine Schmelze, beispielsweise geschmolzener Schwefel zu Granu¬ lat verarbeitet werden kann. Die Anlage nach Fig. 1 besitzt zu diesem Zweck ein Kühlband (1) , bei dem Kühlmittel durch die Leitung (2) in eine Kammer (3) unterhalb des oberen Trumes des Kühlbandes (1) geleitet und dort beispielεweiεe mit Hilfe von Sprühdüεen auf die Unterseite deε alε Stahlband auεgebildeten Kühlbandes (1) aufgeεprüht wird. Durch eine Abflußleitung (2) wird das Kühlmittel wieder in einen Kreislauf zurückgeleitet.
Daε Kühlband (1) wird um zwei Umlenkrollen (4) geführt und läuft beim Ausführungsbeispiel im Uhrzeigersinn um. Oberhalb seines oberen Trumes ist eine Absaughaube (5) vorgesehen, die einen Absaugεtutzen (6) aufweist, der, wie nur εchematiεch an¬ gedeutet iεt, über eine Abεaugleitung (7) an ein Abεauggebläεe (8) angeεchlossen ist, dem beim Ausführungsbeiεpiel noch ein Reinigungsfilter (9) o.dgl. vorgeschaltet ist.1 initially shows a plant in general, with which a melt, for example molten sulfur, can be processed into granules. The system according to FIG. 1 has a cooling belt (1) for this purpose, in which coolant is passed through the line (2) into a chamber (3) below the upper strand of the cooling belt (1) and sprayed onto it there, for example with the aid of spray nozzles Underside of the cooling belt (1) formed as a steel belt is sprayed on. The coolant is returned to a circuit through a drain line (2). The cooling belt (1) is guided around two deflection rollers (4) and rotates clockwise in the exemplary embodiment. Above its upper dream there is a suction hood (5) which has a suction nozzle (6) which, as only schematically indicated, is connected via a suction line (7) to a suction fan (8), which in the exemplary embodiment also includes a suction fan (8) Cleaning filter (9) or the like. is connected upstream.
Geschmolzener Schwefel wird durch die Zuführleitung (10) einem an εich bekannten Rotorformer (11) zugeleitet, der im weεent- lichen aus zwei ineinandergelagerten Rohren beεteht, von denen daε innere, mit der Schmelze aufgefüllte und temperierte Rohr einen nach unten weisenden Schlitz aufweist und das äußere Rohr auf seinem gesamten Unfang mit Öffnungen versehen ist. Das äußere Rohr rotiert um daε Innenrohr beim Auεführungεbeiεpiel im Gegenuhrzeigersinn, und dadurch wird die Schwefelschmelze in Tropfenform auf die Oberseite des Kühlbandes (1) aufgegeben, so daß die Tropfen dort zu festem Granulat erstarren können. Die¬ ses Granulat wird am Ende des Kühlbandes (1) über eine Rutsche (12) auf einen Förderer (13) gebracht, der nur schematisch an¬ gedeutet iεt. Mit dem Förderer (13) gelangt das Granulat in einen Sammelbehälter (14) und kann von dort in handelsübliche Verpackungen gebracht werden. Bei diesem Verfahren wird grund¬ sätzlich der Vorteil erreicht, daß der Schwefel bereits in Granulatform vorliegt und nicht, wie das auch bekannt ist, aus einer durchgehenden erstarrten Schicht erst zu einem schütt¬ fähigen Produkt gebrochen werden muß. Bei einem solchen Vorgang entsteht beim Aufbrechen des Schwefelkuchens erheblich Staub, der aus Umweltgesichtspunkten zu vermeiden ist.Molten sulfur is fed through the feed line (10) to a rotor former (11) which is known per se and which essentially consists of two tubes, one inside the other, of which the inner tube, filled with the melt and tempered, has a slot pointing downwards, and that outer tube is provided with openings on its entire circumference. The outer tube rotates counterclockwise around the inner tube during the execution, and as a result the sulfur melt in drop form is applied to the top of the cooling belt (1) so that the drops can solidify there to form solid granules. This granulate is brought at the end of the cooling belt (1) via a chute (12) onto a conveyor (13), which is only indicated schematically. With the conveyor (13), the granules reach a collecting container (14) and can be brought from there into standard packaging. The advantage of this process is that the sulfur is already in granular form and does not, as is also known, have to be broken from a continuous solidified layer to a pourable product. In such a process, when the sulfur cake is broken open, considerable dust is generated, which should be avoided from an environmental point of view.
Beim Aufbringen des geschmolzenen Schwefels durch den Rotorfor¬ mer (11) auf daε Kühlband (1) entsteht aber auch dampfförmiger Schwefel, der durch daε anεchließende Abkühlen im Bereich unterhalb der Haube (5) als Schwefelstaub auftritt. Bei der Er¬ findung geht es um die Vermeidung dieses Schwefelstaubeε, der
durch den Stutzen (6) abgesaugt und im Filter (9) aus der Ab¬ luft entfernt werden muß.When the molten sulfur is applied by the rotor former (11) to the cooling belt (1), however, gaseous sulfur also forms, which occurs as sulfur dust due to the subsequent cooling in the area below the hood (5). The invention is concerned with avoiding this sulfur dust, which aspirated through the nozzle (6) and must be removed from the exhaust air in the filter (9).
Erfindungsgemäß ist die Haube (5) - was noch näher anhand der Fig. 2 und der folgenden Fig. erläutert werden wird - im Be¬ reich zwischen Rotorformer (11) und dem Abεaugstutzen (6) mit flächenförmigen Einbauten (15) versehen ist, die so in die durch die Abεaugung bewirkte Abεtrömung oberhalb deε KühlbandeεAccording to the invention, the hood (5) - which will be explained in more detail with reference to FIG. 2 and the following figure - is provided in the area between the rotor former (11) and the suction nozzle (6) with sheet-like internals (15) which thus into the outflow caused by the suction above the cooling belt
(1) eingesetzt sind, daß labyrinthähnliche Schikanen für die Strömung auftreten, die sie zwingen an den Einbauten vorbei zum Absaugstutzen (6) zu strömen. Die Haube (5) iεt zudem auf der von den Einbauten (5) abgewandten Seite des Absaugεtutzens (6) mit Öffnungen (16) versehen, deren Querschnitt regelbar ist und die dazu dienen, die vom Gebläse (8) durch den Absaugεtutzen(1) are used that labyrinthine baffles occur for the flow, which force them to flow past the internals to the suction nozzle (6). The hood (5) is also provided with openings (16) on the side of the suction connector (6) facing away from the internals (5), the cross-section of which can be regulated and which are used by the fan (8) through the suction connector
(6) geförderte Abluftmenge gezielt und gesteuert in einen aus der links vom Absaugεtutzen (6) kommenden Seite der Haube (5) und in einen aus dem rechts vom Absaugstutzen (6) liegenden Teil der Absaughaube (5) kommenden Betrag aufzuteilen. Durch diese Maßnahme gelingt es nämlich, die Strömungεgeεchwindigkeit der Abluft in dem zwischen Absaugεtutzen (6) und Rotorformer(6) to distribute the exhaust air quantity in a targeted and controlled manner into an amount coming from the side of the hood (5) coming to the left of the suction nozzle (6) and into a part coming from the part of the suction hood (5) lying to the right of the suction nozzle (6). By this measure it is namely possible to achieve the flow velocity of the exhaust air in the between the suction nozzle (6) and the rotor former
(10) liegenden Teil zu steuern. Das bedeutet, daß die Strömungsgeεchwindigkeit der Abluft im Bereich der Einbauten(10) to control the lying part. This means that the flow velocity of the exhaust air in the area of the internals
(5) εich durch entεprechende Regelungen der Öffnungen (16) einstellen läßt. Hierauf wird noch zurückgekommen werden.(5) can be adjusted by adjusting the openings (16) accordingly. We will come back to this later.
Die Fig. 3 bis 5 zeigen ein erstes Beispiel für die in die Haube (5) eingesetzten Einbauten, die dazu dienen, zumindest einen Teil des hinter der Aufgabestelle (Rotorformer (11)) der Schmelze dampfförmig anfallenden Produktes oder Entnahme der Abluft auskristalliεieren zu lassen. Die Fig. 3 und 4 zeigen, daß bei einem ersten Ausführungsbeispiel zu diesem Zweck in die Haube (5) Einbauten in der Form von parallel zueinander ausge¬ richteten ebenen Wänden (17) vorgesehen sind, deren gegenεei- tige Abstände in der Laufrichtung des Kühlbandes (1) immer größer werden. Zwischen den erεten beiden Wänden (17) , die als Platten ausgebildet sind, besteht der Abεtand (a) , zwiεchen den
beiden nächsten Wänden der Abstand (b) , dann der Abstand (c) und schließlich der Abstand (d) . Diese immer größer werdenden Abstände sind dabei dem Dampfdruckprofil über dem Produkt, der sich auf dem Kühlband (1) befindet, angepaßt. Man erreicht da¬ durch, daß die Oberflächen der Wände (17) im Bereich des höhe¬ ren Dampfdruckeε größer sind als im Bereich niedrigeren Dampf¬ druckes. Sorgt man nun dafür, daß, wie vorher angedeutet, die Strömungsgeεchwindigkeit der Abluft entsprechend gewählt wird, dann kristalliεiert Schwefel an der Oberfläche der Platten (17) auε. Die Platten (17) können zu dieεem Zweck, wie Fig.4 zeigt, auch mit Kanälen (18) verεehen εein, denen von außen ein Kühl¬ mittel durch die Leitung (19) zugeführt und durch die Leitung (20) wieder abgeführt wird. Wenn die Platten (17) aus wärme- leitfähigem Material bestehen, dann gelingt es auf diese Weise ihre Oberfläche zu temperieren. Es wäre natürlich auch möglich, die Platten (17) auf andere Weise zu temperieren, z.B. durch Wärmeleitung von außen. Die Temperatur kann dabei so gewählt werden, daß der Kristalliεationεprozeß möglichεt optimal εtattfinden kann. Durch die Erfindung wird daher die Möglich¬ keit geεchaffen, den hinter dem Rotorformer durch die Schmel¬ zenabgabe dampfförmig auftretenden Schwefel zum größten Teil an den Oberflächen der Platten (17) auskristalliεieren zu lassen, εo daß dieεer dampfförmige Schwefel nicht durch die εpätere Ab¬ kühlung εtaubför ig wird und daher auch nicht in den Filter (9) gelangt. Er bleibt vielmehr zunächεt in kristallisierten Zu¬ stand auf der Oberfläche der Platten (17) und muß von dort von Zeit zu Zeit entnommen werden.3 to 5 show a first example of the internals used in the hood (5), which are used to allow at least a portion of the product in vapor form behind the feed point (rotor former (11)) of the melt or removal of the exhaust air to crystallize out . 3 and 4 show that in a first exemplary embodiment, for this purpose, internals are provided in the hood (5) in the form of plane walls (17) aligned parallel to one another, the mutual spacings of which in the running direction of the cooling belt (1) keep getting bigger. Distance (a) exists between the first two walls (17), which are designed as plates the next two walls the distance (b), then the distance (c) and finally the distance (d). These increasing distances are adapted to the vapor pressure profile above the product, which is located on the cooling belt (1). It is thereby achieved that the surfaces of the walls (17) are larger in the area of the higher vapor pressure than in the area of the lower vapor pressure. If one now ensures that, as previously indicated, the flow rate of the exhaust air is selected accordingly, then sulfur crystallizes on the surface of the plates (17). For this purpose, as shown in FIG. 4, the plates (17) can also be provided with channels (18), to which a coolant is supplied from the outside through the line (19) and discharged again through the line (20). If the plates (17) consist of thermally conductive material, then it is possible to temper their surface in this way. It would of course also be possible to temper the plates (17) in a different way, for example by heat conduction from the outside. The temperature can be chosen so that the crystallization process can take place optimally. The invention therefore creates the possibility of allowing the sulfur which occurs in vapor form behind the rotor former as a result of the melt release to crystallize out on the surfaces of the plates (17), so that this vaporous sulfur is not caused by the subsequent cooling becomes dusty and therefore does not get into the filter (9). Rather, it initially remains in a crystallized state on the surface of the plates (17) and must be removed from there from time to time.
Zu diesem Zweck ist bei einem ersten Ausführungsbeispiel gemäß Fig. 5 (und 3 und 4) vorgesehen, daß die Platten (17) alle ge¬ meinsam an einer Trägerplatte (21) angebracht sind, die sich quer zu der Laufrichtung des Kühlbandes (1) in der Haube auf entsprechenden, in nicht näher dargestellter Weise in die Decke der Haube (5) integrierten Führungen (5a) in die in der Fig. 5 gezeigte Endlage (21') verschieben läßt. Die Ausgestaltung ist dabei so getroffen, daß der Haube (5) seitlich vom Kühlband (1)
eine Abεtreifwand (22) mit Schlitzen (23) zugeordnet iεt, deren Größe und gegenseitiger Abεtand jeweilε an die Lage und an die Abmeεsungen der Platten (17) angepaßt ist. Vor der Abstreif¬ platte (22) ist ein Raum (24) vorgesehen, der auch als ein ge¬ sonderter Absaugraum ausgebildet sein kann. Wird daher die Platte (21) mit den daran befestigten Platten (17) in ihre Lage (21) außerhalb der Haube (5) gezogen, was beispielsweiεe von Hand geεchehen kann, dann wird der an der Oberfläche der Plat¬ ten (17) anhaftende kriεtalline Schwefel an den Schlitzen (23) abgeschabt und fällt in den Raum (24) . Von dort läßt er sich entnehmen und beispielsweiεe der Aufbereitungseinrichtung für die Schwefelschmelze zuleiten. Die Schlitze (23) dienen zum Ab¬ streifen und Abschaben des kristallinen Schwefels. Sie reinigen die Oberflächen der Platten (17) jedoch nicht so, daß nicht noch Kristalliεationskeime an den Oberflächen verbleiben, die beim Wiederzurückschieben der Platte (21) und bei der erneuten Anordnung der Platten (17) im Strömungsweg dann für die weitere Kristalliεation von Schwefeldampf sorgen.For this purpose, in a first exemplary embodiment according to FIG. 5 (and 3 and 4) it is provided that the plates (17) are all mounted together on a carrier plate (21) which extends transversely to the running direction of the cooling belt (1) in the hood on corresponding guides (5a) integrated into the ceiling of the hood (5) in a manner not shown in detail can be moved into the end position (21 ') shown in FIG. 5. The design is such that the hood (5) laterally from the cooling belt (1) a scraper wall (22) with slots (23) is assigned, the size and mutual spacing of which is adapted to the position and the dimensions of the plates (17). A space (24) is provided in front of the scraper plate (22) and can also be designed as a special suction space. If the plate (21) with the plates (17) attached to it is therefore pulled into its position (21) outside the hood (5), which can be done, for example, by hand, then the one adhering to the surface of the plates (17) becomes Crystalline sulfur scraped off at the slots (23) and falls into the room (24). From there it can be removed and, for example, sent to the processing facility for the sulfur melt. The slots (23) are used for stripping and scraping the crystalline sulfur. However, they do not clean the surfaces of the plates (17) in such a way that crystallization nuclei do not remain on the surfaces, which then ensure further crystallization of sulfur vapor when the plate (21) is pushed back and the plates (17) are arranged again in the flow path .
Die Fig. 6 zeigt eine Variante der Ausführungsform der Fig. 3 biε 5 inεofern, alε hier die Platten (170) , die im übrigen in der gleichen Weiεe angeordnet sein können wie die Platten (17) der Auεführungεform der Fig. 3 bis 5, an einer ge einεamen Platte (210) angebracht sind, die weεentlich breiter als die Haube ist, deren Seitenbegrenzungen in etwa den Seitenkanten des Kühlbandes (1) abschließen. Die Platten (170) werden bei dieεer Auεführungsform in Schlitzen (230) in zwei seitlichen Platten (220) geführt, die parallel zu den Außenkanten des Kühlbandes (1) und zu den Haubenseitenwänden angeordnet sind. Auch in diesem Fall sind jeweils Sammelräume (240) innerhalb der Führungsplatten (220) vorgesehen, die zur Aufnahme des an den Schlitzen (230) abgeschabten Schwefels dienen können.6 shows a variant of the embodiment of FIGS. 3 to 5, in this case the plates (170), which can be arranged in the same way as the plates (17) of the embodiment of FIGS. 3 to 5, are attached to a single plate (210) which is substantially wider than the hood, the side boundaries of which approximately terminate the side edges of the cooling belt (1). In this embodiment, the plates (170) are guided in slots (230) in two side plates (220) which are arranged parallel to the outer edges of the cooling belt (1) and to the hood side walls. In this case too, collecting spaces (240) are provided within the guide plates (220), which can serve to receive the sulfur scraped off at the slots (230).
Die bei dieser Ausführungεform beidseitig in den Schlitzen (230) geführten Platten (170) sind wieder, wie schon ausge¬ führt, an einer gemeinsamen Platte (210) angeordnet und diese
Platte (210) läßt sich durch beidseitig angeordnete pneumati- εche Zylinder (25) im Sinn der Pfeile (26) εo hin- und her¬ schieben, daß sie jeweils nach einer Seite um den gestrichelten Bereich (210' ) vorsteht. In dieser Lage kann jeweils ein Teil der Oberflächen der Platten (170) , die sich innerhalb der Haube (5) im Abluftεtrom befinden, abgeεchabt und in gleicher Weiεe geεäubert werden, wie daε anhand der Fig. 3 biε 5 beεchrieben iεt. Die Bewegung im Sinn der Pfeile (26) kann diskontinuier- lich automatisch in beεtimmten Abεtänden erfolgen. Möglich wäre auch eine εtändige Hin- und Herbewegung, die mit entεprechenden Geεchwindigkeiten zu erfolgen hätte.The plates (170) guided in the slots (230) on both sides in this embodiment are, as already explained, arranged on a common plate (210) and this The plate (210) can be pushed back and forth by means of pneumatic cylinders (25) arranged on both sides in the direction of the arrows (26) in such a way that it projects in each case around the dashed area (210 '). In this position, a part of the surfaces of the plates (170), which are located in the hood (5) in the exhaust air stream, can be scraped off and cleaned in the same manner as described with reference to FIGS. 3 to 5. The movement in the direction of the arrows (26) can be carried out discontinuously and automatically at certain intervals. A constant back and forth movement would also be possible, which would have to take place at corresponding speeds.
Eine weitere Auεführungsform ist in Fig. 7 gezeigt. Hier sind anstelle der fest an Trägern angeordneten Platten als Kristal- liεationεflachen drei endloεe umlaufende Bänder (27) vorge- εehen, die quer zur Laufrichtung deε Kühlbandes (1) an entspre¬ chenden Umlenkrolle (28) geführt sind. Die Bänder (27) müsεen im übrigen innerhalb deε Raumes in der nicht gezeigten Absaug¬ haube (5) εo verlaufen und daher ausgebildet sein, daß eben¬ falls der in Fig. 3 gezeigte labyrinthartige Bandverlauf zwi¬ schen den einzelnen Bändern entsteht, der die Abluftεtrömung zwingt von unten nach oben und wieder von oben nach unten durch die dann von den Bändern (27) gebildeten Schikanen zu εtrömen. Die Bänder (27) verlaεεen die Haube durch Platten (29) auf der einen Seite und Platten (30) auf der anderen Seite, denen je¬ weilε wieder Sammelräume (31) auf der zum Kühlband (1) hin ge¬ richteten Seite zugeordnet εind. Dieεe Platten (29 und 30) ent¬ halten Abschabεchlitze, die die gleiche Funktion auεüben wie die Schlitze (23 bzw. 230) der vorher geschilderten Ausfüh- rungεformen. Zuεätzlich allerdingε εind den umlaufenden Bändern (27) noch Kühlplatten (32) vor dem Einlauf in den Innenraum der Abεaughaube zugeordnet, die εo auεgebildet εind, daß die Bänder in εchlitzartigen Öffnungen geführt εind und dabei in Wärmekon¬ takt mit den Kühlplatten (32) kommen. Auch auf diese Weise wird es möglich, kontinuierlich umlaufende Bänder, die beispiels-
weiεe Metallbänder εein können, so zu temperieren, daß der ge¬ wünschte Krisalliεationsvorgang optimal eintritt.Another embodiment is shown in FIG. 7. Here, instead of the plates fixedly arranged on supports, three endless belts (27) are provided as crystallization surfaces, which are guided transversely to the running direction of the cooling belt (1) on the corresponding deflection roller (28). The belts (27) must otherwise run within the space in the suction hood (5) (not shown) and should therefore be designed so that the labyrinth-like belt course shown in FIG. 3 also arises between the individual belts, which the Exhaust air flow forces from bottom to top and again from top to bottom through the baffles then formed by the belts (27). The belts (27) leave the hood through plates (29) on one side and plates (30) on the other side, to which collecting spaces (31) are assigned on the side facing the cooling belt (1) . These plates (29 and 30) contain scraping slots which have the same function as the slots (23 and 230) of the previously described embodiments. In addition, however, the circulating belts (27) are also assigned cooling plates (32) before they enter the interior of the exhaust hood, which are so designed that the belts are guided in slot-like openings and come into thermal contact with the cooling plates (32) . In this way, too, it is possible to use continuously rotating belts, for example white metal strips can be tempered in such a way that the desired crystallization process occurs optimally.
Die Fig. 8 und 9 εchließlich zeigen eine Variante von in die Abluftströmung hereinragenden Platten (35) insofern, als hier die Platten (35) zwar auch an einer gemeinsamen, im Sinn deε Pfeileε (36) auε der Haube (5) herausziehbaren Platte (34 ) an¬ geordnet sind, allerdings εo, daß die Labyrinthεpalte für die Strömung nicht oben und unten, εondern jeweils auf verεetzten Seiten der Haube (5) über dem Kühlband (1) gebildet sind. Eε ist zu erkennen, daß die Abluftströmung hier im Sinn der Pfeile (37) zunächst zu einem seitlichen Ausweichen gezwungen wird, und parallel zu den Platten (35) durch diese hindurchströmt um das Labyrinth dann wieder in Richtung zum Absaugεtutzen zu ver¬ lassen. Auch eine solche Anordnung läßt sich natürlich vorteil¬ haft zur Kristallisation von Schwefeldampf verwenden. Hier kön¬ nen die Strδmungswege deε Abgaεeε zwiεchen den Platten (35) verlängert werden, εo daß genügend Zeit für die Kristalliεation des Schwefeldampfes besteht. Der gegenseitige Abstand der Plat¬ ten entspricht jenem der Fig. 3. Im übrigen ist auch hier εeit- lich eine Abstreifplatte (22) wie beim Ausführungεbeispiel der Fig. 5 vorgeεehen und die Platten (35) können dann, wenn ihre Tranεportplatte (34) im Sinn deε Pfeileε (36) in die Stellung (34') gezogen wird, von dem an ihren Oberflächen anhaftenden kristallinen Schwefel befreit werden, der in den Sammelraum (24) gelangt.
8 and 9 finally show a variant of plates (35) protruding into the exhaust air flow insofar as here the plates (35) are indeed also on a common plate which can be pulled out of the hood (5) in the sense of the arrow (36) ( 34) are arranged, however εo that the labyrinth gaps for the flow are not formed above and below, but in each case on offset sides of the hood (5) above the cooling belt (1). It can be seen that the exhaust air flow here is initially forced to move sideways in the direction of the arrows (37), and flows through the plates (35) parallel to the plates (35) in order to then leave the labyrinth again in the direction of the suction nozzle. Such an arrangement can of course also be used advantageously for the crystallization of sulfur vapor. Here, the flow paths of the outlet between the plates (35) can be extended, so that there is sufficient time for the sulfur vapor to crystallize. The mutual spacing of the plates corresponds to that of FIG. 3. Otherwise, a stripping plate (22) is provided on the side, as in the exemplary embodiment of FIG. 5, and the plates (35) can then, if their transport plate (34) in the sense of arrows (36) is pulled into position (34 '), from which crystalline sulfur adhering to its surfaces is freed and which reaches the collecting space (24).
Claims
1. Verfahren zur Reinigung der Abluft von Anlagen zur Verfeεtigung von Schmelzen, die auf Kühlflächen inεbeεondere auf ein Kühlband aufgegeben werden und dort erεtarren, inεbe- sondere zur Verfestigung von Schwefel, dadurch gekennzeichnet, daß ein Teil des hinter der Aufgabestelle der Schmelze dampf¬ förmig anfallenden Produktes vor der Entnahme der Abluft aus¬ kristallisiert und als fester Anteil entnommen wird.1. Process for cleaning the exhaust air from plants for the solidification of melts which are placed on cooling surfaces, in particular on a cooling belt and solidify there, in particular for solidifying sulfur, characterized in that part of the vapor behind the application point of the melt resulting product crystallized out before the exhaust air is removed and is removed as a solid portion.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Auskriεtalliεation an Kriεtalliεationεflächen stattfin¬ det, deren Größe dem Dampfdruckprofil über dem Produkt angepaßt wird.2. The method according to claim 1, characterized in that the Auskriεtalliεation takes place on Kriεtalliεationεflächen, the size of which is adapted to the vapor pressure profile over the product.
3. Vorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 oder 2 mit einer über einem Kühlband (1) angeord¬ neten Absaughaube (5) , die eine Zuführeinrichtung (11) für die Schmelze überdeckt und einen Absaugstutzen (6) aufweist, da¬ durch gekennzeichnet, daß die Haube (5) im Bereich zwischen Zu¬ führeinrichtung (11) und Absaugstutzen (6) mit in die Abluft¬ strömung ragenden Einbauten (15) zur Kristalliεation deε Pro¬ duktes und mit regulierbaren Öffnungen (16) zur Erzeugung einer gezielten Luftführung im Bereich der Einbauten (15) verεehen ist.3. Device for carrying out the method according to claims 1 or 2 with a suction hood (5) arranged over a cooling belt (1), which covers a feed device (11) for the melt and has a suction nozzle (6), thereby characterized in that the hood (5) in the area between the feed device (11) and the suction nozzle (6) with internals (15) projecting into the exhaust air flow for crystallization of the product and with adjustable openings (16) for producing a targeted one Air duct in the area of the internals (15) is provided.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Einbauten als Wände (17, 170, 35) ausgebildet sind, die labyrinthartig quer zur Abluftströmung angeordnet sind.4. The device according to claim 3, characterized in that the internals are designed as walls (17, 170, 35) which are arranged in a labyrinthine manner transversely to the exhaust air flow.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Wände (17, 170, 35) temperierbar sind.5. The device according to claim 4, characterized in that the walls (17, 170, 35) can be temperature-controlled.
6. Vorrichtung nach Anspruch 4 und 5, dadurch gekenn¬ zeichnet, daß die Wände (17, 170, 35) aus wärmeleitfähigem Material bestehen und mit Kanälen (18) zum Durchleiten eines temperierbaren Wärmetauschmediumε versehen sind.6. Apparatus according to claim 4 and 5, characterized gekenn¬ characterized in that the walls (17, 170, 35) made of thermally conductive Material exist and are provided with channels (18) for passing a temperature-exchangeable heat exchange medium.
7. Vorrichtung nach Anspruch 1 oder 6, dadurch gekenn¬ zeichnet, daß die Wände (17, 170, 35) parallel zueinander und in Strömungsrichtung in unterschiedlichem Abstand (a bis d) angeordnet sind, der sich dem Dampfdruckprofil über dem Produkt anpaßt.7. The device according to claim 1 or 6, characterized gekenn¬ characterized in that the walls (17, 170, 35) are arranged parallel to each other and in the direction of flow at different distances (a to d), which adapts to the vapor pressure profile above the product.
8. Vorrichtung nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß die Wände (17, 170) senkrecht von der Hau¬ bendecke aus in die Strömung hereinragen.8. Device according to one of claims 3 to 7, characterized in that the walls (17, 170) protrude perpendicularly from the Hau¬ bendecke out into the flow.
9. Vorrichtung nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß die Wände (35) horizontal von dem gegen¬ überliegenden Seitenwänden der Haube (5) aus in die Strömung hereinragen.9. Device according to one of claims 3 to 7, characterized in that the walls (35) protrude horizontally from the opposite side walls of the hood (5) into the flow.
10. Vorrichtung nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, daß die Wände (17, 170, 35) fest an Tranεport- elementen (21, 210) angebracht sind, die ein seitlichen Heraus¬ führen der Wände aus der Haube (5) ermöglichen, wobei den Wän¬ den (17, 170, 35) angepaßte Abstreiföffnungen (23, 230) im Be¬ reich der Haubenseitenwände zugeordnet sind, an denen das Kri- εtallisat abgeschabt werden kann.10. Device according to one of claims 3 to 9, characterized in that the walls (17, 170, 35) are fixedly attached to tranεport elements (21, 210) which guide the walls out of the side of the hood (5 ) enable, the walls (17, 170, 35) being matched with wiping openings (23, 230) in the area of the hood side walls, against which the crystallizate can be scraped off.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Transportelemente als gemeinsame Trägerplatten (21, 210, 34) ausgebildet sind, die von Hand oder in gewisεen Zeit¬ abständen automatiεch hin- und herbewegbar εind.11. The device according to claim 10, characterized in that the transport elements are designed as common carrier plates (21, 210, 34) which can be moved back and forth automatically by hand or at certain time intervals.
12. Vorrichtung nach Anεpruch 3, dadurch gekennzeichnet, daß die Einbauten (15) von umlaufenden endlosen Bändern (27) gebildet sind, die quer zur Strömungsrichtung die Haube (5) und an den Haubenseitenwänden Abstreifεchlitze in Abstreifplat¬ ten (29, 30) und Schlitze zwischen Kühlplatten (32) durchqueren. 12. The device according to Anεpruch 3, characterized in that the internals (15) of continuous endless belts (27) are formed, the hood (5) transversely to the direction of flow and on the hood side walls stripping slots in stripping plates (29, 30) and Cross the slots between the cooling plates (32).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4322628 | 1993-07-07 | ||
DE4322628A DE4322628C1 (en) | 1993-07-07 | 1993-07-07 | Process and device for cleaning the exhaust air from plants for solidifying melts |
PCT/EP1994/002094 WO1995001858A1 (en) | 1993-07-07 | 1994-06-28 | Process and device for purifying the outgoing air from molten mass solidifying plants |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0662030A1 true EP0662030A1 (en) | 1995-07-12 |
Family
ID=6492184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94923691A Withdrawn EP0662030A1 (en) | 1993-07-07 | 1994-06-28 | Process and device for purifying the outgoing air from molten mass solidifying plants |
Country Status (10)
Country | Link |
---|---|
US (1) | US5569315A (en) |
EP (1) | EP0662030A1 (en) |
JP (1) | JPH08504130A (en) |
KR (1) | KR950702860A (en) |
CN (1) | CN1111902A (en) |
AU (1) | AU7383794A (en) |
CA (1) | CA2143843A1 (en) |
DE (1) | DE4322628C1 (en) |
RU (1) | RU2089277C1 (en) |
WO (1) | WO1995001858A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4332686C1 (en) * | 1993-09-25 | 1995-02-09 | Santrade Ltd | Process and apparatus for purifying the exhaust air of plants for solidifying melts |
DE19781525B4 (en) * | 1996-11-20 | 2006-03-09 | Otkrytoe Akcionernoe Obščestvo "Avjabor" Dzerščinskiy Opytnij Zavod Aviacionnych Materialov | Process for the preparation of granules of a thermolabile material and apparatus for carrying out this process |
DE19747090A1 (en) * | 1997-10-24 | 1999-04-29 | Leybold Systems Gmbh | Dust collector |
DE10012766B4 (en) * | 2000-03-16 | 2009-08-20 | Deere & Company, Moline | Cleaning device for a sieve and vehicle with cleaning device |
DE10252183B4 (en) * | 2002-11-09 | 2007-12-27 | Kunz, Susanne | Device for venting of pressure casting molds |
JP5263695B2 (en) * | 2008-08-26 | 2013-08-14 | シデル エス.ピー.エー. | Apparatus and method for sterilizing container closures |
DE102010007391A1 (en) * | 2010-02-02 | 2011-08-04 | Sandvik Materials Technology Deutschland GmbH, 40549 | Method for belt conditioning in Pastillieranlagen and apparatus for producing pastilles |
JP5651393B2 (en) | 2010-07-08 | 2015-01-14 | 出光興産株式会社 | Production method of petroleum resin |
CN103372403A (en) * | 2013-07-11 | 2013-10-30 | 宜兴市聚金信化工有限公司 | Granulating device in production of rubber antioxidant |
EP2883526B1 (en) * | 2013-12-11 | 2020-03-18 | Harro Höfliger Verpackungsmaschinen GmbH | Processing system for powder and method for processing of powder |
US9993760B2 (en) * | 2015-08-07 | 2018-06-12 | Big Heart Pet, Inc. | Particle separator systems and processes for improving food safety |
CN105688750A (en) * | 2016-01-19 | 2016-06-22 | 浙江丽水有邦新材料有限公司 | Anticorrosion rotary solidifying and granulating machine |
CN108310795A (en) * | 2017-01-17 | 2018-07-24 | 上海泰禾国际贸易有限公司 | A kind of trap for para-Phthalonitrile production line |
EP3398676A1 (en) | 2017-05-05 | 2018-11-07 | Casale Sa | Production of a solid chemical product |
CN111604005B (en) * | 2020-05-26 | 2021-09-24 | 嘉兴学院 | Waste gas recirculation system in phosphorus coal system ball in-process |
CN111604004B (en) * | 2020-05-26 | 2021-08-24 | 嘉兴学院 | Method for producing pellets from phosphorus coal |
CN112212709A (en) * | 2020-09-29 | 2021-01-12 | 新乡市新贝尔信息材料有限公司 | Recovery method based on foreign matters in condensation recovery system |
CN117841331A (en) * | 2023-12-18 | 2024-04-09 | 保定东禾新型材料科技有限公司 | Waste gas recovery device in plastic product granulating extrusion process |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US700858A (en) * | 1901-04-18 | 1902-05-27 | Richard H Thomas | Air purifying and cooling apparatus. |
US709763A (en) * | 1902-06-07 | 1902-09-23 | Friedrich Grumbacher | Apparatus for cooling and filtering compressed air. |
US851520A (en) * | 1904-07-14 | 1907-04-23 | Woolsey Mca Johnson | Metallurgical condenser. |
US997762A (en) * | 1910-09-26 | 1911-07-11 | Patrick J Derrig | Combined dust-arrester and gas-cooler. |
US2271401A (en) * | 1939-01-07 | 1942-01-27 | Carrier Engineering Co Ltd | Apparatus for filtering or cleaning air or other gases |
US2925144A (en) * | 1955-02-09 | 1960-02-16 | Kloeckner Humboldt Deutz Ag | Apparatus for separating dust from gas, particularly hot gas |
DE1167317B (en) * | 1960-01-13 | 1964-04-09 | Knapsack Ag | Method and device for drying and firing moldings consisting of rock phosphates |
CH472364A (en) * | 1966-12-22 | 1969-05-15 | Geigy Ag J R | Process for the preparation of a new polycyclic amine |
US3396952A (en) * | 1967-03-10 | 1968-08-13 | Allis Chalmers Mfg Co | Apparatus and process for producing calcined phosphate flakes |
SE7309576L (en) * | 1973-07-06 | 1975-01-07 | Seco Tools Ab | |
DE2756992C2 (en) * | 1977-12-21 | 1979-04-05 | Davy Powergas Gmbh, 5000 Koeln | Device for condensation of sulfur vapor and separation of sulfur droplets |
US4242111A (en) * | 1979-03-16 | 1980-12-30 | Andrew Arends | Compressed air dryer |
DE3219673C1 (en) * | 1982-05-26 | 1984-01-19 | Santrade Ltd., 6002 Luzern | Apparatus for the production of solidified melts |
DE8405907U1 (en) * | 1984-02-27 | 1985-04-25 | Allermann, Martin, Dipl.-Ing. | DEVICE FOR DESULFURING HOT, POLLUTANT-BASED EXHAUST GAS |
DE3444665A1 (en) * | 1984-02-27 | 1986-06-26 | Martin Dipl.-Ing. 2733 Tarmstedt Allermann | Equipment for the desulphurisation of hot, pollutant-containing waste gases |
CA1258036A (en) * | 1984-11-28 | 1989-08-01 | Johannes Bakker | Filter screen for the air outlet of an apparatus for producing solid sulphur particles |
US4863645A (en) * | 1987-09-29 | 1989-09-05 | Union Oil Company Of California | Apparatus and process for producing particulate sulfur |
DE3926105A1 (en) * | 1989-08-08 | 1991-02-14 | Metallgesellschaft Ag | DEVICE FOR CATALYTICALLY CONVERTING AN H (ARROW DOWN) 2 (ARROW DOWN) S AND SO (ARROW DOWN) 2 (ARROW DOWN) CONTAINING GAS MIXTURE |
DE4013405C2 (en) * | 1990-04-26 | 1995-08-31 | Kaiser Geb | Device for producing granules or pastilles from flowable material |
-
1993
- 1993-07-07 DE DE4322628A patent/DE4322628C1/en not_active Expired - Fee Related
-
1994
- 1994-06-28 JP JP7503799A patent/JPH08504130A/en active Pending
- 1994-06-28 CA CA002143843A patent/CA2143843A1/en not_active Abandoned
- 1994-06-28 RU RU9495108235A patent/RU2089277C1/en active
- 1994-06-28 US US08/381,964 patent/US5569315A/en not_active Expired - Fee Related
- 1994-06-28 KR KR1019950700589A patent/KR950702860A/en active IP Right Grant
- 1994-06-28 CN CN94190475A patent/CN1111902A/en active Pending
- 1994-06-28 WO PCT/EP1994/002094 patent/WO1995001858A1/en not_active Application Discontinuation
- 1994-06-28 EP EP94923691A patent/EP0662030A1/en not_active Withdrawn
- 1994-06-28 AU AU73837/94A patent/AU7383794A/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO9501858A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN1111902A (en) | 1995-11-15 |
JPH08504130A (en) | 1996-05-07 |
RU2089277C1 (en) | 1997-09-10 |
US5569315A (en) | 1996-10-29 |
AU7383794A (en) | 1995-02-06 |
RU95108235A (en) | 1997-01-20 |
CA2143843A1 (en) | 1995-01-19 |
KR950702860A (en) | 1995-08-23 |
DE4322628C1 (en) | 1994-11-03 |
WO1995001858A1 (en) | 1995-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0662030A1 (en) | Process and device for purifying the outgoing air from molten mass solidifying plants | |
DE69932300T2 (en) | Apparatus and method for forming fiber filter media and filter units | |
DE3043428C2 (en) | Process for the production of a granulate and device for carrying out the process | |
CH631648A5 (en) | METHOD AND DEVICE FOR CRYSTALLIZING PLASTIC GRANULES. | |
EP0166200B1 (en) | Apparatus for the production of granules | |
WO2009012892A2 (en) | Device for separating paint overspray | |
EP0134944B1 (en) | Apparatus for obtaining granules | |
AT513566B1 (en) | Process for granulating fusible materials | |
WO2014079984A1 (en) | Free-fall shaft arrangement with double cleaning unit, more particularly for a device for the gluing of particles during production of board | |
DE19545419C2 (en) | Device for the provision, orientation and organization of workpieces | |
DE4332686C1 (en) | Process and apparatus for purifying the exhaust air of plants for solidifying melts | |
EP0632962B1 (en) | Apparatus to remove the coating deposited on the back bottom of articles | |
EP0081166A1 (en) | Device for spray treatment, especially for spray-painting articles | |
DE2941802A1 (en) | Granulation of molten polymer material - by melting material in inner stationary drum, and flowing it out of holes in outer rotating drum | |
EP3274070B1 (en) | Device and method for separating particles from an air flow | |
DE4334405C2 (en) | Transport device | |
EP0382742A1 (en) | Process of guiding a stream of bulk solids in at least one circulating bed reactor and reactor installation for realising the process. | |
DE19920074A1 (en) | Device for separating and removing material to be separated from a flowing liquid | |
DE3687513T2 (en) | FILTER APPARATUS. | |
EP0476300B1 (en) | Process and device for adsorption or chemisorption of gaseous components of a gas stream | |
EP0211977A1 (en) | Process and apparatus for preheating raw material for glass production, especially cullet | |
EP0321914A1 (en) | Process and device for the separation of dust from hot gases | |
DD211938A5 (en) | METHOD AND DEVICE FOR DRYING CERAMIC FORMULAS | |
DE2654914B2 (en) | Plant for the production of granules | |
WO1995030466A1 (en) | Process and device for the separation of substances by crystallization of molten material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950128 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE FR GB GR IT LI NL |
|
RBV | Designated contracting states (corrected) |
Designated state(s): BE CH DE FR GB GR IT LI NL |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19980103 |