EP0657620A1 - Verfahren und System zur Kontrolle des "Stick-Slip" eines Bohrwerkzeugs - Google Patents
Verfahren und System zur Kontrolle des "Stick-Slip" eines Bohrwerkzeugs Download PDFInfo
- Publication number
- EP0657620A1 EP0657620A1 EP94402698A EP94402698A EP0657620A1 EP 0657620 A1 EP0657620 A1 EP 0657620A1 EP 94402698 A EP94402698 A EP 94402698A EP 94402698 A EP94402698 A EP 94402698A EP 0657620 A1 EP0657620 A1 EP 0657620A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tool
- rotation
- speed
- torque
- drilling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000005553 drilling Methods 0.000 claims abstract description 57
- 230000033228 biological regulation Effects 0.000 claims abstract description 4
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 230000001276 controlling effect Effects 0.000 claims description 5
- 230000004064 dysfunction Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 239000004459 forage Substances 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B44/00—Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
- E21B44/02—Automatic control of the tool feed
- E21B44/04—Automatic control of the tool feed in response to the torque of the drive ; Measuring drilling torque
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B44/00—Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
- E21B44/005—Below-ground automatic control systems
Definitions
- the present invention relates to a method and a system suitable for controlling a dysfunction in the behavior of a drilling tool driven in rotation by means of a drilling string. This dysfunction is commonly called "stick-slip”.
- the present invention is applicable to the oscillatory behavior of the speed of rotation of a drilling tool around an average speed imposed on the surface.
- the so-called "stick-slip” behavior is well known to drillers and is characterized by very appreciable variations in the speed of rotation of the drilling tool while it is being driven by means of a drill string put rotating from the surface at a substantially constant speed.
- the speed of the tool can vary between a practically zero speed and a value of the speed of rotation of the tool much greater than the speed applied on the surface to the lining. This can in particular have the consequences of harmful effects on the life of the drilling tools, on the increase of the mechanical fatigue of the drill string and the frequency of the ruptures of the connections.
- the present invention relates to a method of controlling the stability of the speed of rotation of a drilling tool driven in rotation by means of a tubular lining rotated from mechanical surface means, said tool being subjected to a reactive torque due to the drilling action of a well.
- an additional resistive torque is created in the vicinity of the tool, a function of the speed of rotation of the tool and of a determined value so that the overall reactive torque of the drilling tool resulting from the addition of the torque to the tool and of said additional torque is an increasing function of the speed of rotation of the tool.
- Said additional resistant torque can be created by friction means integral with the lining in the vicinity of the tool.
- Said additional resistant torque can be created by varying the weight on the tool.
- Said variation in weight on the tool can be provided by specific means located in the vicinity of the tool and controlled by the speed of rotation of the drilling tool.
- the invention also relates to a system for controlling the stability of the speed of rotation of a drilling tool driven in rotation by means of a tubular lining rotated by mechanical surface means, said tool being subjected to a reactive torque due to the drilling action of a well.
- the system comprises regulation means integral with the lining in the vicinity of the tool, said means being adapted to create an additional resistant torque to the tool, the value of said torque being a function of the speed of rotation of the tool.
- Said regulating means may include friction means on the walls of the well.
- Said regulation means may include means for varying the force of application of the tool on the bottom of the well.
- Said regulating means may include means for measuring the speed of rotation of the drilling tool and means for adjusting the value of the additional resistive torque as a function of the speed of rotation of the tool.
- FIG. 1 is a recording of the angular position of a drilling tool connected integrally to drill collars in which the measuring instruments are placed. These records have been obtained, for example using the means described according to patent FR-92/02273. Such a recording curve is described in the article "Wired Pipes for a High-Data-Rate MWD System” by JB Fa ⁇ , H. Fa ⁇ and A. Couturier (SPE 24971, European Petroleum Conference, 1991, 16- 18 November 1992).
- the measurements of the speed of rotation of the tool can preferably be obtained by deriving the curve 1 representing the recording of the angular position of the drilling tool by sets of magnetic sensors.
- Measuring the speed of rotation of the tool can be compared to the speed of rotation of the drill collars, since all the drill collars are very rigid in torsional deformation. There is therefore practically no difference in speed between the measuring means, preferably located for practical reasons in the drill collars, and the drilling tool.
- curve 1 in FIG. 1 presents zones 2 in which the displacement of the tool is practically zero for durations substantially equal to one second.
- the rotation speed can reach the frequency of 3.2 Hz, while the nominal speed of the lining, here 90 revolutions / minute, corresponds to a 1.5 Hz frequency.
- Figure 2 shows schematically the mathematical model used to highlight and analyze the unstable behavior of the speed of rotation of the drilling tool.
- a drilling tool 5 rests on the cutting face 8.
- the drill string is constituted by drill collars 3 and rods 4 with determined mechanical and dimensional characteristics.
- a rotation device 9 imposes a speed of rotation on the whole of the lining. Friction is imposed between the rods and the drill collars against the walls of the well.
- the friction equations may be chosen as a function of the weight of the entire packing, the speed of rotation at table 9, the drilling fluid, the geometry of the rods and drill-rods respectively in zones 6 and 7, or the shape of the well trajectory.
- the resistance to rotation of the tool 5 on the face of size 8 is also defined according to a relationship of the torque as a function of the speed of rotation for a weight on the determined tool (FIG. 4).
- Figure 4 shows the curves representing the function between the friction torque (C) of a drilling tool and its speed of rotation.
- C friction torque
- This example was published in the article SPE 21943 cited above. The measurements were carried out with a used PDC tool (one-piece tool comprising cutting pads made of polychrystalline material), at constant weight and for several weight values on the tool.
- the abscissa is graduated in revolutions / minute and the ordinate in ft * lbf, unit of torque which is converted into m * daN by multiplying by 0.1356.
- Curve 10 was obtained for a weight on the tool of 4 tonnes, curve 11 for a weight on the tool of 2.7 tonnes and curve 12 for a weight on the tool of 1.33 tonnes. Note that the tool torque decreases when the rotation speed increases. In addition, when the weight on the tool decreases, the decreasing curve becomes flat.
- FIG. 3 shows the response of the mathematical model according to FIG. 2 to a stress created by a variation in the speed of rotation applied to the drill string by the means 9 (FIG. 2).
- the conditions of friction between the tool 5 and the cutting face 8 are imposed according to a law arising from the curves of FIG. 4.
- the speed is 110 revolutions per minute.
- the speed of rotation applied to the drill string increases until it reaches 120 revolutions per minute.
- Curve 16 represents the speed of rotation of the drilling tool as a function of time.
- the behavior of the drilling tool in rotation speed is unstable and oscillates around the set value of 120 revolutions per minute.
- the speed of rotation of the tool varies according to oscillations which amplify, then reach a maximum of amplitude according to a stabilized behavior (15) representing the dysfunction "stick-slip" in which the speed of rotation is canceled before reaching a maximum much higher than the set speed.
- the model confirms and highlights that the instability of the speed of rotation of a drilling tool driven in rotation by a drill string, is the result of the fact that the torque to the tool decreases as a function of an increase of the speed of rotation.
- the present invention proposes to prevent the occurrence of the so-called "stick-slip” dysfunction by making the behavior of the drilling tool stable in rotation speed by acting on the cause of the instability.
- FIGS. 5 and 6 Two methods are preferably used and illustrated by FIGS. 5 and 6.
- curve 17 represents the torque resistant to the drilling tool in the range of rotational speeds N1 and N2.
- Curve 18 represents a friction torque supplied by appropriate means integral with the drilling tool or drill collars.
- the overall torque at the drilling tool will be the sum of the torque at the tool and the additional torque.
- the overall torque is represented here by the curve 19 resulting from the addition of the curve 17 with the curve 18.
- the friction means are determined to generate a friction curve 18 increasing with the speed of rotation.
- the overall resistance to rotation, at the level of the drilling tool is represented by an increasing curve 19 as a function of the speed.
- the friction means may require a measurement of the speed of rotation of the drilling tool to control, for example by electronic controls, the value of the additional torque as a function of the speed. Purely mechanical means can also be used as friction adjustment means.
- FIG. 7A illustrates friction means designed from a stabilizer with variable geometry 22.
- the means 22 are fixed on a tool 20 in the drilling operation of a well 21.
- Skids 23, 25, 26 have surfaces of friction with the walls of the well 21 so as to create a friction torque.
- the number of pads in contact with the walls is a function of the speed measured by the measuring and control apparatus 24 which controls the output of the number of pads necessary for the additional resistive torque to follow a growth law similar to the curve. 18.
- Variable geometry stabilizers whose blades are radially movable are known and will not be described here.
- a rotation speed sensor integrated into the device 24 controls a motorization means which radially moves the support blades against the wall of the well.
- the energy to activate the motor can come from an electric accumulator, an electricity generating turbine or the pressure of the drilling fluid circulating in the lining.
- the friction pads can be replaced by rollers 27 with an axis parallel to the axis of rotation of the tool 20.
- the number of rollers distributed over the circumference will be determined for proper centering of the tool in the well.
- Pushing means hydraulic or mechanical, apply the rollers against the walls of the well.
- the rotation of the drilling tool rotates the rollers 27 in contact with the walls of the well, for example as a roller reamer commonly used by the profession, would.
- a measuring and control apparatus 24 adjusts the rolling resistance as a function of the speed of rotation, for example by regulating the braking of the rollers and / or the force of application of the rollers to the walls of the well.
- FIG. 6 which reproduces, for the example only, in part FIG. 4, illustrates another means of making the behavior of a drilling tool stable in speed.
- Point A represents the operating point at the weight on the tool of 2.7 tonnes, at the speed of rotation N A and at the torque C A.
- N A to N B When the speed increases from N A to N B while providing an increase in weight on the tool corresponding to point B at substantially 3 tonnes, the operating point follows the path shown by the arrows 30.
- the torque at tool becomes C B greater than C A.
- an increase in the speed of rotation caused an increase in the reactive torque to the tool.
- the behavior of the drilling tool is stable in speed as described above.
- the solution here is to create a determined increase in weight on the tool as a function of an increase in the speed of rotation.
- FIG. 7C shows the principle of an embodiment of means for applying a weight to the additional tool when the speed of rotation increases.
- the tool 20 is screwed onto a mandrel 31 contained in a body 32.
- the body 32 is integral with the drill collars.
- the mandrel 31 can slide longitudinally over a determined length while being fixed in rotation, for example by a key system 38 in a groove.
- the shape of the mandrel 31 is such that it provides two annular chambers 33 and 34 between the exterior of the mandrel and the interior of the body 32. Sealing elements, not shown here, isolate the chambers from each other and with the outside. These chambers are filled with a substantially incompressible fluid.
- Means 35 for adjusting the hydraulic pressure in the chambers 33 and 34 communicate with these chambers by conduits 36 and 37.
- An apparatus 24 for measurement and control controls the adjustment means 35 as a function of measuring the speed of rotation.
- the operation of such means can be as follows: The driller places, for example, 2.7 tonnes on a tool driven in rotation by the drilling string in rotation at the speed N A. The driller must ensure that there is an excess of weight of drill collars in the packing so as to be able to apply an increase in weight, for example of 0.3 tonnes. This safety on the weight of drill collars is generally common in the profession.
- the apparatus 24 detects this increase and sends the order to the adjusting means 35 to increase the hydraulic pressure in the chamber 33 to a value such that this increase in pressure corresponds to about 0.3 tonnes.
- the operating point has gone from curve 11 to 2.7 tonnes, to a point B belonging to a curve at 3 tonnes, not shown in the example.
- the behavior of the drilling tool is thus that of a tool whose resistive torque increases with speed.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Automatic Control Of Machine Tools (AREA)
- Drilling And Boring (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9314837 | 1993-12-08 | ||
FR9314837A FR2713700B1 (fr) | 1993-12-08 | 1993-12-08 | Méthode et système de contrôle de la stabilité de la vitesse de rotation d'un outil de forage. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0657620A1 true EP0657620A1 (de) | 1995-06-14 |
EP0657620B1 EP0657620B1 (de) | 1997-06-18 |
Family
ID=9453781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94402698A Expired - Lifetime EP0657620B1 (de) | 1993-12-08 | 1994-11-25 | Verfahren und System zur Kontrolle des "Stick-Slip" eines Bohrwerkzeugs |
Country Status (4)
Country | Link |
---|---|
US (1) | US5507353A (de) |
EP (1) | EP0657620B1 (de) |
FR (1) | FR2713700B1 (de) |
NO (1) | NO306521B1 (de) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2720440B1 (fr) * | 1994-05-24 | 1996-07-05 | Inst Francais Du Petrole | Méthode et système de transmission d'un signal de forage. |
EP0870899A1 (de) * | 1997-04-11 | 1998-10-14 | Shell Internationale Researchmaatschappij B.V. | Bohreinrichtung mit reduzierter Stick-Slipneigung |
US6173793B1 (en) | 1998-12-18 | 2001-01-16 | Baker Hughes Incorporated | Measurement-while-drilling devices with pad mounted sensors |
US6179066B1 (en) | 1997-12-18 | 2001-01-30 | Baker Hughes Incorporated | Stabilization system for measurement-while-drilling sensors |
NO322069B1 (no) * | 1998-01-15 | 2006-08-07 | Baker Hughes Inc | Fremgangsmate og anordning for stabilisering av en borestreng ved formasjonsevalueringsmaling |
CA2359073A1 (en) | 1999-11-10 | 2001-05-17 | Schlumberger Holdings Limited | Control method for use with a steerable drilling system |
US6962214B2 (en) | 2001-04-02 | 2005-11-08 | Schlumberger Wcp Ltd. | Rotary seal for directional drilling tools |
US6467341B1 (en) | 2001-04-24 | 2002-10-22 | Schlumberger Technology Corporation | Accelerometer caliper while drilling |
US20030127252A1 (en) * | 2001-12-19 | 2003-07-10 | Geoff Downton | Motor Driven Hybrid Rotary Steerable System |
SE529230C2 (sv) * | 2004-12-10 | 2007-06-05 | Atlas Copco Rock Drills Ab | Anordning och metod vid borrning i berg |
US7540337B2 (en) * | 2006-07-03 | 2009-06-02 | Mcloughlin Stephen John | Adaptive apparatus, system and method for communicating with a downhole device |
CN101408100B (zh) * | 2008-11-25 | 2012-09-05 | 天水电气传动研究所有限责任公司 | 电动钻机转盘柔性扭矩控制方法及其系统 |
CA2745198C (en) * | 2008-12-02 | 2014-10-14 | National Oilwell Varco, L.P. | Method and apparatus for reducing stick-slip |
EP2364398B1 (de) | 2008-12-02 | 2014-03-26 | National Oilwell Varco, L.P. | Verfahren und vorrichtung zum schätzen der momentandrehzahl einer bha (bottom hole assembly) |
CA2814862C (en) * | 2010-11-10 | 2017-06-20 | Baker Hughes Incorporated | Drilling control system and method |
EP3014045B1 (de) * | 2013-06-27 | 2018-03-07 | Schlumberger Technology Corporation | Änderung der sollwerte in einem resonanzsystem |
US10689967B2 (en) | 2017-05-05 | 2020-06-23 | Schlumberger Technology Corporation | Rotational oscillation control using weight |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1703234A (en) * | 1920-11-04 | 1929-02-26 | Erle P Halliburton | Method and apparatus for drilling wells, such as oil wells |
US1786173A (en) * | 1926-04-17 | 1930-12-23 | Standard Oil Co California | Drilling apparatus |
US1935105A (en) * | 1931-07-18 | 1933-11-14 | Standard Oil Co | Torque control drill feed |
US3550697A (en) * | 1966-04-27 | 1970-12-29 | Henry Hobhouse | Drilling condition responsive drive control |
US3593807A (en) * | 1969-12-11 | 1971-07-20 | Frank J Klima | Drilling apparatus |
US3675727A (en) * | 1970-10-23 | 1972-07-11 | Wallace Clark | Apparatus and method for governing the operation of down- hole earth boring motors |
US4660656A (en) * | 1985-11-22 | 1987-04-28 | Amoco Corporation | Method and apparatus for controlling the rotational torque of a drill bit |
FR2666374B1 (fr) * | 1990-09-04 | 1996-01-26 | Elf Aquitaine | Procede de determination de la vitesse de rotation d'un outil de forage. |
US5226332A (en) * | 1991-05-20 | 1993-07-13 | Baker Hughes Incorporated | Vibration monitoring system for drillstring |
-
1993
- 1993-12-08 FR FR9314837A patent/FR2713700B1/fr not_active Expired - Fee Related
-
1994
- 1994-11-25 EP EP94402698A patent/EP0657620B1/de not_active Expired - Lifetime
- 1994-12-07 NO NO944726A patent/NO306521B1/no not_active IP Right Cessation
- 1994-12-07 US US08/350,850 patent/US5507353A/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
DUFEYTE ET AL.: "Detection and monitoring of the slip-stick motion: field experiments", 1991 SPE/IADC DRILLING CONFERENCE, 11 March 1991 (1991-03-11), AMSTERDAM, pages 429 - 438 * |
Also Published As
Publication number | Publication date |
---|---|
NO944726L (no) | 1995-06-09 |
US5507353A (en) | 1996-04-16 |
FR2713700B1 (fr) | 1996-03-15 |
NO306521B1 (no) | 1999-11-15 |
NO944726D0 (no) | 1994-12-07 |
FR2713700A1 (fr) | 1995-06-16 |
EP0657620B1 (de) | 1997-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0657620B1 (de) | Verfahren und System zur Kontrolle des "Stick-Slip" eines Bohrwerkzeugs | |
US10584572B2 (en) | Method and system for damping vibrations in a tool string system | |
RU2087701C1 (ru) | Способ управления колебаниями в буровом оборудовании и система для его осуществления | |
US10724357B2 (en) | Method and device for estimating downhole string variables | |
FR2732403A1 (fr) | Methode et systeme de prediction de l'apparition d'un dysfonctionnement en cours de forage | |
CA2647397A1 (fr) | Dispositif d'orientation d'outils de forage | |
WO2011010016A2 (fr) | Tige de forage et garniture de forage correspondante | |
US20120103689A1 (en) | Apparatus and method for determining axial forces on a drill string during underground drilling | |
WO2016041671A1 (fr) | Systeme de controle du deplacement d'une charge | |
FR2646464A1 (fr) | Procede et ensemble de commande d'un appareil de forage de roches | |
FR2487908A1 (fr) | Procede et dispositif pour la teletransmission de donnees a partir d'un trou de forage | |
FR2611804A1 (fr) | Procede de controle des operations de forage d'un puits | |
FR2686425A1 (fr) | Source sismique de puits. | |
FR2772805A1 (fr) | Dispositif pour la commande asservie de l'amplitude des vibrations d'un vibrateur a moment variable | |
FR2463256A1 (fr) | Outil de forage de fond et procede de forage d'un sondage au moyen de cet outil | |
FR2816020A1 (fr) | Procede de mise en oeuvre et installation de regulation d'un embrayge | |
FR2867152A1 (fr) | Procede de controle de l'amortissement de vibrations d'un helicoptere et dispositif mettant en oeuvre le procede | |
FR3069324B1 (fr) | Penetrometre statique et procede de mesure associe | |
CN109138973B (zh) | 一种诊断钻柱黏滑振动的观测方法 | |
EP0836670A2 (de) | Verfahren und vorrichtung zum untersuchen mechanischer eigenschaften von durch eine bohrung durchquerten formationen | |
FR2545534A1 (fr) | Appareil de transmission et d'indication de couple en fond de sondage | |
FR2606104A1 (fr) | Disque d'embrayage, notamment pour vehicules automobiles | |
EP0461963A1 (de) | Verfahren und Vorrichtung zum Messen in einem Nicht-eruptiven Bohrloch | |
Zhang et al. | The speed control research on rotary valve driven by micromotor in MWD | |
FR2705801A1 (fr) | Procédé de contrôle de la vitesse de rotation d'une garniture de forage. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): GB IT NL |
|
17P | Request for examination filed |
Effective date: 19951214 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19961029 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): GB IT NL |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970619 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20011022 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20011130 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20030601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051125 |