EP0658919B1 - Photovervielfacher - Google Patents

Photovervielfacher Download PDF

Info

Publication number
EP0658919B1
EP0658919B1 EP19940309210 EP94309210A EP0658919B1 EP 0658919 B1 EP0658919 B1 EP 0658919B1 EP 19940309210 EP19940309210 EP 19940309210 EP 94309210 A EP94309210 A EP 94309210A EP 0658919 B1 EP0658919 B1 EP 0658919B1
Authority
EP
European Patent Office
Prior art keywords
photocathode
closed container
conductive film
transparent conductive
photomultiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19940309210
Other languages
English (en)
French (fr)
Other versions
EP0658919A2 (de
EP0658919A3 (de
Inventor
Kimitsugu Nakamura
Hiroyuki Hanai
Takeo Hashimoto
Shinji Suzuki
Yasushi Watase
Masumi Tachino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Publication of EP0658919A2 publication Critical patent/EP0658919A2/de
Publication of EP0658919A3 publication Critical patent/EP0658919A3/de
Application granted granted Critical
Publication of EP0658919B1 publication Critical patent/EP0658919B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers

Definitions

  • the invention relates to a side-on type photomultiplier.
  • Fig. 1 is a side view, partly in vertical section, of a conventional side-on type photomultiplier which is generally used
  • Fig.. 2 is a cross-sectional view of the photomultiplier.
  • this photomultiplier light to be measured enters through a side of a glass bulb 1 which is a transparent closed container.
  • the incident light passing through the glass bulb 1 impinges on a photosurface of a reflection type photocathode 2, whereby photoelectrons are emitted from the photosurface.
  • the photoelectrons are then delivered to an electron multiplying unit constituted of plural stages of dynodes 3a, 3b, 3c ⁇ .
  • the electron multiplying unit successively multiplies the photoelectrons, and the multiplied electrons are collected as an output signal in an anode 4.
  • a grid electrode 6 is provided between a light entrance portion 5 of the glass bulb 1 and the photocathode 2 so as to guide the photoelectrons emitted from the photocathode 2 to dynode 3a of the first stage.
  • the potential of the grid electrode 6 is set to be equal to that of the photocathode 2.
  • the grid electrode 6 may be a grid electrode (not shown) constituted in a manner that fine conductive wires are placed in a grid-shaped configuration, or a grid electrode constituted in a manner that one fine conductive wire 6c is helically wound around two supporting rods 6a and 6b as shown in Fig. 1.
  • JP-A-4-292843 discloses a structure in which a conductive portion such as an aluminum-evaporated film is formed on an inside wall surface of a glass bulb except for a light entrance portion. Further, JP-A-4-292843 also discloses that the conductive portion is formed also on the light entrance portion when the conductive portion is transparent. The conductive portion reduces a resistance of the inside wall surface of the glass bulb, so that a time constant formed by stray capacitance and the surface resistance of the inside wall surface of the glass bulb is small. Since the time constant is small, the unstableness of the potential on the inside wall surface of the glass bulb is eliminated.
  • the hysteresis is a phenomenon that an output signal rises not suddenly but gradually to reach stability when an optical pulse enters a photomultiplier.
  • EP-A-573194 describes a photomultiplier comprising a transparent closed container, a reflection type photocathode, an electron multiplying unit and an anode all provided in the closed container together with an electron lens electrode for guiding photoelectrons emitted from the photocathode to the electron multiplying unit.
  • a side-on type photomultiplier comprising: a transparent closed container including a light entrance portion having an inner surface; a reflection type photocathode, provided in said closed container, for emitting photoelectrons in response to light incident thereon transmitted through said light entrance portion; an electron multiplying unit, including plural stages of dynodes, for electron-multiplying said photoelectrons emitted from said reflection type photocathode; an anode for collecting said multiplied electrons; and a transparent conductive film formed over the inner surface of said light entrance portion; characterised by means for applying a predetermined potential to the transparent conductive film to form an electric field for guiding photoelectrons from said photocathode to said electron multiplying unit.
  • FIGs. 4 and 5 show a photomultiplier of so-called side-on type to which an embodiment of the present invention is applied.
  • a glass bulb 11 is a transparent closed container. Specifically, the glass bulb 11 is a transparent cylinder closed at the upper and lower ends. Insulating material substrates 12a and 12b are provided at the upper and lower positions in the glass bulb 11, respectively. The substrates 12a and 12b support various electrodes. The various electrodes are led to the outside through terminals 14 provided on a base 13 placed at the bottom of the glass bulb 11. A photocathode 16, an electron multiplying unit 17 and an anode 18 for collecting an output signal are supported between the insulating material substrates 12a and 12b.
  • the photocathode 16 is placed so as to be inclined at a predetermined angle to a light entrance portion 15 of the glass bulb 11.
  • the electron multiplying unit 17 is constituted of plural stages of dynodes 17a, 17b, 17c ⁇ for successively multiplying photoelectrons emitted from the photocathode 16.
  • a transparent conductive film 19 is partically formed on an inside wall surface of the light entrance portion 15 of the glass bulb 11.
  • the transparent conductive film 19 may be formed in various manners, the film 19 is preferably formed in a manner that chromium (Cr) is selectively evaporated onto the inside wall surface of the glass bulb 11.
  • the transparent conductive film 19 electrically contacts with a pad 20 adhered to the inside wall surface of the light entrance portion 15 of the glass bulb 11.
  • the pad 20 is led through the terminal 14 to the outside.
  • predetermined potentials are applied to the photocathode 16 and the anode 18 through the terminals 14, respectively.
  • a potential of -1KV is applied to the photocathode 16
  • a ground potential is applied to the anode 18.
  • An appropriate potential which divides a voltage between the photocathode 16 and the anode 18 is applied through the terminal 14 to each of the plural stages of dynodes 17a, 17b, 17c ⁇ .
  • the same potential as the photocathode 16, that is, the potential of -1KV is applied to the transparent conductive film 19 through the terminal 14 and the pad 20.
  • the incident light even if the incident light is uniform, a part of the incident light does not reach the photocathode 2. Further, loss is caused due to absorption or scattering when light passes through a glass material. Therefore, when the glass plate 7 is placed in the glass bulb 1 like the conventional photomultiplier as shown in Fig. 3, there arises a problem that the loss becomes twofold since the light passes through a glass material two times. However, in the present embodiment, as described above, the incident light reaches the photocathode 16 with not being interfered at all.
  • the transparent conductive film 19 is a chromium-evaporated film
  • the loss of light caused when the incident light passes through the transparent conductive film 19 is extremely small since the transparent conductive film 19 has a high transmittance of 98%.
  • the conventional photomultiplier as shown in Figs. 1 and 2 since a grid electrode having a transmittance of 75% is generally employed as the grid electrode 6, 25% of the incident light does not reach the photocathode 2. Therefore, the transmittance for the incident light entering the photomultiplier is extremely improved.
  • the photosensitivity of the photomultiplier according to the present embodiment is improved when compared with that of the photomultiplier shown in Figs. 1 and 2 by 20% or more, and the SN ratio which is the ratio of the input signal to the noise is improved in the present embodiment.
  • the predetermined potential is applied to the transparent conductive film 19 formed on the inside wall surface of the light entrance portion 15 of the glass bulb 11, the unstableness of the potential on the inside wall surface of the glass bulb 11 is eliminated. Therefore, even if the photoelectrons collide with the inside wall surface of the glass bulb 11, the potential of the inside wall surface of the glass bulb 11 immediately returns to the predetermined potential, that is, -1KV, and hence the change of the potential of the inside wall surface of the glass bulb 11 is performed at high speed. It is considered that the photoelectrons from the photocathode 16 collide with the light entrance portion 15 of the glass bulb 11 and the portion is charged, whereby the potential of the portion becomes unstable and an electron track of photoelectrons is influenced. Therefore, the hysteresis of the photomultiplier becomes extremely small.
  • the conventional grid electrode 6 shown in Figs. 1 and 2 plays not only a role as an electron lens but also a role for improving the hysteresis characteristic. Therefore, in the conventional grid electrode 6 shown in Figs. 1 and 2, the photoelectrons moving from the photocathode 2 to the light entrance portion 5 are intercepted by stringing the conductive wire 6c on a plane in front of the entire front surface of the photocathode 2. However, some photoelectrons pass between the lattices of the grid electrode 6 and reach the light entrance portion 5, and hence the improvement of the hysteresis characteristic has a limitation.
  • a transparent conductive film 19a may be formed on the side portion, including the light entrance portion 15, of the glass bulb 11 along the perimeter of the glass bulb 11.
  • a plate spring 41 (see Fig. 4) for fixing the insulating material substrate 12a to the glass bulb 11 is fixed to an end of a rod for supporting the dynode 17, and hence the plate spring 41 is electrically connected to the dynode 17. Therefore, the transparent conductive film 19a is not formed on the upper portion of the glass bulb 11 so that the transparent conductive film 19a does not contact with the plate spring 41.
  • Fig. 7 is a cross-sectional view of the photomultiplier according to the second embodiment.
  • portions identical to those of Figs. 4 and 5 are referred to by the same reference numerals, and therefore will not be described.
  • the present embodiment differs from the first embodiment in a shape of a photocathode 21. That is, in the present embodiment, there is no rod on the light entrance portion 15 side of the photocathode 21, and an end of the light entrance side of the photocathode 21 is fixed to a shield plate 22 by weld. In this way, the photocathode 21 has a structure which functions also as a shield plate.
  • the photocathode 21 can be expanded to a portion interfered by the conventional grid electrode. That is, the end of the light entrance portion 15 of the photocathode 21 can be extended to a position extremely close to the inside wall surface of the glass bulb 11, so that the effective light-receptive area is increased.
  • the width of photocathode 21 in a direction perpendicular to the light entrance direction is about 3mm wider than that of the photocathode 2 of the conventional photomultiplier shown in Figs. 1 and 2.
  • the photosensitivity of the photomultiplier is increasingly improved.
  • Fig. 8 shows the electric field for focusing which is formed in the conventional photomultiplier shown in Figs. 1 and 2.
  • Fig. 9 shows the electric field for focusing which is formed in the photomultiplier according to the second embodiment.
  • portions identical or corresponding to those of Fig. 7 are referred to by the same reference numerals, and therefore will not be described.
  • the electric field for focusing photoelectrons is formed by the photocathode 2, the grid electrode 6 and the dynodes 3a and 3b. Due to this electric field, an electron lens is formed between the photocathode 2 and the dynode 3a, thereby the photoelectrons trace the electron track shown in the figure.
  • the permeation of the electric field for focusing photoelectrons is weak in a region A of the photocathode 2 in the vicinity of the inside wall surface of the glass bulb 11. Therefore, the photoelectrons which exit in this region A among the photoelectrons emitted from the photocathode 2 is not efficiently guided to the dynode 3a of the first stage.
  • the end of the photocathode 21 can be extended to the vicinity of the inside wall surface of the glass bulb 11 without being interfered by the grid electrode. Consequently, the electric field for focusing photoelectrons is formed to expand to the vicinity of the inside wall surface of the glass bulb 11, whereby the electric field sufficiently permeates also in the region in which the permeation of the electric field is conventionally weak so that the electron track shown in the figure is formed.
  • Fig. 10 is a side view, partly in vertical section, of the photomultiplier according to the third embodiment
  • Fig. 11 is a cross-sectional view thereof.
  • the present embodiment differs from the second embodiment in the structure of the electron multiplying unit 17. That is, in each of dynodes 17A, 17B, 17C and 17D of first, second, third and fourth stages constituting the electron multiplying unit 17, as shown in Fig. 12, the middle portion of a supporting rod 31a which exists at the light entrance side between two supporting rods 31a and 31b is eliminated.
  • the dynode 17A is shown as a representative of these dynodes. Since the middle portion of the supporting rod 31a is eliminated in this way, it is prevented that the photoelectrons accelerated by the electric field for focusing is attracted by the supporting rod during the drift to bend the electron track like the conventional structure shown in Fig. 8. Therefore, the photoelectrons emitted from the photocathode 21 and the photoelectrons secondary-electron-multiplied in the dynodes of the respective stages surely reach the dynodes of the next stages, respectively. As a result, in the structure of the photomultiplier according to the present embodiment, the photosensitivity is increasingly improved.
  • Fig. 13 is a side view, partly in vertical section, of the photomultiplier according to the fourth embodiment.
  • portions identical or corresponding to those of Figs. 4, 5 and 7 are referred to by the same reference numerals, and therefore will not be described.
  • the present embodiment differs from the above-mentioned second embodiment in a structure for fixing the insulating material substrates 12a and 12b supporting the photocathode 21 and dynodes 17 to the glass bulb 11. That is, in the structure shown in Figs. 4 and 5, a part of the plate spring 41 having a shape extending along a direction of a circumference of the insulating material substrate 12a is fixed to an end of the supporting rods of the dynode 17.
  • the plate spring 41 contacts with the inside wall of the glass bulb 11 at a plurality of positions. Due to the elastic force of the plate spring 41 toward the outside in a direction of a radius of the insulating material substrate 12a, the supporting rods of the dynode 17 and the insulating material substrate 12a fixed to the supporting rods are supported by and fixed to the inside wall of the glass bulb 11.
  • a plurality of spring plates 51 is provided between the two insulating material substrates 12a and 12b at a plurality of positions. Two ends of each of the sprig plates 51 are engaged with the circumference portions of the insulating material substrates 12a and 12b, respectively. The middle portions of each of the spring plates 51 contact with the inside wall of the glass bulb 11. Due to the elastic force of each of the spring plates 51 toward the outside from the longitudinal center axis of the glass bulb 11, the insulating material substrates 12a and 12b are supported by and fixed to the inside wall of the glass bulb 11.
  • the transparent conductive film 19 may be partly formed on only the place corresponding to the light entrance portion 15 as shown in Fig. 14 in a manner similar to the second embodiment, and the transparent conductive film 19b may be formed on the whole of the inside wall surface of the glass bulb 11 as shown in Fig. 15.
  • the transparent conductive film 19b is formed on the whole of the inside wall surface as shown in Fig.

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Claims (10)

  1. Photovervielfacher der Seiten-Bauart mit
    einem transparenten geschlossenen Behälter (11), der einen Lichteintrittsabschnitt (15) mit einer Innenseite aufweist,
    einer in dem geschlossenen Behälter ausgebildeten Photokathode der Reflektions-Bauart (16) zur Aussendung von Photoelektronen im Ansprechen auf darauf auftreffendes, durch den Lichteintrittsabschnitt durchgelassenes Licht,
    einer mehrere Stufen von Dynoden (17a, 17b, 17c) umfassenden Elektronenvervielfachungseinheit (17) zur Elektronenvervielfachung der von der Photokathode der Reflektions-Bauart ausgesendeten Photoelektronen,
    einer Anode (18) zum Sammeln der vervielfachten Elektronen und
    einem auf der Innenseite des Lichteintrittsabschnitts ausgebildeten transparenten leitfähigen Film (19),
       gekennzeichnet durch
       eine Einrichtung (14, 20) zum Anlegen eines vorbestimmten Potentials an den transparenten leitfähigen Film (19), um ein elektrisches Feld zur Führung von Photoelektronen von der Photokathode (16) zu der Elektronenvervielfachungseinheit (17) auszubilden.
  2. Photovervielfacher nach Anspruch 1,
       dadurch gekennzeichnet, daß
    der transparente leitfähige Film (19) ein durch Aufdampfen aufgebrachter Chromfilm ist, der auf der Innenseite des geschlossenen Behälters (11) ausgebildet ist.
  3. Photovervielfacher nach Anspruch 1 oder 2,
       dadurch gekennzeichnet, daß
    die Einrichtung zum Anlegen eines vorbestimmten Potentials
    eine an der Innenseite des geschlossenen Behälters angebrachte Anschlußfläche (20) zur Herstellung einer elektrischen Verbindung zu dem transparenten leitfähigen Film und
    einen elektrisch an die Anschlußfläche (20) angeschlossenen Anschluß (14) aufweist, wobei ein Teil des Anschlusses an einer Seite des geschlossenen Behälters aus diesem herausragt, wobei
    das vorbestimmte Potential über die Anschlußfläche und den Anschluß an den transparenten leitfähigen Film angelegt wird.
  4. Photovervielfacher nach einem der vorangehenden Ansprüchen,
       dadurch gekennzeichnet, daß
       Einrichtungen geschaffen sind, um jeweils das selbe Potential negativer Polarität an die Photokathode (16) und den transparenten leitfähigen Film (19), ein Massepotential an die Anode (18) und ein geeignetes Potential zwischen der durch das Potential negativer Polarität und das Massepotential bestimmten Spannung an jede der Dynoden (17a, 17b, 17c) anzulegen.
  5. Photovervielfacher nach einem der vorangehenden Ansprüche,
       gekennzeichnet durch
    ein Paar von Substraten (12a, 12b) aus isolierendem Material zum Halten der Photokathode (16), der Elektronenvervielfachungseinheit (17) und der Anode (18) und
    einer Blattfeder (41) mit einer sich entlang einer Richtung des Rands des Substrates aus isolierendem Material ausdehnenden Gestalt, wobei ein Teil der Blattfeder an einem Ende eines Haltestabs der die Elektronenvervielfachungseinheit bildenden Dynode (17) befestigt ist und ein Teil der Blattfeder die Innenseite des geschlossenen Behälters berührt, wobei
    der Haltestab und das an dem Haltestab befestigte Substrat aus isolierendem Material aufgrund einer Federkraft der Blattfeder in Richtung zu einer Außenseite des geschlossenen Behälters in radialer Richtung des Substrats aus isolierendem Material von der Innenseite des geschlossenen Behälters (11) gehalten und an dieser befestigt sind.
  6. Photovervielfacher nach Anspruch 5,
       dadurch gekennzeichnet, daß
       der transparente leitfähige Film auf der Innenseite in einem Bereich ausgebildet ist, in dem der transparente leitfähige Film nicht in elektrischen Kontakt mit der Blattfeder (41) gelangt, wobei der Bereich die dem Lichteintrittsabschnitt (15) entsprechende Stelle umfaßt.
  7. Photovervielfacher nach einem der Ansprüche 1 bis 4,
       gekennzeichnet durch
    ein Paar von Substraten (12a, 12b) aus isolierendem Material zum Halten der Photokathode (16), der Elektronenvervielfachungseinheit (17) und der Anode (18), und
    eine Blattfeder (51), wobei zwei ihrer Enden jeweils in die Substrate aus isolierendem Material eingreifen und ein Mittelabschnitt der Blattfeder die Innenseite des geschlossenen Behälters berührt,
    wobei die Substrate (12a, 12b) aus isolierendem Material aufgrund einer Federkraft der Blattfeder (51) von einer Längsmittelachse des geschlossenen Behälters in Richtung zu einer Außenseite des geschlossenen Behälters von der Innenseite des geschlossenen Behälters gehalten und an dieser befestigt sind.
  8. Photovervielfacher nach Anspruch 7,
       dadurch gekennzeichnet, daß
    der transparente leitfähige Film (19) auf der gesamten Innenseite des geschlossenen Behälters ausgebildet ist.
  9. Photovervielfacher nach einem der Ansprüche 1 bis 4,
       gekennzeichnet durch
    ein Paar von Substraten (12a, 12b) aus isolierendem Material zum Halten der Photokathode (16), der Elektronenvervielfachungseinheit (17) und der Anode (18), wobei
    ein lichteintrittsseitiger Mittelabschnitt eines Haltestabs eines Paars von Haltestäben beseitigt ist, das die die Elektronenvervielfachungseinheit bildenden Dynoden an den Substraten aus isolierendem Material hält und ein um den lichteintrittsseitigen Haltestab gewickelter Dynodenbildungssabschnitt beseitigt ist.
  10. Photovervielfacher nach Anspruch 9,
       dadurch gekennzeichnet, daß
       die zumindest eine Dynode die Dynode (17a) der ersten Stufe ist, in die die von der Photokathode (16) ausgesendeten Photoelektronen direkt eintreten.
EP19940309210 1993-12-09 1994-12-09 Photovervielfacher Expired - Lifetime EP0658919B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP309371/93 1993-12-09
JP5309371A JP2695604B2 (ja) 1993-12-09 1993-12-09 光電子増倍管

Publications (3)

Publication Number Publication Date
EP0658919A2 EP0658919A2 (de) 1995-06-21
EP0658919A3 EP0658919A3 (de) 1995-08-23
EP0658919B1 true EP0658919B1 (de) 1997-11-12

Family

ID=17992202

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940309210 Expired - Lifetime EP0658919B1 (de) 1993-12-09 1994-12-09 Photovervielfacher

Country Status (3)

Country Link
EP (1) EP0658919B1 (de)
JP (1) JP2695604B2 (de)
DE (1) DE69406764T2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456594A (zh) * 2013-08-02 2013-12-18 西安交通大学 一种提高光电倍增器光阴极光利用率的优化设计方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873867A (en) * 1974-01-25 1975-03-25 Rca Corp Support and focus structure for photomultiplier
JPH04292843A (ja) * 1991-03-20 1992-10-16 Hamamatsu Photonics Kk 光電子増倍管
JP3473913B2 (ja) * 1992-05-28 2003-12-08 浜松ホトニクス株式会社 光電子増倍管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456594A (zh) * 2013-08-02 2013-12-18 西安交通大学 一种提高光电倍增器光阴极光利用率的优化设计方法
CN103456594B (zh) * 2013-08-02 2015-08-26 西安交通大学 一种提高光电倍增器光阴极光利用率的优化设计方法

Also Published As

Publication number Publication date
JP2695604B2 (ja) 1998-01-14
DE69406764T2 (de) 1998-04-02
EP0658919A2 (de) 1995-06-21
DE69406764D1 (de) 1997-12-18
JPH07161334A (ja) 1995-06-23
EP0658919A3 (de) 1995-08-23

Similar Documents

Publication Publication Date Title
US5936348A (en) Photomultiplier tube with focusing electrode plate
US5561347A (en) Photomultiplier
US6297489B1 (en) Electron tube having a photoelectron confining mechanism
EP0658919B1 (de) Photovervielfacher
EP0722182B1 (de) Photovervielfacher
CA1135774A (en) Cathode-ray tube with low anode potential preventing positive ion formation
US4577137A (en) Electrode structure for an electron multiplier cage assembly
EP0805477A2 (de) Elektronenröhre
US4370585A (en) Evaporator support assembly for a photomultiplier tube
US4415832A (en) Electron multiplier having an improved planar utlimate dynode and planar anode structure for a photomultiplier tube
US4570102A (en) Photomultiplier tube having an electron multiplier cage assembly with uniform transverse spacing
US3378714A (en) Image converter tubes with improved dust screen and diaphragm means
US5189338A (en) Photomultiplier tube having reduced tube length
EP0084915B1 (de) Fernsehkameraröhre
US4079282A (en) Phototube having apertured electrode recessed in cup-shaped electrode
EP0828283B1 (de) Photovervielfacher mit Seiteneintritt
JP3495732B2 (ja) 光電子増倍管
EP2775505B1 (de) Streak-röhre
EP0828282B1 (de) Photovervielfacher mit Seiteneintritt
US3405306A (en) Multi-purpose electrode for electron discharge devices
US4447758A (en) Broad area cathode contact for a photomultiplier tube
JPH08335450A (ja) 光電子増倍管
US3252031A (en) Electron gun for cathode ray tubes
KR940002603Y1 (ko) 음극선관용 전자총
GB2116359A (en) Streak tubes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19960118

17Q First examination report despatched

Effective date: 19960531

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 69406764

Country of ref document: DE

Date of ref document: 19971218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081212

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081205

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081203

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091209

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091209