EP0657032B1 - Detecteur de clous a double sensibilite - Google Patents
Detecteur de clous a double sensibilite Download PDFInfo
- Publication number
- EP0657032B1 EP0657032B1 EP93918692A EP93918692A EP0657032B1 EP 0657032 B1 EP0657032 B1 EP 0657032B1 EP 93918692 A EP93918692 A EP 93918692A EP 93918692 A EP93918692 A EP 93918692A EP 0657032 B1 EP0657032 B1 EP 0657032B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stud
- sensor
- sensitivity
- sensitivity mode
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
- G01V3/088—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with electric fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/003—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V13/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices covered by groups G01V1/00 – G01V11/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/15—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
Definitions
- This invention relates to an electronic sensor, and, in particular, to a sensor suitable for detecting the location of studs behind a variety of surfaces, including walls, floors and similar type structures. More specifically, the invention relates to an electronic stud sensor with two sensitivity modes for determining the location of studs behind either thick or thin surfaces, and with the ability to inform the user when the sensor has been calibrated over a stud.
- U.S. Pat. No. 4,464,622 issued Aug. 7, 1984 discloses an electronic wall stud sensor particularly suitable for locating a wall stud positioned behind a wall surface.
- the sensor detects the stud by measuring a change in the capacitance of the wall due to the presence of a stud while the sensor is moved along the wall surface.
- the sensor includes a plurality of capacitor plates mounted in the sensor close to the wall surface, a circuit for detecting any changes in the capacitance of the capacitor plates due to a change in the dielectric constant of the wall caused by the location of a stud positioned behind the wall surface and immediately adjacent to the capacitor, and an indicator for indicating the change in capacitance of the capacitor plate, thereby indicating the wall stud position.
- the sensor also alerts the operator when calibration is occurring.
- the stud sensor operates as described to locate studs in walls, experience has shown that its performance could be improved in several respects.
- the stud sensor is unable to reliably sense studs through surfaces significantly thicker than the typical 5/8 inch (1.5875 cm) sheetrock wall.
- the sensor can not sense floor joists (another type of stud) under a combination of 3/4 inch (1.155 cm) subfloor and 1/4 inch (0.385 cm) oak flooring.
- US 4041382 discloses a measurement system with a first calibration signal for calibrating the system at one end of a range of parameters being measured by controlling an output function; second calibration circuitry connected to the bridge circuit to provide a second calibration signal for calibrating the system at the other end of the range by controlling the effective value of the reference voltage supplied to the bridge circuit; sequencing circuitry for automatically causing the first calibration circuitry to calibrate the system at one end of the range, and then automatically causing the second calibration circuitry to calibrate the system at the other end of the range; and a control for activating said sequencing circuitry.
- FIG. 1 Shown in FIG. 1 is an embodiment of the invention for locating positions of studs behind a surface through capacitive sensing.
- operation of this circuit detects the change in capacitive loading of the sensor plates 24 and 32 as they are moved along a surface and into proximity with a stud.
- Plate 32 is positioned between a pair of coupled plates 24 in the same manner as the plates in the prior art.
- Schmitt triggers 20 and 28 function in the same manner as the one shot multi-vibrators described in the prior art patent. Therefore, as in the prior art patent, additional capacitive loading due to the presence of a stud unbalances a differential capacitive plate circuit.
- the unbalance is traced via a counter in the display processor 18 which injects an offset voltage into the sensor plate circuit via a digital-to-analog (D/A) converter 36.
- D/A digital-to-analog
- Each step of the counter corresponds to a unique voltage step certain steps of which are also associated with a particular LED in the LED display 26.
- the LEDs in LED display 26 correspondingly change, signaling the stud's presence.
- the unit is calibrated such that the top LED illuminates as the unit is directly over the edge of a stud, with intermediate LEDs showing the approach to the stud's edge.
- a tone output from the piezo electric tone transducer 14 occurs concurrent with the illumination of the top LED of the LED display 26.
- the capacitive null of the sensor plates i.e., when each sensor plate is equally “loaded,” is also sensed through the Schmitt triggers 20 and 28. As shown in FIG. 1, the outputs from these Schmitt triggers then drive respectively the clock input 58 and data input 60 of a D type flip-flop 22. If the plates are unequally "loaded,” either the clock input 58 or the data input 60 to the flip-flop 22 will occur first, setting the output 62 of the flip-flop to either a one or a zero.
- a null, or balanced differential plate capacitatance state is detected by increasing, in small incremental steps, via the digital-to-analog (D/A) converter 36, the offset injection voltage to the sensor plate circuit until the output 62 of the flip-flop 22 changes state. This signals a null condition.
- D/A digital-to-analog
- the sensor plate circuit is driven by an excitation signal 52.
- This excitation signal is derived from a timing generator 12, which is in turn driven by an oscillator 10.
- This excitation signal consists of a 1/16 duty cycle pulse which charges the capacitance of the sensor plates 24 and 32.
- the voltage 54 and 56 at the sensor plates 24 and 32 then rises exponentially and at some point reaches the upper voltage threshold 64 of the Schmitt triggers 20 and 28.
- the change in logic level at the Schmitt triggers 20 and 28 outputs then drives the D type flip-flop 22 clock input 58 and data input 60 to determine which signal, clock 58 or data 60, arrived first.
- a null condition is then defined as the clock and data signals occurring at the same time.
- the data input terminal of the averager 16 is connected to the D type flip-flop 22 output terminal.
- the averager 16 receives a 10 kHz clock signal from the timing generator 12. Therefore, every 100 microseconds, the averager 16 determines if the output of the flip-flop 22 is a one or a zero.
- the other counter in the averager 16 is an accumulator counter, and is only incremented if the input from the flip-flop 22 is a one. If the input from the flip-flop 22 is zero, the counter is not incremented.
- the accumulator counter in the averager 16 will have accumulated the number of times the output from the flip-flop 22 was one. If the accumulator counter has accumulated less than 28 ones after sixty-four cycles, the output of the averager 16 is zero. If the accumulator counter has accumulated greater than 36 ones, the output of the averager 16 is one. Finally, if the count was between 28 and 36, then there is no change in the output of the averager 16.
- this averager 16 is that the output of the averager is "crisp," i.e., the changes in the output from the flip-flop 22 which occur as a result of noise are eliminated. This is due to the noise area which is centered around fifty percent (28 to 36 counts), in which the output of the averager does not change. So, as the noise is reduced from the output of the averager 16, the transition between the lighting of the LED's 26 is more smooth and precise. There is no wavering or flickering.
- the display processor 18 receives the output of the averager 16.
- the Display Processor 18 includes a 4 bit up counter, with decoded states 12 through 15 each enabling an individual latch and LED steering logic.
- Each of these four latches receives the output of averager 16 on their data inputs. Thus at the end of any averaging cycle coinciding with states 12 through 15 of the counter, the data result is latched into the appropriate latch.
- the four outputs of the latches are used to enable the LED Display 26, with steering logic between the latch outputs and the LED drivers to allow for various device models.
- the four bit output of the Display Processor 18 also drives the four bit input of the sensitivity select multiplexer 30 which in turn drives the five bit input of the Adder 34.
- the counter of the Display Processor 18 is held in reset at state 11, one state less than the lowest display LED at state 12.
- the unit also senses a decrease in density by adding a fifth latch at counter state 6 such that if a sensor null is detected at state 6 or below, this condition is signaled to the user.
- the sensor null state will occur at counter state 11 when not over a stud and as a stud is approached, the null state will progress to counter states 12 through 15, progressively lighting the display LED's 26.
- the null state will progress downward from counter state 11 until the null is at counter state 6, signalling a sufficient decrease in density to signal the operator of an (erroneous) over-the-stud calibration situation.
- Counter state 6 is a compromise between still allowing normal operation if the unit was calibrated somewhat in proximity to a stud, which will still allow adequate sensing of a stud while still allowing small decreases in density from the calibrated condition due to wall texture, etc. and actually calibrating very close to or over a stud, which could prevent normal stud sensing.
- the four bit output 33 from the Display Processor 18 is inputted into a sensitivity select multiplexer 30.
- the sensitivity select multiplexer 30 is controlled by the sensitivity mode control signal 31.
- the sensitivity mode control signal 31 is either a one, for high sensitivity mode, or zero, for normal sensitivity mode.
- the user controls which mode the device operates in. When the power switch is pressed, the device is in normal sensitivity mode and the sensitivity mode control signal 31 is zero.
- Capacitive memory keeps track of when the device is turned on. This capacitive memory is accomplished by the specialized use of a bilateral port similar to that shown in FIG. 3. FIG. 4 shows one embodiment of this capacitive memory.
- Power On Reset which occurs during the first 50 microseconds after application of power, the charge on capacitor 40 is set into the latch 72. After Power On Reset has subsided and after the first sixteen clock pulses, the output driver 70 is enabled via the Enabling Signal.
- the state of the output level is then opposite that during Power On Reset due to the inverted Q output being fed to the output driver 70.
- the "memory" capacitor, 40 then charges or discharges to the opposite state prior to the Power On Reset cycle of the next power cycle, then sets the latch 72 to the opposite state.
- the external capacitor/resistor values are chosen to retain a charge sufficient for logic level detection for about 2 to 3 seconds to allow the user to cycle the power switch and thus toggle the sensitivity of the unit between Normal and High.
- the unit always powers up in Normal sensitivity mode after being off for longer than 10 seconds. If the power switch is released and then repressed after the initial powering up of the device within a period of time determined by the capacitive memory R-C time constant, the device enters high sensitivity mode and the sensitivity mode control signal 31 is one.
- the sensitivity select multiplexer receives the four bit output 33 from the display processor and directs these four bits to either bits 1 thru 4 or bits 2 thru 5 of the five bit input of the adder 34.
- the unused bit (either bit 1 or 5) of the 5 bit input to the adder 34 is grounded.
- a successive approximation register (SAR) 38 also receives the output from the averager 16.
- the SAR 38 does rapid A/D conversion, needing only 8 clock cycles (for 8 bits) to accomplish the conversion.
- the SAR 38 is generally coupled with some other D/A structure (the D/A converter 36 in one embodiment), and produces an analog voltage based on its 8 bit input.
- An eight bit adder 34 then receives the output from the display processor 18 via the sensitivity select multiplexer 30, and the output from the successive approximation register 38, and sums them digitally. If the 8 bits of the successive approximation register 38 are referred to as bits 1 thru 8, in normal sensitivity mode, the four bits of the display processor 18 are only added to bits 2 thru 5 of the of the successive approximation register 38. In high sensitivity mode, the four bits of the Display Processor 18 are added to bits 1 thru 4 of the successive approximation register 38. so, in high sensitivity mode, the least significant bit (LSB) from the Display Processor 18 is added to the LSB of the 5 bit adder 34 input, causing each step of the Display Processor to step the D/A converter 36 by one bit.
- LSB least significant bit
- the LSB from the Display Processor 18 is added to the second LSB of the adder 34, causing each Display Processor 18 step to step the D/A converter 36 by two bits, thus halving the sensitivity.
- the counter in the display processor 18 is held at the calibrated value 1011 binary (11 decimal) and the unit determines the required offset injection voltage to the sensor circuit to produce a capacitive null of the two sensor plates 24 and 32.
- the unique 8 bit calibration word which corresponds to the required offset injection voltage is stored in the successive approximation register 38 and summed with the four bit output 33 of the Display Processor counter 18 by the eight bit adder 36.
- the 4 bit output 33 is either summed with bits 1-4 or bits 2-5 of the 8 bit calibration word.
- the sensitivity is operator selectable through the sensitivity mode control 3i.
- the device If the user happens to calibrate some of the prior art devices over a stud, when the device is moved away from the stud, the device has no response and will not sense studs. As the device is looking for an increase in density, and it has been calibrated where the wall is most dense, no increase will be detected.
- the unit will also sense both an increase and decrease in density. So, if the device is calibrated over a stud, and a density decrease is sensed, the operator is signalled via the piezo electric tone transducer 14 and the LED display 26, that he has in fact calibrated over a stud, and should move the device and recalibrate.
- factory calibration is simply done by adjusting a potentiometer 27 while holding the 8 bit D/A converter 36 at a fixed value.
- FIG. 3 Shown in FIG. 3 is a feature for using IC pins such as pin 104 as a terminal for both an output signal and input signal. It is to be understood that in one embodiment, much of the circuitry of FIG. 1 is incorporated into a single custom integrated circuit.
- the D type flip-flop 102 receives data input on its terminal D from the IC pin 104, with the Power On Reset signal enabling the latch 102.
- a latch (not shown) is set whose output is an enabling signal which enables the outputs of all bilateral, tri-state ports including tri-state output buffer 100.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Electronic Switches (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Switches That Are Operated By Magnetic Or Electric Fields (AREA)
- Geophysics And Detection Of Objects (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Claims (3)
- Détecteur de goujon capacitif à double sensibilité pour déterminer l'emplacement d'un goujon situé derrière une surface, comprenant :un détecteur comprenant des plaques de détection de chargement capacitif (24, 32) pouvant se déplacer le long de la surface afin de détecter le goujon ;un sélecteur de sensibilité (30) connecté opérationnellement au détecteur pour actionner le détecteur dans l'un d'uniquement deux modes de sensibilité sélectionné par l'utilisateur, les modes étant un mode de haute sensibilité et un mode de sensibilité normale ; ledit sélecteur de sensibilité étant commandé par un signal de commande (31) ;un moyenneur pour recevoir des signaux de données depuis les plaques de détection (24, 32) qui les moyenne ; etun indicateur (14, 26) connecté opérationnellement au détecteur pour indiquer quand un goujon a été détecté dans l'un ou l'autre mode de sensibilité.
- Procédé à double sensibilité pour déterminer l'emplacement d'un goujon situé derrière une surface, comprenant :la fourniture uniquement d'un mode de haute sensibilité et d'un mode de sensibilité normale, les modes correspondant à l'épaisseur de la surface derrière laquelle est situé le goujon ;le passage sur le mode de haute sensibilité ou de sensibilité normale sous la commande de l'utilisateur ;la détection du goujon dans le premier ou le deuxième mode de sensibilité ;le moyennage des signaux de données de détection de goujon ; etl'indication du moment où le goujon est détecté.
- Procédé à double sensibilité selon la revendication 2, utilisant des plaques de détection (24, 32) qui détectent un changement du chargement capacitif causé par le goujon situé derrière la surface, le procédé comprenant :le déplacement des plaques de détection (24, 32) le long de la surface ;l'envoi desdits signaux de données quand ledit changement du chargement capacitif causé par le goujon est détecté ;le moyennage desdits signaux de données durant une période prédéterminée afin de fournir un signal de données numérique moyenné ;l'entrée du signal de données numérique moyenné dans un additionneur (34) et l'utilisation comme autre entrée de l'additionneur (34) d'un signal de données dépendant du mode de sensibilité sélectionné par l'utilisateur ;la conversion du signal ajouté en un signal analogique ; etl'envoi du signal analogique à l'une des plaques de détection (32).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04006219A EP1429148A3 (fr) | 1992-08-14 | 1993-08-11 | Procédé et dispositif de detection de clous avec détermination de calibrage erroné |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US931189 | 1992-08-14 | ||
US07/931,189 US5352974A (en) | 1992-08-14 | 1992-08-14 | Stud sensor with digital averager and dual sensitivity |
PCT/US1993/007433 WO1994004932A1 (fr) | 1992-08-14 | 1993-08-11 | Detecteur de clous a double sensibilite |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04006219A Division EP1429148A3 (fr) | 1992-08-14 | 1993-08-11 | Procédé et dispositif de detection de clous avec détermination de calibrage erroné |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0657032A1 EP0657032A1 (fr) | 1995-06-14 |
EP0657032A4 EP0657032A4 (fr) | 1996-05-15 |
EP0657032B1 true EP0657032B1 (fr) | 2005-10-12 |
Family
ID=25460353
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04006219A Withdrawn EP1429148A3 (fr) | 1992-08-14 | 1993-08-11 | Procédé et dispositif de detection de clous avec détermination de calibrage erroné |
EP93918692A Expired - Lifetime EP0657032B1 (fr) | 1992-08-14 | 1993-08-11 | Detecteur de clous a double sensibilite |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04006219A Withdrawn EP1429148A3 (fr) | 1992-08-14 | 1993-08-11 | Procédé et dispositif de detection de clous avec détermination de calibrage erroné |
Country Status (6)
Country | Link |
---|---|
US (3) | US5352974A (fr) |
EP (2) | EP1429148A3 (fr) |
JP (1) | JPH08500443A (fr) |
CA (1) | CA2141553C (fr) |
DE (1) | DE69333884T2 (fr) |
WO (1) | WO1994004932A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009057439A1 (de) | 2009-10-27 | 2011-05-05 | Gerd Reime | Vorrichtung und Verfahren zur fehlerfreien kapazitiven Messwerterfassung |
DE102015211551A1 (de) | 2015-06-23 | 2016-12-29 | Zircon Corp. | Vorrichtung und Verfahren zur Erfassung eines Gegenstandes |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5352974A (en) * | 1992-08-14 | 1994-10-04 | Zircon Corporation | Stud sensor with digital averager and dual sensitivity |
US5757320A (en) * | 1993-04-12 | 1998-05-26 | The Regents Of The University Of California | Short range, ultra-wideband radar with high resolution swept range gate |
US5543799A (en) * | 1994-09-02 | 1996-08-06 | Zircon Corporation | Swept range gate radar system for detection of nearby objects |
US5483190A (en) * | 1994-12-01 | 1996-01-09 | United Technologies Corporation | Floating voltage controlled thermistor/platinum probe emulator |
US5562240A (en) * | 1995-01-30 | 1996-10-08 | Campbell; Brian R. | Proximity sensor controller mechanism for use with a nail gun or the like |
US5905455A (en) * | 1995-08-11 | 1999-05-18 | Zircon Corporation | Dual transmitter visual display system |
US5917314A (en) * | 1996-08-08 | 1999-06-29 | Zircon Corporation | Electronic wall-stud sensor with three capacitive elements |
GB9724542D0 (en) | 1997-11-21 | 1998-01-21 | Philipp Harald | Electronic Smart Hammer |
US6700939B1 (en) | 1997-12-12 | 2004-03-02 | Xtremespectrum, Inc. | Ultra wide bandwidth spread-spectrum communications system |
US6211662B1 (en) | 1998-08-07 | 2001-04-03 | The Stanley Works | Hand-held hidden object sensor for sensing a location of objects hidden behind a surface of an architectural structure |
US6249113B1 (en) * | 1998-08-14 | 2001-06-19 | Zircon Corporation | Hand held sensor and display |
US7346120B2 (en) | 1998-12-11 | 2008-03-18 | Freescale Semiconductor Inc. | Method and system for performing distance measuring and direction finding using ultrawide bandwidth transmissions |
US6593754B1 (en) * | 1999-04-01 | 2003-07-15 | Actuant Corporation | Compact subsurface object locator |
US6351246B1 (en) | 1999-05-03 | 2002-02-26 | Xtremespectrum, Inc. | Planar ultra wide band antenna with integrated electronics |
US6619662B2 (en) * | 1999-12-08 | 2003-09-16 | Gold Coin Gaming Inc. | Wager sensor and system thereof |
US6284644B1 (en) * | 2000-10-10 | 2001-09-04 | Chartered Semiconductor Manufacturing Ltd. | IMD scheme by post-plasma treatment of FSG and TEOS oxide capping layer |
US20080196910A1 (en) * | 2000-06-20 | 2008-08-21 | Radle Patrick J | Electrical sensing device modules for attachment to power tools and drills |
US6926473B2 (en) * | 2000-06-20 | 2005-08-09 | Actuant Corporation | Hand drill attachment |
AU2001282867A1 (en) | 2000-08-07 | 2002-02-18 | Xtremespectrum, Inc. | Electrically small planar uwb antenna apparatus and system thereof |
US7278218B2 (en) * | 2003-06-18 | 2007-10-09 | Irwin Industrial Tool Company | Laser line generating device with swivel base |
CN1551975A (zh) * | 2001-05-15 | 2004-12-01 | 欧文工业器械公司 | 激光线发生装置 |
DE10207425A1 (de) * | 2002-02-21 | 2003-09-04 | Bosch Gmbh Robert | Verfahren und Meßgerät zur Ortung eingeschlossener Objekte |
DE10252425A1 (de) | 2002-02-21 | 2004-02-05 | Robert Bosch Gmbh | Verfahren und Meßgerät zur Ortung eingeschlossener Objekte |
DE10207424A1 (de) | 2002-02-21 | 2003-09-04 | Bosch Gmbh Robert | Verfahren und Meßgerät zur Ortung eingeschlossener Objekte |
US20030218469A1 (en) * | 2002-02-27 | 2003-11-27 | Brazell Kenneth M. | Multifunctional object sensor |
US7495455B2 (en) | 2002-06-28 | 2009-02-24 | Solar Wide Industrial Limited | Stud sensing device |
US6894508B2 (en) * | 2002-06-28 | 2005-05-17 | Solar Wide Industrial Ltd. | Apparatus and method for locating objects behind a wall lining |
US7256587B2 (en) * | 2002-06-28 | 2007-08-14 | Solar Wide Industrial Limited | Multiple sensitivity stud sensing device |
US7013570B2 (en) | 2003-06-18 | 2006-03-21 | Irwin-Industrial Tool Company | Stud finder |
US7030768B2 (en) * | 2003-09-30 | 2006-04-18 | Wanie Andrew J | Water softener monitoring device |
US7295568B2 (en) * | 2003-12-31 | 2007-11-13 | Nokia Corporation | Apparatus, method and system for decision making to support network selection for datascasting in hybrid networks |
US7116091B2 (en) | 2004-03-04 | 2006-10-03 | Zircon Corporation | Ratiometric stud sensing |
CA2553727A1 (fr) * | 2004-03-09 | 2005-10-06 | Zircon Corporation | Detecteur de poteaux dote d'une tete flottante |
US6989662B2 (en) * | 2004-04-29 | 2006-01-24 | Zircon Corporation | Sensor auto-recalibration |
US7148703B2 (en) * | 2004-05-14 | 2006-12-12 | Zircon Corporation | Auto-deep scan for capacitive sensing |
US7193405B2 (en) * | 2004-06-07 | 2007-03-20 | The Stanley Works | Electronic multi-depth object locator with self-illuminating optical element warning and detection |
US20050281270A1 (en) * | 2004-06-16 | 2005-12-22 | Jouni Kossi | Apparatus, method and system for decision making to support network selection for multicast streams in hybrid networks |
US7487596B2 (en) | 2004-06-25 | 2009-02-10 | Irwin Industrial Tool Company | Laser line projected on an edge of a surface |
US7178250B2 (en) | 2004-07-21 | 2007-02-20 | Irwin Industrial Tool Company | Intersecting laser line generating device |
US7191532B2 (en) | 2004-08-17 | 2007-03-20 | Eastway Fair Company Limited | Modular tool assembly having a vacuum mounting arrangement |
US7181854B2 (en) * | 2004-08-17 | 2007-02-27 | Eastway Fair Company Limited | Laser leveling device having a suction mounting arrangement |
US8253619B2 (en) * | 2005-02-15 | 2012-08-28 | Techtronic Power Tools Technology Limited | Electromagnetic scanning imager |
DE102005015326A1 (de) * | 2005-04-01 | 2006-10-05 | Robert Bosch Gmbh | Verfahren zur Detektion von in einem Medium eingeschlossenen Objekten sowie Messgerät zur Durchführung des Verfahrens |
US8100088B2 (en) * | 2005-12-16 | 2012-01-24 | Stim, Llc | Animal nail clipper |
US20070137041A1 (en) * | 2005-12-16 | 2007-06-21 | Ben Manheimer | Animal nail clipper |
CA2633453C (fr) * | 2005-12-16 | 2014-03-25 | Ben Manheimer, Iii | Coupe-griffe |
CN2872361Y (zh) * | 2006-02-28 | 2007-02-21 | 南京德朔实业有限公司 | 物体探测器 |
US20080062669A1 (en) * | 2006-09-07 | 2008-03-13 | Parel Thomas M | Gravity dial level indicator for line generator |
US7591075B2 (en) | 2006-09-28 | 2009-09-22 | Techtronic Power Tools Technology Limited | Self-leveling mechanism |
US7504817B2 (en) * | 2007-03-28 | 2009-03-17 | Solar Wide Industrial Limited | Stud sensor |
US8251157B2 (en) | 2008-03-07 | 2012-08-28 | Milwaukee Electric Tool Corporation | Battery pack for use with a power tool and a non-motorized sensing tool |
US8193802B2 (en) * | 2008-04-09 | 2012-06-05 | Milwaukee Electric Tool Corporation | Slidably attachable non-contact voltage detector |
US9664808B2 (en) * | 2009-03-06 | 2017-05-30 | Milwaukee Electric Tool Corporation | Wall scanner |
US8476912B2 (en) * | 2010-03-04 | 2013-07-02 | Franklin Sensors, Inc. | Obscured feature detector and method |
US8593163B2 (en) * | 2010-03-04 | 2013-11-26 | Franklin Sensors, Inc. | Surface-conforming obscured feature detector |
US8884633B2 (en) * | 2010-03-04 | 2014-11-11 | Franklin Sensors Inc. | Obscured feature detector with pattern matching |
US8977869B2 (en) * | 2011-03-01 | 2015-03-10 | Broadcom Corporation | Method and system for controlling power of an IC chip based on reception of signal pulse from a neighboring chip |
US9179843B2 (en) | 2011-04-21 | 2015-11-10 | Hassan Ghaderi MOGHADDAM | Method and system for optically evaluating proximity to the inferior alveolar nerve in situ |
DE102012100950B4 (de) * | 2012-02-06 | 2019-06-13 | Sick Ag | Sensor zur Erfassung eines Objekts |
CN210155345U (zh) | 2016-06-24 | 2020-03-17 | 史丹利百得有限公司 | 用于沿着墙壁结构的表面移动以定位立柱的立柱探测设备 |
US10908312B2 (en) | 2016-06-24 | 2021-02-02 | Stanley Black & Decker Inc. | Systems and methods for locating a metal object |
CN106154336B (zh) * | 2016-06-28 | 2017-12-12 | 漳州市东方智能仪表有限公司 | 一种探测石膏板下面介质的电路及方法 |
DE102017212094A1 (de) | 2017-07-14 | 2019-01-17 | Robert Bosch Gmbh | Verfahren zur Ortung und Ortungsvorrichtung |
US10497248B2 (en) | 2017-10-13 | 2019-12-03 | Aj1E Superior Solutions, Llc | Remote water softener monitoring system |
US11131786B2 (en) | 2019-09-30 | 2021-09-28 | Zircon Corporation | Scanner for detecting objects behind an opaque surface |
US11693143B2 (en) | 2019-09-30 | 2023-07-04 | Zircon Corporation | Scanner for detecting objects behind an opaque surface |
US11512978B2 (en) | 2019-11-27 | 2022-11-29 | Zircon Corporation | Scanner for differentiating objects detected behind an opaque surface |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3278843A (en) * | 1962-10-01 | 1966-10-11 | Hughes Aircraft Co | Thickness rate monitoring system for depositing dielectric films |
US3662258A (en) * | 1969-09-16 | 1972-05-09 | Brunswick Corp | Device for locating nails beneath the surface of a bowling lane |
US3704413A (en) * | 1970-01-07 | 1972-11-28 | Maurice E Blevins | Method of translating the location of a predetermined position on one side of a substantially nonferrous structural barrier of a building to an opposite side of said barrier |
US3836848A (en) * | 1970-01-07 | 1974-09-17 | M Blevins | Method of translating the location of a predetermined position on one side of a substantially nonferrous structural barrier of a building to an opposite side of said barrier |
US4086528A (en) * | 1975-09-17 | 1978-04-25 | United Kingdom Atomic Energy Authority | Capacitive transducers |
US4041382A (en) * | 1976-08-16 | 1977-08-09 | The Sippican Corporation | Calibrating a measurement system including bridge circuit |
US4067225A (en) * | 1977-03-21 | 1978-01-10 | Mechanical Technology Incorporated | Capacitance type non-contact displacement and vibration measuring device and method of maintaining calibration |
US4099118A (en) * | 1977-07-25 | 1978-07-04 | Franklin Robert C | Electronic wall stud sensor |
US4130796A (en) * | 1977-12-07 | 1978-12-19 | Westinghouse Electric Corp. | Calibrating and measuring circuit for a capacitive probe-type instrument |
US4322678A (en) * | 1978-10-30 | 1982-03-30 | Capots Larry H | Identification of materials using their complex dielectric response |
US4464622A (en) * | 1982-03-11 | 1984-08-07 | Franklin Robert C | Electronic wall stud sensor |
US4639666A (en) * | 1984-08-27 | 1987-01-27 | New Holland, Inc. | Metal detector sensitivity adjustment and test assembly |
US4676100A (en) * | 1984-10-31 | 1987-06-30 | Berwind Corporation | Capacitance-type material level indicator |
GB8607747D0 (en) * | 1986-03-27 | 1986-04-30 | Duracell Int | Device |
US4847552A (en) * | 1987-07-07 | 1989-07-11 | The Boeing Company | Detection of electrically conductive materials beneath surface coatings employing eddy currents |
US4868910A (en) * | 1988-02-16 | 1989-09-19 | White's Electronics, Inc. | Metal detector with microprocessor control and analysis |
US4947116A (en) * | 1988-09-02 | 1990-08-07 | Hamilton Standard Controls, Inc. | Inductive speed sensor employing phase shift |
US5023484A (en) * | 1988-09-02 | 1991-06-11 | Cypress Semiconductor Corporation | Architecture of high speed synchronous state machine |
US4939455A (en) * | 1988-09-02 | 1990-07-03 | Hamilton Standard Controls, Inc. | Sensor having two-wire connection to load |
US5352974A (en) * | 1992-08-14 | 1994-10-04 | Zircon Corporation | Stud sensor with digital averager and dual sensitivity |
-
1992
- 1992-08-14 US US07/931,189 patent/US5352974A/en not_active Expired - Lifetime
-
1993
- 1993-08-11 DE DE69333884T patent/DE69333884T2/de not_active Expired - Lifetime
- 1993-08-11 EP EP04006219A patent/EP1429148A3/fr not_active Withdrawn
- 1993-08-11 JP JP6506333A patent/JPH08500443A/ja active Pending
- 1993-08-11 EP EP93918692A patent/EP0657032B1/fr not_active Expired - Lifetime
- 1993-08-11 CA CA002141553A patent/CA2141553C/fr not_active Expired - Lifetime
- 1993-08-11 WO PCT/US1993/007433 patent/WO1994004932A1/fr active IP Right Grant
-
1994
- 1994-09-08 US US08/303,268 patent/US5619128A/en not_active Expired - Lifetime
-
1996
- 1996-07-22 US US08/684,787 patent/US6023159A/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009057439A1 (de) | 2009-10-27 | 2011-05-05 | Gerd Reime | Vorrichtung und Verfahren zur fehlerfreien kapazitiven Messwerterfassung |
WO2011054459A1 (fr) | 2009-10-27 | 2011-05-12 | Reime Gerd | Dispositif et procédé permettant l'acquisition capacitive sans erreur de valeurs de mesure |
US9035662B2 (en) | 2009-10-27 | 2015-05-19 | Gerd Reime | Method and device for accurate capacitive measured value acquisition |
DE102015211551A1 (de) | 2015-06-23 | 2016-12-29 | Zircon Corp. | Vorrichtung und Verfahren zur Erfassung eines Gegenstandes |
US10712468B2 (en) | 2015-06-23 | 2020-07-14 | Zircon Corporation | Device and method for detecting an article |
Also Published As
Publication number | Publication date |
---|---|
EP0657032A1 (fr) | 1995-06-14 |
DE69333884T2 (de) | 2006-07-13 |
EP1429148A2 (fr) | 2004-06-16 |
US5619128A (en) | 1997-04-08 |
US5352974A (en) | 1994-10-04 |
CA2141553A1 (fr) | 1994-03-03 |
US6023159A (en) | 2000-02-08 |
WO1994004932A1 (fr) | 1994-03-03 |
JPH08500443A (ja) | 1996-01-16 |
DE69333884D1 (de) | 2006-02-23 |
EP1429148A3 (fr) | 2005-01-12 |
CA2141553C (fr) | 1999-03-30 |
EP0657032A4 (fr) | 1996-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0657032B1 (fr) | Detecteur de clous a double sensibilite | |
US4504922A (en) | Condition sensor | |
KR101771675B1 (ko) | 자동 정전용량형 터치 스캔 | |
US4736191A (en) | Touch activated control method and apparatus | |
US6198271B1 (en) | Electronic wall-stud sensor display | |
CA1105997A (fr) | Senseur capacitif | |
US7472028B2 (en) | Sensor or capacitance measuring with a microprocessor | |
US8264231B2 (en) | Switch circuit | |
EP0689677A1 (fr) | Appareil et methodes de mesure et de detection des variations de la valeur d'un condensateur | |
JPS63282669A (ja) | 電気部品のキャパシタンスと抵抗を測定するための方法及び装置 | |
GB2105957A (en) | Display device having unpatterned touch detection | |
JPS61253428A (ja) | 万能燃料量指示計装置 | |
US5264833A (en) | Automatic leak detector | |
JPH0363512A (ja) | 氷の検出装置及び方法 | |
US4840066A (en) | Ultrasonic thickness gauge having automatic transducer recognition and parameter optimization and method thereof | |
US4715008A (en) | Hand-held digital thickness gage | |
CN216772219U (zh) | 多节点检测电路、多节点系统及多节点系统装置 | |
US4837716A (en) | Twin-rate charging and discharging proportional type cursor position determining device | |
EP0039460A2 (fr) | Thermomètre médical électronique | |
JP3021221B2 (ja) | 移動物体の検出方法及び装置 | |
GB2166246A (en) | Processing of data which varies with time | |
JP3459020B2 (ja) | タッチセンサ回路 | |
EP0885373A1 (fr) | Procede de mesure d'un intervalle de temps a haute resolution | |
SU1580283A1 (ru) | Цифровой омметр | |
JP3284774B2 (ja) | パルス計測回路の入力論理しきい値測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950313 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19960329 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): DE FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 19990729 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051012 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060112 |
|
REF | Corresponds to: |
Ref document number: 69333884 Country of ref document: DE Date of ref document: 20060223 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060713 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110810 Year of fee payment: 19 Ref country code: DE Payment date: 20110810 Year of fee payment: 19 Ref country code: FR Payment date: 20110818 Year of fee payment: 19 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120811 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120811 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69333884 Country of ref document: DE Effective date: 20130301 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69333884 Country of ref document: DE Representative=s name: KOTITSCHKE & HEURUNG PARTNERSCHAFT, DE |