EP0662019A4 - Verfahren zur Herstellung eines Keramik-Metallverbundkörpers. - Google Patents
Verfahren zur Herstellung eines Keramik-Metallverbundkörpers.Info
- Publication number
- EP0662019A4 EP0662019A4 EP93922240A EP93922240A EP0662019A4 EP 0662019 A4 EP0662019 A4 EP 0662019A4 EP 93922240 A EP93922240 A EP 93922240A EP 93922240 A EP93922240 A EP 93922240A EP 0662019 A4 EP0662019 A4 EP 0662019A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- ceramic
- metal
- recited
- porosity
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 130
- 238000000034 method Methods 0.000 title claims abstract description 80
- 239000002905 metal composite material Substances 0.000 title claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 119
- 239000002184 metal Substances 0.000 claims abstract description 119
- 230000008569 process Effects 0.000 claims abstract description 32
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 47
- 238000005245 sintering Methods 0.000 claims description 39
- 239000002131 composite material Substances 0.000 claims description 36
- 239000000843 powder Substances 0.000 claims description 36
- 239000011148 porous material Substances 0.000 claims description 34
- 239000010949 copper Substances 0.000 claims description 25
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 23
- 229910052802 copper Inorganic materials 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 20
- 239000012808 vapor phase Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 16
- 229910000505 Al2TiO5 Inorganic materials 0.000 claims description 13
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 claims description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 11
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 11
- 239000012495 reaction gas Substances 0.000 claims description 10
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 9
- 239000005751 Copper oxide Substances 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 229910000431 copper oxide Inorganic materials 0.000 claims description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 239000002019 doping agent Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 229910033181 TiB2 Inorganic materials 0.000 claims description 3
- 238000005219 brazing Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 2
- 239000011159 matrix material Substances 0.000 abstract description 26
- 239000011800 void material Substances 0.000 abstract description 10
- 230000009471 action Effects 0.000 abstract description 8
- 230000008595 infiltration Effects 0.000 description 24
- 238000001764 infiltration Methods 0.000 description 24
- 239000002245 particle Substances 0.000 description 13
- 229910010293 ceramic material Inorganic materials 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- 239000012071 phase Substances 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000009716 squeeze casting Methods 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000009731 Lanxide process Methods 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 2
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910000907 nickel aluminide Inorganic materials 0.000 description 2
- 239000006259 organic additive Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004814 ceramic processing Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 1
- 239000011225 non-oxide ceramic Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 238000001778 solid-state sintering Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/026—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D29/00—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
- B01D29/11—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
- B01D29/111—Making filtering elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D29/00—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
- B01D29/11—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
- B01D29/31—Self-supporting filtering elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
- B01D63/066—Tubular membrane modules with a porous block having membrane coated passages
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/001—Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/5127—Cu, e.g. Cu-CuO eutectic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/88—Metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/89—Coating or impregnation for obtaining at least two superposed coatings having different compositions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1005—Pretreatment of the non-metallic additives
- C22C1/1015—Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1057—Reactive infiltration
- C22C1/1063—Gas reaction, e.g. lanxide
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/12—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F3/00—Pistons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
- H01L21/486—Via connections through the substrate with or without pins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49827—Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5384—Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/4038—Through-connections; Vertical interconnect access [VIA] connections
- H05K3/4053—Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
- H05K3/4061—Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in inorganic insulating substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/11—Clays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/112—Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
- B01D2253/1124—Metal oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/25—Coated, impregnated or composite adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/308—Pore size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/311—Porosity, e.g. pore volume
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/123—Metallic interlayers based on iron group metals, e.g. steel
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/124—Metallic interlayers based on copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/345—Refractory metal oxides
- C04B2237/346—Titania or titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/365—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/366—Aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/368—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/405—Iron metal group, e.g. Co or Ni
- C04B2237/406—Iron, e.g. steel
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/61—Joining two substrates of which at least one is porous by infiltrating the porous substrate with a liquid, such as a molten metal, causing bonding of the two substrates, e.g. joining two porous carbon substrates by infiltrating with molten silicon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0403—Refractory metals, e.g. V, W
- F05C2201/0415—Zirconium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2203/00—Non-metallic inorganic materials
- F05C2203/08—Ceramics; Oxides
- F05C2203/0865—Oxide ceramics
- F05C2203/0895—Zirconium oxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2253/00—Other material characteristics; Treatment of material
- F05C2253/16—Fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0116—Porous, e.g. foam
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/12—Using specific substances
- H05K2203/128—Molten metals, e.g. casting thereof, or melting by heating and excluding molten solder
Definitions
- This invention relates to ceramic-metal composite materials, or cermets, and methods of producing the same. More particularly, the invention relates to an efficient method for producing ceramic-metal composites having substantially continuous metal and ceramic phases which permits a wide variety of metals and ceramic matrix materials to be used and a wide variety of products to be formed.
- cermets have been obtained in one of two ways; (1) by heating mixtures of ceramic and metal materials to obtain a metal matrix having a discrete ceramic phase, or (2) as disclosed in U.S. Patent No. 2,612,443 by Goetzel at al., issued September 30, 1952, by forming green body substrates of either fibers, whiskers or particles through pressing, injection molding, casting or other techniques, sintering the green body and infiltrating the porous body with a molten metal through use of squeeze- casting or other means of applying pressure to force the molten metal into the voids within the body.
- Vapor phase sintering is also a known method for increasing neck growth between grains without densification in particulate green bodies. See, for example, U.S. Patent No. 4,108,672 by Klug et al., issued September 22, 1978. Until recently however, vapor phase sintering had not been used as a means of controlling the total porosity and average pore size of ceramics. See Readey et al., "Effects of Vapor Transport on Microstructure Development", Ceramic Microstructures f pgs. 485-496 (1987) and Readey, "Vapor Transport and Sintering", in Ceramic Transactions, Vol.7, pgs.
- the difficulties with the LANXIDE processes and similar processes are that only very limited control of porosity is possible.
- the remaining parent metal ust be removed from the three-dimensional interconnecting pore system of the preform.
- pressure must be applied to the molten metal infiltrant or an infiltration enhancer must be used which can alter the composition of the composite.
- the LANXIDE technique of growing an oxidation layer from a molten parent metal by application of oxidation enhancing dopants has some utility, however, production of intricate geometric shapes utilizing the LANXIDE process is extremely difficult.
- the present invention is directed to a process for forming a ceramic-metal composite.
- the process includes the steps of contacting a porous ceramic body having a continuous 3-dimensional pore structure with a molten metal such that substantially all of the void space in the ceramic is filled with metal.
- the ceramic matrix is formed by an enhanced vapor phase sintering process. This process advantageously permits independent control over the total porosity and pore size of the ceramic material.
- the ceramic matrix comprises alumina and the infiltrating metal comprises copper.
- the present invention is also directed to a method for making a ceramic-metal composite, comprising the steps of forming an alumina ceramic body having substantially interconnected porosity in the range of from about 10 percent to about 80 percent, heating a metal comprising copper metal to substantially melt the copper metal and contacting the alumina ceramic body with the heated metal in a vacuum to infiltrate the metal into the alumina ceramic.
- the alumina ceramic body is a filter element and the copper comprising metal infiltrates a portion of the filter element.
- the present invention is also directed to a method for sealing the end of a ceramic filter element, comprising the steps of contacting the filter element with a molten metal to infiltrate the metal into a portion of the filter element and cooling the metal to form a filter element having a composite portion.
- the method can also include the step of brazing a seal ring to the composite portion.
- the present invention is also directed to a method for making a ceramic-metal gradient composite, comprising the steps of forming a ceramic body having at least two portions wherein at least one of the portions has a different porosity than the other portion, heating a metal to substantially melt the metal and contacting a porous portion of the ceramic body with the heated metal to infiltrate the metal into the ceramic.
- the ceramic comprises aluminum titanate.
- the present invention also includes a process for producing a sintered ceramic body, comprising the steps of forming a green body comprising alumina powder, sintering the green body at a temperature of at least about 1350°C in the presence of a reaction gas to promote the formation of an aluminum-containing transport gas species, wherein the sintered ceramic body has a total porosity of from about 10 percent to about 80 percent and a substantially continuous and interconnected pore structure.
- the composites formed according to the present invention are useful in many applications, particularly those requiring high-temperature creep and toughness.
- Fig. 1 is a stress-strain diagram comparing a composite produced according to the present invention with the component materials of the composite.
- the present invention is directed to a method for making a ceramic-metal composite material with interconnecting and substantially continuous ceramic and metal phases.
- the composite is formed by infiltrating molten metal into a porous ceramic body having a substantially interconnected continuous pore structure.
- the ceramic is formed by sintering a green body of ceramic powder using an enhanced vapor phase sintering process. Vapor phase sintering permits the total porosity and the average pore size of the porous ceramic body to be carefully and independently controlled.
- the ceramic matrix material can be chosen from any of a number of metal oxides, carbides, nitrides or the like.
- the ceramic matrix can comprise alumina (A1 2 0 3 ) , titania (Ti0 2 ) , zinc oxide (ZnO) , zirconia (Zr0 2 ) , iron oxide (Fe 2 0 3 ) , magnesia (MgO) , silica (Si0 2 ) , or any other metal oxide.
- non-oxide ceramics such as silicon carbide (SiC) , silicon nitride (Si 3 N A ) , aluminum nitride (A1N) or titanium diboride (TiB 2 ) can be used as the ceramic matrix material.
- Preferred matrix materials include alumina, aluminum titanate (Al 2 Ti0 5 ) , silicon carbide and silicon nitride.
- the infiltrant metal can be selected from any metal whose melting point is below the melting point of the ceramic matrix material. For example, copper (Cu) , nickel (Ni) , aluminum (Al) or alloys thereof can be used for the metallic penetrating phase.
- Preferred metals include copper, iron (Fe) , stainless steel, nickel, titanium (Ti) , aluminum, magnesium (Mg) , brass (Cu-Zn) , bronze (Cu-Sn) , and nickel aluminide (NiAl) . Further, high strength super alloys and other high-grade metals can advantageously be selected depending on the intended application of the ceramic-metal composite material.
- the ceramic matrix material is a sintered, coherent body and should have an open and substantially continuous pore structure to facilitate the infiltration of molten metal into the matrix without the use of substantial overpressure.
- Porous ceramics can be formed in a number of ways known to those skilled in the art of ceramic processing.
- a green body comprising a ceramic powder is formed and is sintered in an enhanced vapor phase sintering process to form a porous body that is particularly useful as the ceramic matrix material.
- the porous ceramic body has a substantially continuous and interconnected pore structure.
- the total porosity and average pore size of the sintered ceramic matrix can be controlled by controlling the porosity of the green body and the sintering conditions.
- Vapor phase sintering is a convenient process to produce porous ceramics having controlled porosities and pore sizes.
- the porous ceramics form suitable matrices for infiltration with molten metals to produce ceramic- metal composites having interpenetrating three-dimensional structures.
- a green body is preferably formed comprising ceramic powder.
- the powder has an average particle size of from about 0.1 microns to about 2 microns. It is not believed that the starting particle size is particularly critical to the practice of the present invention, however, a smaller average particle size can be used to produce a sintered body having a lower average pore size.
- the average particle size of the powder can advantageously be reduced to a desired size by comminution processes such as by using a ball mill or an attrition mill.
- a ball mill is a hollow rotating cylinder or conical cylinder partially filled with hard, wear-resistant media that impacts the powder to reduce the particle size of the powder.
- An attrition mill is a stirred-media mill wherein a central shaft with arms rotates to mix the particles with hard spherical media.
- the degree of reduction in particle size can be controlled by controlling the amount of time in the mill. Liquids can also be added to the mill charge to assist in the comminution process and control agglomeration of the particles.
- agglomerates of the powder may be desirable to form agglomerates of the powder as a means of controlling the porosity of a green body formed from the powder.
- aluminum hydroxide (Al(OH) 3 ) particles having a diameter of, for example, about 50 micrometers can be calcined to form alumina agglomerates that have a porosity of about 50 percent.
- Al(OH) 3 aluminum hydroxide particles having a diameter of, for example, about 50 micrometers
- all percentages refer to volume percent, unless otherwise noted.
- the powder can be formed into a green body.
- the term green body refers to an unsintered cohesive body comprising ceramic powder.
- the powder can be uniaxially pressed at a pressure of from about 48 MPa to about 69 MPa (7 ksi to 10 ksi) or isostatically pressed at similar pressures.
- forming additives can be used to improve the mechanical strength of the green body formed by pressing the ceramic powder.
- Additives can include binders such as polyvinyl alcohol, plasticizers such as polyethylene glycol, and lubricants such as aluminum stearate.
- one method for controlling the total porosity of the sintered ceramic matrix is to control the total porosity of the green body. This can be done, for example, by varying the pressing pressure.
- green bodies formed by uniaxially pressing finely-divided ceramic powder have porosities ranging from about 50 percent to about 65 percent. The total porosity can be increased by using agglomerated powder, as discussed hereinabove.
- the agglomerates having a porosity of about 50 percent are pressed into an arrangement yielding a void space between agglomerates of 50 percent to 65 percent.
- the compact may have a total porosity of from about 70 percent to about 80 percent.
- the green body After forming the green body, the green body can be sintered to obtain a sintered ceramic body. If organic binders or other organic materials are used in the green body forming process, these additives can advantageously be removed prior to fully sintering the ceramic powder. This is commonly referred to as "binder burnout.”
- the green body can be placed in a furnace and slowly heated to a temperature of, for example, about 600°C to volatilize organic additives. Since these organic additives comprise a large amount of carbon, it is preferable to volatilize these materials under a flowing gas such as oxygen.
- the green body is presintered.
- Presintering is a convenient and economical method of controlling the total porosity of the final sintered body. Presintering conveniently lowers the porosity of the green body to a range that is desirable for the sintered body, since the vapor phase sintering technique does not substantially affect the total porosity of the sintered body.
- the presintering step is done at a temperature that is slightly below the normal solid-state sintering temperature of the ceramic material.
- alumina can be presintered at a temperature of from about 1300°C to about 1600"C, more preferably from about 1450°C to about 1550°C.
- the sintering atmosphere is not critical and, therefore, air is preferred.
- the presintering step preferably produces a presintered body having a total porosity of from about 10 percent to about 50 percent.
- the total porosity can be controlled by varying the time at the presintering temperature, such as from about 1 minute to about 300 minutes.
- the presintering step can determine the total porosity of the final sintered body, however, presintering may not be necessary if the green body has the desired total porosity for the final sintered product.
- the presintered or green ceramic body is then sintered to form a porous sintered ceramic body.
- the ceramic body is sintered in an enhanced vapor phase sintering mode in order to maintain control over the total porosity and average pore size of the sintered body.
- Enhanced vapor phase sintering has been studied for some ceramic materials.
- the ceramic is sintered in the presence of a volatile transport gas at a high partial pressure.
- the partial pressure of the transport gas is at least about 10 "4 atm at the sintering temperature and more preferably at least about 10 "3 atm.
- the vapor phase sintering process may be enhanced by the presence of a reaction gas, particularly a gas comprising a halide, in the sintering atmosphere.
- vapor phase sintering of magnesia can be enhanced by the addition of hydrogen chloride (HC1) gas:
- an alumina-containing body is sintered in the presence of hydrogen chloride gas (HC1) , thereby promoting the reaction:
- alumina may be sintered in the presence of hydrogen fluoride gas (HF) in which case the vapor phase transport occurs primarily via the process:
- HF hydrogen fluoride gas
- the reaction gas e.g., HC1 or HF
- the reaction gas can be added to the sintering furnace directly in the form of commercially available bottled gas.
- the gas should be dry and contain minimal residual moisture.
- Residual water (H 2 0) can drive the reaction back to, for example, alumina formation and inhibit formation of the vapor transport species.
- the partial pressure of the reaction gas is at least about 0.25 atm and is more preferably from about 0.4 atm to about 1 atm.
- the gas may be formed in-situ within the sintering furnace.
- aluminum fluoride (A1F 3 ) powder can be placed in a closed furnace. As the furnace is heated, hydrogen gas is added to the furnace to promote an in-situ reaction to form hydrogen fluoride gas over the alumina. This procedure is particularly advantageous when dangerous gasses such as hydrogen fluoride are used.
- Sintering temperatures can vary depending on the ceramic material being sintered
- alumina powder is preferably sintered at a temperature from about 1400°C to about 1600°C to form a sintered ceramic body.
- Iron oxide may be sintered at 1300°C or less.
- the pore size and pore size distribution can be controlled by adjusting the amount of time that the body is sintered at the sintering temperatures. Table 1 lists the mean pore diameter for alumina compacts sintered at 1600°C for varying amounts of time under 1 atm HC1. For each sample, the porosity of the sample remained at about 50 percent regardless of the sintering time.
- the ceramic body may be sintered in any system in which the partial pressure of the reaction gas, and hence the transporting gas can be controlled.
- a simple tube furnace having a sealed end with an inlet for the reaction gas may be provided.
- the sintered bodies formed according to the present invention may have a thin (e.g., about 1 grain thick), uniform skin of dense ceramic on their surface.
- the formation of this skin can be advantageous when the sintered bodies are used in filter applications or if molten metal is infiltrated into the pores to form a composite.
- the composite would thus have a thin layer of ceramic on the surface and a base comprising a thermally or electrically conductive metal.
- Such a composite would be particularly useful as a substrate for electronic applications.
- the density of the skin appears best at higher sintering temperatures, such as at about 1600°C.
- molten metal can be infiltrated into the void space of the ceramic matrix.
- the ceramic is brought into contact with the molten metal and infiltrates the ceramic by capillary action without the assistance of substantial pressure.
- the molten metal enters the pore structure of the ceramic and fills substantially all of the void space.
- the use of infiltration aids that can alter the composition and affect the properties of the composite are not used.
- the ceramic matrix material In order to fill substantially all of the void space in the ceramic matrix, it is necessary that the ceramic matrix material have a three dimensional, interconnecting pore structure.
- Capillary action will pull the metal into the ceramic and thereby fill substantially all of the void space.
- the ideal pore size will vary depending on the ceramic matrix material and metal being infiltrated, it is generally desirable that the average pore size be from about 1 micrometers to about 10 micrometers.
- One way to do this is to coat the ceramic with a coating that is more easily wetted by the molten metal. For instance, the surfaces of a magnesia or alumina ceramic can be modified by vapor phase coating the ceramic with nickel oxide. Similarly, the surface of an alumina ceramic can be modified by vapor phase coating the ceramic with copper oxide. The result of the above surface modifications is that the interfacial free energy of the ceramic is reduced and the metal can penetrate the pores more easily.
- molten copper can be doped with from about 2 weight percent to about 5 weight percent oxygen to form copper oxide (Cu 2 0) or copper can be doped with from about 4 atomic percent to about 8 atomic percent titanium (Ti) . Doping reduces the interfacial free energy between the metal and the ceramic.
- the molten metal will wet the ceramic and infiltrate substantially all of the void space of the ceramic through capillary action.
- the metal infiltration step is performed in a vacuum atmosphere.
- vacuum atmosphere refers to an atmospheric pressure of about 10 millitorr or less. The evacuation of air from the ceramic void space reduces the likelihood that air pockets will form in the metal infrastructure.
- the temperature at which infiltration takes place is dependent on the ceramic and molten metal used.
- an alumina * ceramic with a copper oxide coating and a 3 micrometer average pore size is infiltrated with copper doped with about 3 weight percent oxygen at about 1275°C.
- the total time required for infiltration is very short and can occur in less than about 1 minute in most cases.
- the ceramic-metal composites produced by the present invention have relatively high strengths and toughness.
- a composite comprising about 65 percent alumina and about 35 percent copper/copper oxide.
- the composite has a strength of at least about 110 ksi.
- the sintered ceramic matrix material has a porosity gradient. That is, the porous ceramic matrix has regions of different porosity. For example, one portion of the ceramic matrix can be substantially 100 percent dense while another portion can have a high porosity, for example about 60 percent or greater. When the porous end is contacted with molten metal, the metal will infiltrate throughout the ceramic porosity, resulting in an article having a dense ceramic portion and a composite portion.
- the porosity gradient may be a gradual through the material or it may include one or more abrupt changes in porosity, such as a ceramic matrix formed by layers of material having different porosity characteristics.
- the advantages of a gradient composite material can include the alleviation of the effects of an abrupt thermal expansion gradient, the ability to attach the composite to a variety of materials and the ability to have an article with a dense ceramic surface intimately attached to a composite surface.
- Ceramic filters comprise long cylindrical bodies of porous ceramic, such as alumina.
- the cylinders have a plurality of channels parallel to the cylindrical axis for receiving the material (i.e. a liquid) to be filtered. Since the opposite end of the cylinder is sealed or recirculates the liquid to the front end, the liquid is forced through the porous ceramic and is thereby filtered.
- An example of such a filter is illustrated in U.S. Patent No. 4,069,157 by Hoover et al., which is incorporated herein by reference in its entirety.
- the end of the filter is infiltrated with metal to assist in sealing the filter.
- the metal can be selected from copper or a reactive braze such as a copper/silver/titanium alloy.
- the resulting composite can be nickel coated to promote adhesion to a stainless steel ring using, for example, a Cu/Ag braze.
- a reactive braze no brazing material is necessary and the stainless steel ring can be adhered to the filter by heating the components while in contact.
- Another application of the present invention is in the area of engine component liners, such as exhaust port liners for diesel engines. See, for example, the port liners described in U.S. Patent No. 5,066,626 by Fukao et al. , which is incorporated herein by reference in its entirety.
- Aluminum titanate is a preferred ceramic material due to its resistance to corrosion and its low thermal expansion characteristics.
- One of the problems associated with these port liners is that a compliant layer between the metal (e.g. aluminum or cast iron) and the aluminum titanate is necessary to absorb stresses resulting from the contracting metal.
- the problem can be reduced by infiltrating an aluminum titanate material having a gradient porosity.
- the metal composite gradient will assist in alleviating the stresses caused by the contraction of the metal.
- aluminum could be infiltrated into the aluminum titanate porous body.
- the alumina powder is formed into a green
- the green body is then presintered in air at a temperature of about 1500°C for about 3 minutes.
- the presintered body has a porosity of about 35 percent.
- the presintered body is then placed in a sintering furnace that comprises an alumina tube.
- the temperature of the furnace is raised as the furnace is evacuated.
- the furnace is purged with argon gas to remove impurities in the furnace atmosphere.
- the furnace is filled with HCl gas having a pressure of about 1 atm.
- the alumina body is then sintered under HCl gas at a temperature of about 1600°C for about 80 minutes.
- the sintered alumina ceramic has a total porosity of about 35 percent and has an average pore size of about 3 micrometers.
- the alumina forms a continuous three- dimensional structure and there is substantially no closed porosity.
- the alumina ceramic is contacted with a molten copper bath at a temperature of about 1275°C.
- the bottom surface of the alumina ceramic is contacted with the molten metal and the molten metal infiltrates through the alumina matrix via capillary action.
- the composite is then cooled.
- the composite comprises about 65 percent of a substantially continuous alumina phase and about 35 percent copper/copper oxide.
- the stress strain diagram for the sample is illustrated in Figure 1.
- the composite has a strength of about 112 ksi.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94697292A | 1992-09-17 | 1992-09-17 | |
US946972 | 1992-09-17 | ||
US94742792A | 1992-09-18 | 1992-09-18 | |
US947427 | 1992-09-18 | ||
PCT/US1993/008835 WO1994006585A1 (en) | 1992-09-17 | 1993-09-17 | Method for making a ceramic metal composite |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0662019A1 EP0662019A1 (de) | 1995-07-12 |
EP0662019A4 true EP0662019A4 (de) | 1998-07-15 |
Family
ID=27130244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93922240A Ceased EP0662019A4 (de) | 1992-09-17 | 1993-09-17 | Verfahren zur Herstellung eines Keramik-Metallverbundkörpers. |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0662019A4 (de) |
JP (1) | JPH08501500A (de) |
AU (1) | AU5131293A (de) |
BR (1) | BR9307067A (de) |
CA (1) | CA2145161A1 (de) |
WO (1) | WO1994006585A1 (de) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6247519B1 (en) | 1999-07-19 | 2001-06-19 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources | Preform for magnesium metal matrix composites |
US6193915B1 (en) | 1999-09-03 | 2001-02-27 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources | Process for fabricating low volume fraction metal matrix preforms |
ES2178912B2 (es) * | 2000-02-01 | 2004-06-16 | Faiveley Española, S.A. | Procedimiento de obtencion de una superficie antideslizante. |
DE10013378A1 (de) * | 2000-03-17 | 2001-10-04 | Dornier Gmbh | Poröse Keramik |
DE10164975B4 (de) * | 2001-05-11 | 2009-08-20 | Shw Casting Technologies Gmbh | Bearbeitungskörper mit eingegossenem Hartstoffkörper |
AU2005327164B2 (en) * | 2004-11-30 | 2010-12-02 | The Regents Of The University Of California | Braze system with matched coefficients of thermal expansion |
DE102006051200A1 (de) | 2006-10-30 | 2008-05-08 | Robert Bosch Gmbh | Verfahren zur Herstellung eines Körpers aus Metall-Keramik-Verbundwerkstoffen |
US8147980B2 (en) | 2006-11-01 | 2012-04-03 | Aia Engineering, Ltd. | Wear-resistant metal matrix ceramic composite parts and methods of manufacturing thereof |
DE102008005529A1 (de) * | 2008-01-22 | 2009-07-23 | Robert Bosch Gmbh | Kühlkörper und Verfahren zur Herstellung eines Kühlkörpers |
DE102008014355A1 (de) | 2008-03-14 | 2009-09-17 | Esk Ceramics Gmbh & Co. Kg | Verbundwerkstoff auf Basis von Übergangsmetalldiboriden, Verfahren zu dessen Herstellung und dessen Verwendung |
CN102962434B (zh) * | 2012-10-31 | 2014-09-03 | 西安交通大学 | 一种碳化硅/铜硅合金双连续相复合材料及其制备方法 |
TWI841524B (zh) * | 2017-04-17 | 2024-05-11 | 美商維蘇威美國公司 | 多孔耐火澆鑄材料、其用途及製造 |
CN112338169A (zh) * | 2019-08-09 | 2021-02-09 | Oppo广东移动通信有限公司 | 结构件、结构件的制造方法和电子设备 |
WO2021111513A1 (ja) * | 2019-12-03 | 2021-06-10 | 日本碍子株式会社 | 接合基板及び接合基板の製造方法 |
CN113058343B (zh) * | 2021-04-19 | 2022-03-29 | 深圳市华净科技有限公司 | 一种去除气态污染物用的过滤器 |
JP7197946B1 (ja) * | 2022-01-14 | 2022-12-28 | アドバンスコンポジット株式会社 | 金属基複合材料の製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2109254A5 (en) * | 1970-10-08 | 1972-05-26 | Inst Materia | Cermet prodn - by melt impregnation of a preheated porous ceramic body |
EP0427658A2 (de) * | 1989-11-07 | 1991-05-15 | Lanxide Technology Company, Lp | Verfahren zur Herstellung von Verbundwerkstoffkörpern mit Metallmatix durch ein Verfahren mit selbsterzeugtem Vakuum und Produkte daraus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3868267A (en) * | 1972-11-09 | 1975-02-25 | Us Army | Method of making gradient ceramic-metal material |
JPS5235043B2 (de) * | 1973-01-24 | 1977-09-07 | ||
JPS539254B2 (de) * | 1973-03-26 | 1978-04-04 | ||
US4164424A (en) * | 1977-10-06 | 1979-08-14 | General Electric Company | Alumina core having a high degree of porosity and crushability characteristics |
US4849266A (en) * | 1987-11-03 | 1989-07-18 | Lanxide Technology Company, Lp | Compliant layer |
US5040588A (en) * | 1988-11-10 | 1991-08-20 | Lanxide Technology Company, Lp | Methods for forming macrocomposite bodies and macrocomposite bodies produced thereby |
-
1993
- 1993-09-17 EP EP93922240A patent/EP0662019A4/de not_active Ceased
- 1993-09-17 CA CA002145161A patent/CA2145161A1/en not_active Abandoned
- 1993-09-17 WO PCT/US1993/008835 patent/WO1994006585A1/en not_active Application Discontinuation
- 1993-09-17 AU AU51312/93A patent/AU5131293A/en not_active Abandoned
- 1993-09-17 BR BR9307067A patent/BR9307067A/pt not_active Application Discontinuation
- 1993-09-17 JP JP6508357A patent/JPH08501500A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2109254A5 (en) * | 1970-10-08 | 1972-05-26 | Inst Materia | Cermet prodn - by melt impregnation of a preheated porous ceramic body |
EP0427658A2 (de) * | 1989-11-07 | 1991-05-15 | Lanxide Technology Company, Lp | Verfahren zur Herstellung von Verbundwerkstoffkörpern mit Metallmatix durch ein Verfahren mit selbsterzeugtem Vakuum und Produkte daraus |
Non-Patent Citations (2)
Title |
---|
C.G.GOETZEL: "Infiltration", METALS HANDBOOK VOL.7: POWDER METALLURGY, 1984, OHIO US, pages 552 - 566, XP002064712 * |
See also references of WO9406585A1 * |
Also Published As
Publication number | Publication date |
---|---|
CA2145161A1 (en) | 1994-03-31 |
EP0662019A1 (de) | 1995-07-12 |
WO1994006585A1 (en) | 1994-03-31 |
JPH08501500A (ja) | 1996-02-20 |
AU5131293A (en) | 1994-04-12 |
BR9307067A (pt) | 1999-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5735332A (en) | Method for making a ceramic metal composite | |
US5525374A (en) | Method for making ceramic-metal gradient composites | |
US5626914A (en) | Ceramic-metal composites | |
US6025065A (en) | Production of an aluminide containing ceramic moulding | |
Bocanegra-Bernal | Hot isostatic pressing (HIP) technology and its applications to metals and ceramics | |
Dickerson et al. | Near net-shape, ultra-high melting, recession-resistant ZrC/W-based rocket nozzle liners via the displacive compensation of porosity (DCP) method | |
EP0339894B1 (de) | Verfahren zur Herstellung von zusammengesetzten Formkörpern mit komplexer innerer Geometrie | |
EP0662019A1 (de) | Verfahren zur Herstellung eines Keramik-Metallverbundkörpers | |
US5503122A (en) | Engine components including ceramic-metal composites | |
US6315945B1 (en) | Method to form dense complex shaped articles | |
Dickerson et al. | Dense, near net‐shaped, carbide/refractory metal composites at modest temperatures by the displacive compensation of porosity (DCP) method | |
US5565156A (en) | Method of making a ceramic body | |
Plucknett et al. | Melt-infiltration processing of TiC/Ni3Al composites | |
US5676907A (en) | Method for making near net shape ceramic-metal composites | |
EP0753101B1 (de) | Maschinenunterteile enthaltend keramik-metallgemisch | |
Ritland et al. | Alumina‐Copper Composites by Vapor Phase Sintering | |
US6605556B1 (en) | High temperature composite material formed from nanostructured powders | |
US6451385B1 (en) | pressure infiltration for production of composites | |
US5441764A (en) | Method of manufacturing a compound body and the resulting body | |
Shinoda et al. | Development of creep-resistant tungsten carbide copper cemented carbide | |
WO1992011107A1 (en) | Method of manufacturing an object of a powdered material by isostatic pressing | |
US5120684A (en) | Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby | |
Pan et al. | Spontaneous infiltration of iron silicides into silicon carbide powder preforms | |
WO1992000939A2 (en) | Reduced metal content ceramic composite bodies | |
US5264401A (en) | Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950413 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COORS CERAMICS COMPANY |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: READEY, DENNIS W. Inventor name: RITLAND, MARCUS A. |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19980602 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19980921 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20020929 |