EP0654803A1 - Electrical transformer - Google Patents
Electrical transformer Download PDFInfo
- Publication number
- EP0654803A1 EP0654803A1 EP94116686A EP94116686A EP0654803A1 EP 0654803 A1 EP0654803 A1 EP 0654803A1 EP 94116686 A EP94116686 A EP 94116686A EP 94116686 A EP94116686 A EP 94116686A EP 0654803 A1 EP0654803 A1 EP 0654803A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- winding
- voltage
- primary
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004804 winding Methods 0.000 claims abstract description 107
- 230000001939 inductive effect Effects 0.000 claims abstract description 4
- 239000000696 magnetic material Substances 0.000 claims description 21
- 239000004020 conductor Substances 0.000 claims description 11
- 239000011810 insulating material Substances 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 230000009969 flowable effect Effects 0.000 claims description 4
- 230000004323 axial length Effects 0.000 claims description 3
- -1 nickel-zinc cobalt-iron oxides Chemical class 0.000 claims description 3
- 229910000859 α-Fe Inorganic materials 0.000 claims description 3
- 238000009413 insulation Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 2
- 239000011162 core material Substances 0.000 description 79
- 238000010276 construction Methods 0.000 description 4
- 238000010292 electrical insulation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase ac
- H01F38/28—Current transformers
- H01F38/30—Constructions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase ac
- H01F38/24—Voltage transformers
- H01F38/26—Constructions
Definitions
- the invention relates to an inductive electrical converter according to the preamble of the first claim.
- the high-voltage winding is always arranged horizontally or parallel to the grounded mounting surface for the favorable design of the high-voltage connection and for the optimization of the dielectric relationships to earth potential.
- the high voltage winding itself is as Layer winding carried out.
- the low-voltage winding is spatially concentric under the high-voltage winding with a parallel arrangement of layers and a common, congruent central axis.
- the invention is based on the invention, in an electrical converter according to the preamble of the first claim, to take measures by which a reduction in the construction volume is achieved.
- an adjacent core part consists of a magnetic material that is a good conductor of the required alternating current magnetic field, but whose electrical conductivity is extremely low.
- a corresponding, high-resistance magnetic material consists, for example, of ferrite, in particular based on nickel-zinc cobalt-iron oxides.
- the axis of the high-voltage winding is arranged vertically or at right angles to the grounded mounting surface.
- the high-voltage winding itself is designed as a chamber winding.
- the low-voltage winding is attached to the front of the high-voltage chamber winding on the earth potential side.
- the central axis of the two coils is preferably on a line, but, in contrast to the known arrangement, is connected in series.
- the special feature of a transducer designed in this way is that the electrical potential in the primary winding and in the magnetic core is reduced to approximately the same extent over the distance along the primary winding. This leads to small potential differences between the primary coil and the adjacent sections of the magnetic core, so that correspondingly small insulation distances are required.
- the primary coil of the voltage converter is preferably designed in the manner of an axially elongated chamber coil in which the winding wire is continuously wound starting at one axial end in such a way that the other end of the winding lies on the opposite end of the coil body.
- successive individual chambers in the axial direction are wound, preferably in multiple layers, starting from one end of the bobbin, until finally the end of the winding can be made from the last chamber at the axially opposite end.
- a step-by-step reduction of the voltage potential across the axial length of the chamber coil then occurs.
- the electrical capacitance of the winding results in a corresponding voltage distribution over the relevant length of the magnetic core parts guided in the chamber coil or on the outside thereof.
- the secondary coil Adjacent to the winding end of the primary coil to be connected to ground, the secondary coil is in this case wrapped in an additional chamber, wherein the coil body in question can also be designed independently. This makes it possible to wind the individual bobbins on separate winding machines with different wire thicknesses.
- the magnetic core can consist of the high-resistance magnetic material.
- the magnetic core When using coils lying axially next to one another, it is expedient to form the magnetic core from two core parts which abut one another with their open sides and are cross-sectionally E-shaped, the central limbs of which immerse centrally in the primary and secondary windings from opposite sides, their outer limbs at least these windings enclose over part of its scope.
- the core halves can also be configured as pot cores joined together.
- circumferential ribs can be provided on the outer surface of the jacket to extend the axially effective insulating section.
- a connection element for the connection to the winding end of the primary winding to be connected on the high-voltage side can be provided, for example, in the sealing compound on the end face. The connection element is located adjacent to the winding end in question.
- the magnetic core is galvanically applied on one side to high voltage or ground potential, while in the second case it is isolated against high voltage and / or against ground potential, and the potential is only controlled via the relatively large capacitances between the winding sections and the adjacent core parts.
- an O-shaped magnetic core can be used, in which at least the two windings are magnetic coupling core parts consist of the high-resistance magnetic material.
- the core parts passing through the windings can consist of highly permeable, electrically highly conductive materials, in particular of metallic magnetic sheets.
- the primary winding can also be replaced by the current-carrying conductor, which, for example, is led through the free cross-section of the core near one end leg, in which case the transformer is constructed as a current transformer.
- the core can be made entirely of electrically insulating core material or, if necessary, the magnetic core parts adjacent to the windings or the current-carrying conductor to reduce the magnetic resistance can be made of electrically highly conductive magnetic materials and only the connecting legs can be made of the high-resistance material.
- An inductive electrical converter which is preferably suitable for voltage or current measurement in medium-voltage networks, has a soft-magnetic core 1 suitable for AC operation, to which a primary winding 2 and a secondary winding 3 are assigned.
- the primary winding which is perpendicular or at right angles to the grounded mounting surface, is connected to voltage transformers on the one hand to the high voltage to be measured and on the other hand to ground potential, while the secondary winding emits a low voltage signal for measurement or control purposes.
- the magnetic core 1 consists, at least in the section or sections adjacent to the primary coil 2, of a magnetically highly conductive magnetic material which, however, has a very low electrical conductivity, ie a high electrical resistance.
- a ferrite is particularly suitable for this purpose, which is constructed in particular on the basis of nickel-zinc cobalt-iron oxides.
- the same electrical potential does not arise in the magnetic core 1 over its extent, rather the voltage potential of the high-resistance magnetic core adapts either to the adjacent potential, in particular to the primary winding, via a direct earth or high-voltage connection and / or via the voltage coupling as a result of winding capacitances.
- the voltage potential is thus reduced to the same extent over the distance along the primary winding both in the primary winding and in the adjacent magnetic core. This results in a correspondingly small potential difference between adjacent winding and core parts, so that only correspondingly small insulation distances are required.
- the construction volume of the converter is thereby reduced considerably.
- the magnetic core 1 consists of the same magnetic material throughout, which has a low electrical conductivity.
- the primary coil of this converter which is designed as a voltage converter, is constructed in the manner of a chamber coil, in which the winding wire is wound into a coil former 4 divided into individual chambers.
- the individual chambers lie next to one another in the axial direction of the primary coil 2, the winding wire being initially wound from a coil former end 5 into an axially first end chamber of the coil former 4. If the first chamber is sufficiently filled, the winding wire is guided to the subsequent second chamber and, after it has been sufficiently wound, it is passed from chamber to chamber until the last chamber of the coil former, which is assigned to the primary winding, is provided with the required number of turns.
- the potential distribution in the primary winding thus decreases substantially in steps from the upper winding end 5 to be connected to high voltage to the lower winding end 6 to be connected to ground potential over the axial length.
- the magnetic core which acts like electrical insulating material, for example the ground potential present on the lower, uninsulated base area 7 of the magnetic core 1 is not carried over into the region of the upper winding end. Rather, the magnetic core acts as an electrical insulator over its entire length, so that additional insulation measures can be largely minimized.
- the secondary winding 3 In the axial extension of the primary winding 2 is the secondary winding 3, which is enclosed by the same magnetic core 1.
- the secondary winding is arranged adjacent to the winding connection 6 to be connected to ground, so that an electrical insulating layer 8 which may be in between need only be matched to the voltage potential of the secondary winding.
- the magnetic core 1 should not consist entirely of the electrically high-resistance magnetic material for reasons of cost or for reasons of permeability values, then the magnetic core 1 according to FIG. 1 according to FIG. 3 can be constructed from different magnetic materials. It is sufficient here if the core part 1.1, which runs axially parallel to the primary winding, both of the coil former and outside of it, consists of the high-resistance magnetic material, while a core part 1.2, which acts as an upper yoke and connects the core parts 1.1, as well as a core part 1.3, in particular accommodating the secondary winding 3, which also connects the core parts 1.1 together, is made of highly permeable magnetic material.
- the lower core part 1.3 can optionally also axially overlap a part of the secondary coil in the region of the grounded winding connection 6.
- the insulation path formed by the high-resistance magnetic core parts 1.1 along the primary coil loaded with high voltage is retained.
- the core parts 1.2 and 1.3 reduce the magnetic resistance in the magnetic circuit without reducing the electrical properties.
- the upper core part 1.2 can be connected directly to the high-voltage potential to be measured and the lower core part 1.3 can be connected to ground potential. In any case, the upper end of the winding does not require any special electrical insulation through the core part 1.2.
- the magnetic core according to FIGS. 1 to 2 consists of two core parts which abut one another with their open sides and are E-shaped in their shape, the central limbs 1.13 immersing centrally in the primary and secondary windings 2.3 and the outer limbs 1.11, 1.12 these Enclose windings 2,3 at least over part of their circumference.
- pot cores are used for the core parts.
- the cavities between the core 1 and the windings 2, 3 and also the outside surfaces of these parts, which are free on the outside, are poured out and encapsulated with flowable, hardening insulating material 9 in a sealed and bubble-free manner.
- the base 7 can remain without an insulating layer.
- the outer insulating layer 9 can at the same time be provided with circumferential, radially outwardly directed ribs 10 which extend the insulating distance between a connection element 12 cast into the upper end 11 of the insulating layer and connected to the upper winding end 5 and the base area 7.
- the outer insulating layer 9 can additionally be provided in the area of its jacket with a terminal box 13 which receives the necessary connection terminals for the secondary winding 3 and, if appropriate, for the earth connection 6 of the primary winding 2.
- the magnetic core is designed as an O-core, the primary coil 2 and / or the secondary coil 3 being seated on core parts 1.14 and 1.15 running parallel to one another.
- These core parts 1.14 and 1.15 pass through the windings 2, 3, which are arranged radially next to one another, on both sides and consist of electrically and magnetically highly conductive magnetic material.
- the necessary solid magnetic coupling between them Core parts 1.14 and 1.15 are made by further core parts 1.16, which connect protruding ends of the core parts 1.14 and 1.15 to each other and thus close the magnetic circuit.
- the metallic core parts 1.14 and 1.15 can be at least through capacitive coupling to high voltage potential or to ground potential, however, with good magnetic coupling, the interposed core parts 1.16 made of electrically insulating magnetic material take on the necessary electrical isolation.
- the primary winding can be wound directly on the core part 1.14 assigned to it and the secondary winding 3 can be wound directly on the core part 1.15 assigned to it.
- the two core parts 1.14 and 1.15 can also consist of electrically insulating and magnetically highly conductive material.
- an O-shaped ring core shaped approximately into a rectangle is also used according to FIGS. 5 and 6, which at least also has 3 core parts made of the electrically high-resistance core material at the transition from the high-voltage side to the secondary winding .
- the primary winding is e.g. by a straight conductor rod 2.1. replaced, which is guided in the region of the core part opposite the secondary winding through the free cross section within the magnetic core 1.
- This conductor 2.1 is preferably detachably guided through the magnetic core 1, so that the magnetic core with the secondary winding 3 can also be pushed onto busbars or the like.
- Electrical insulation 9 also surrounds the core 1 with the secondary winding 3 here. If the converter is arranged in a space which is filled with insulating gas such as SF6, the insulating material 9 which has been introduced subsequently can be dispensed with.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transformers For Measuring Instruments (AREA)
- Coils Of Transformers For General Uses (AREA)
Abstract
Description
Die Erfindung betrifft einen induktiven elektrischen Wandler gemäß dem Oberbegriff des ersten Anspruchs.The invention relates to an inductive electrical converter according to the preamble of the first claim.
Es ist bei Strom- oder Spannungswandlern insbesonders für die Mittelspannungstechnik ganz allgemein bekannt, eine zumindest einseitig an Hochspannungspotential gelegte Primärwicklung mit einer galvanisch davon getrennten Sekundärwicklung über einen weichmagnetischen Kern, insbesondere einen Schnittbandkern aus elektrisch und magnetisch gut leitendem Kernblech induktiv zu koppeln. Derartige Wandler arbeiten nach dem Transformatorprinzip, wonach das Übersetzungsverhältnis zwischen Ober- und Unterspannung gleich dem Windungszahlverhältnis zwischen einer Primärspule und einer Sekundärspule ist. Da das sich daraus ergebende Spannungsteilerverhältnis in der erforderlichen Genauigkeit nur für nahezu unbelastete Wicklungen zutrifft, wird ein entsprechend aufgebauter Spannungswandler hinsichtlich seiner magnetischen Kernbelastung wie ein leerlaufender Transformator dimensioniert. Bei dieser üblichen Bauart ergibt sich in Folge der notwendigen elektrischen Isolation zwischen den Wicklungen und gegen Erdpotential eine vorbestimmte Baugröße, die auch durch eine Änderung der zu übertragenden elektrischen Leistung nur geringfügig veränderbar ist. Zur günstigen Gestaltung des Hochspannungsanschlusses und zur Optimierung der dielektrischen Verhältnisse zum Erdpotential hin ist die Hochspannungswicklung immer horizontal bzw. parallel zur geerdeten Befestigungsfläche angeordnet. Die Hochspannungswicklung selbst ist als Lagenwicklung ausgeführt. Die Niederspannungwicklung liegt räumlich konzentrisch unter der Hochspannungswicklung mit paralleler Lagenanordnung und gemeinsamer, deckungsgleicher Mittelachse.It is very well known in the case of current or voltage transformers, in particular for medium-voltage technology, to inductively couple a primary winding, which is at least one-sidedly connected to high voltage potential, with a galvanically separated secondary winding via a soft magnetic core, in particular a cutting tape core made of electrically and magnetically well-conducting core sheet. Such converters work according to the transformer principle, according to which the transmission ratio between high and low voltage is equal to the number of turns ratio between a primary coil and a secondary coil. Since the resulting voltage divider ratio only applies to almost unloaded windings with the required accuracy, a correspondingly constructed voltage transformer is dimensioned with regard to its magnetic core load like an idling transformer. In the case of this customary design, the required electrical insulation between the windings and against ground potential results in a predetermined size, which can only be changed slightly by changing the electrical power to be transmitted. The high-voltage winding is always arranged horizontally or parallel to the grounded mounting surface for the favorable design of the high-voltage connection and for the optimization of the dielectric relationships to earth potential. The high voltage winding itself is as Layer winding carried out. The low-voltage winding is spatially concentric under the high-voltage winding with a parallel arrangement of layers and a common, congruent central axis.
Der Erfindung liegt die Erfindung zugrunde, bei einem elektrischen Wandler gemäß dem Oberbegriff des ersten Anspruchs Maßnahmen zu treffen, durch welche eine Verminderung des Bauvolumens erzielt wird.The invention is based on the invention, in an electrical converter according to the preamble of the first claim, to take measures by which a reduction in the construction volume is achieved.
Die Lösung dieser Aufgabe erfolgt gemäß der Erfindung durch die kennzeichnenden Merkmale des ersten Anspruchs.This object is achieved according to the invention by the characterizing features of the first claim.
Bei einer Ausgestaltung eines Wandlers gemäß der Erfindung besteht zumindest im Bereich der Primärwicklung ein benachbarter Kernteil aus einem das erforderliche Wechselstrommagnetfeld gut leitenden Magnetmaterial, dessen elektrische Leitfähigkeit jedoch extrem niedrig ist. Ein entsprechendes, hochohmiges Magnetmaterial besteht beispielsweise aus Ferrit, insbesondere auf der Basis von Nickel-Zink-Kobald-Eisen-Oxiden. Ferner ist die Achse der Hochspannungswicklung vertikal bzw. im rechten Winkel zur geerdeten Befestigungsfläche angeordnet. Die Hochspannungswicklung selbst ist als Kammerwicklung ausgeführt. Die Niederspannungswicklung ist stirnseitig und zwar erdpotentialseitig an die Hochspannungskammerwicklung angefügt. Die Mittelachse der beiden Spulen befindet sich vorzugsweise auf einer Linie, ist jedoch im Gegensatz zur bekannten Anordnung hintereinander anschließend. Die Besonderheit eines so ausgebildeten Wandlers besteht darin, daß das elektrische Potential in der Primärwicklung wie im Magnetkern in etwa gleichem Maß über die Strecke längs der Primärwicklung abgebaut wird. Das führt zu geringen Potentialunterschieden zwischen der Primärspule und den benachbarten Abschnitten des Magnetkerns, so daß entsprechend geringe Isolationsabstände erforderlich sind.In one embodiment of a transducer according to the invention, at least in the area of the primary winding, an adjacent core part consists of a magnetic material that is a good conductor of the required alternating current magnetic field, but whose electrical conductivity is extremely low. A corresponding, high-resistance magnetic material consists, for example, of ferrite, in particular based on nickel-zinc cobalt-iron oxides. Furthermore, the axis of the high-voltage winding is arranged vertically or at right angles to the grounded mounting surface. The high-voltage winding itself is designed as a chamber winding. The low-voltage winding is attached to the front of the high-voltage chamber winding on the earth potential side. The central axis of the two coils is preferably on a line, but, in contrast to the known arrangement, is connected in series. The special feature of a transducer designed in this way is that the electrical potential in the primary winding and in the magnetic core is reduced to approximately the same extent over the distance along the primary winding. This leads to small potential differences between the primary coil and the adjacent sections of the magnetic core, so that correspondingly small insulation distances are required.
Hierdurch ergibt sich eine extrem kleine Bauform. Dabei ist es möglich, einen ggf. auch elektrisch leitenden, unmittelbar der Primärspule zugeordneten Kernteil zusammen mit dem betreffenden Ende der Primärwicklung an Hochspannungspotential und das räumlich davon entfernte, einem Massenanschluß der Primärwicklung zugeordnete, ggf. wiederum elektrisch leitenden Kernteil an Massepotential anzuschließen, wenn der oder die dazwischenliegenden Kernteile aus dem elektrisch hochohmigen Magnetmaterial bestehen.This results in an extremely small design. It is possible to connect a possibly also electrically conductive core part directly assigned to the primary coil together with the relevant end of the primary winding to high-voltage potential and the spatially distant one that is assigned to a ground connection of the primary winding and possibly in turn electrically conductive core part to ground potential if the or the intermediate core parts consist of the electrically high-resistance magnetic material.
Die Primärspule des Spannungswandlers wird vorzugsweise nach Art einer axial langgestreckten Kammerspule ausgebildet, in welcher der Wicklungsdraht beginnend an einem axialen Ende fortlaufend so aufgewickelt wird, daß das andere Wicklungsende am gegenüberliegenden Spulenkörperende liegt. Insbesondere werden in axialer Richtung aufeinanderfolgende einzelne Kammern beginnend von einem Spulenkörperende aus nacheinander vorzugsweise mehrlagig bewickelt, bis schließlich das Wicklungsende aus der letzten Kammer am axial gegenüberliegenden Ende ausgeführt werden kann. Es tritt dann eine durch die Kammern vorgegebene stufige Reduzierung des Spannungspotentials über die axiale Länge der Kammerspule auf. Bei hochohmigem Magnetkernmaterial ergibt sich durch die elektrische Kapazität der Wicklung eine entsprechende Spannungsverteilung über die betreffende Länge der in der Kammerspule bzw. an deren Außenseite geführten Magnetkernteile. Benachbart zu dem an Masse anzuschaltenden Wicklungsende der Primärspule wird hierbei die Sekundärspule in eine zusätzliche Kammer eingewickelt, wobei der betreffende Spulenkörper auch eigenständig ausgebildet sein kann. Dadurch ist es möglich, die einzelnen Spulenkörper auf getrennten Wickelmaschinen mit unterschiedlichen Drahtstärken zu bewickeln. Der Magnetkern kann insgesamt aus dem hochohmigen Magnetmaterial bestehen.The primary coil of the voltage converter is preferably designed in the manner of an axially elongated chamber coil in which the winding wire is continuously wound starting at one axial end in such a way that the other end of the winding lies on the opposite end of the coil body. In particular, successive individual chambers in the axial direction are wound, preferably in multiple layers, starting from one end of the bobbin, until finally the end of the winding can be made from the last chamber at the axially opposite end. A step-by-step reduction of the voltage potential across the axial length of the chamber coil then occurs. In the case of high-resistance magnetic core material, the electrical capacitance of the winding results in a corresponding voltage distribution over the relevant length of the magnetic core parts guided in the chamber coil or on the outside thereof. Adjacent to the winding end of the primary coil to be connected to ground, the secondary coil is in this case wrapped in an additional chamber, wherein the coil body in question can also be designed independently. This makes it possible to wind the individual bobbins on separate winding machines with different wire thicknesses. The magnetic core can consist of the high-resistance magnetic material.
Bei Verwendung von axial nebeneinanderliegenden Spulen ist es zweckmäßig, den Magnetkern aus zwei mit ihren offenen Seiten aneinanderanstoßenden, im Querschnitt E-förmigen Kernteilen zu bilden, deren Mittelschenkel zentral in die Primär-und Sekundärwicklung von gegenüberliegenden Seiten aus eintauchen, wobei ihre Außenschenkel diese Wicklungen zumindest über einen Teil ihres Umfanges umschließen. Die Kernhälften können dabei auch als aneinandergefügte Topfkerne ausgebildet sein. Für einen mechanisch wie elektrisch stabilen Aufbau des Wandlers ist es zweckmäßig, die Hohlräume im Bereich der Wicklung sowie den Außenmantel und zumindest eine Stirnseite des Magnetkerns und, soweit offen, auch der Wicklungen mit einem fließfähigen, aushärtenden Isoliermaterial auszugießen bzw. zu umgießen. Dabei können an der Mantelaußenfläche umlaufende Rippen zur Verlängerung der axial wirksamen Isolierstrecke vorgesehen sein. Außerdem kann beispielsweise in der stirnseitigen Vergußmasse ein Anschlußelement für die Verbindung mit dem hochspannungsseitig anzuschließenden Wicklungsende der Primärwicklung vorgesehen sein. Das Anschlußelement befindet sich dabei benachbart zum betreffenden Wicklungsende.When using coils lying axially next to one another, it is expedient to form the magnetic core from two core parts which abut one another with their open sides and are cross-sectionally E-shaped, the central limbs of which immerse centrally in the primary and secondary windings from opposite sides, their outer limbs at least these windings enclose over part of its scope. The core halves can also be configured as pot cores joined together. For a mechanically and electrically stable construction of the transducer, it is advisable to pour or pour the cavities in the area of the winding and the outer jacket and at least one end face of the magnetic core and, if open, also the windings with a flowable, hardening insulating material. In this case, circumferential ribs can be provided on the outer surface of the jacket to extend the axially effective insulating section. In addition, a connection element for the connection to the winding end of the primary winding to be connected on the high-voltage side can be provided, for example, in the sealing compound on the end face. The connection element is located adjacent to the winding end in question.
Grundsätzlich besteht die Möglichkeit, die Potentialsteuerung längs des Magnetkernes galvanisch oder kapazitiv durchzuführen. Im ersten Fall wird der Magnetkern jeweils einseitig an Hochspannung bzw. Erdpotential galvanisch angelegt, während er im zweiten Fall gegen Hochspannung und/oder gegen Erdpotential isoliert ist und die Potentialsteuerung nur über die relativ großen Kapazitäten zwischen den Wicklungsabschnitten und den benachbarten Kernteilen erfolgt.Basically there is the possibility of performing the potential control along the magnetic core galvanically or capacitively. In the first case, the magnetic core is galvanically applied on one side to high voltage or ground potential, while in the second case it is isolated against high voltage and / or against ground potential, and the potential is only controlled via the relatively large capacitances between the winding sections and the adjacent core parts.
Werden die Wlcklungen mit Abstand nebeneinander angeordnet, dann kann ein O-förmiger Magnetkern verwendet werden, bei dem zumindest die die beiden Wicklungen magnetisch koppelnden Kernteile aus dem hochohmigen Magnetmaterial bestehen. Die die Wicklungen durchsetzenden Kernteile können dagegen aus hochpermeablen, elektrisch gut leitfähigen Werkstoffen, insbesondere aus metallischen Magnetblechen bestehen. Bei der Anwendung eines O-Kerns kann die Primärwicklung auch durch den stromführenden Leiter ersetzt werden, der z.B. nahe einem Endschenkel durch den freien Querschnitt des Kern hindurchgeführt wird, wobei dann der Wandler als Stromwandler aufgebaut ist. Auch hierbei kann der Kern vollständig aus elektrisch isolierenden Kernmaterial oder aber ggf. die den Wicklungen bzw. dem stromführenden Leiter benachbarten Magnetkernteile zur Verminderung des magnetischen Widerstandes aus elektrisch gut leitenden Magnetmaterialien bestehen und nur wieder die verbindenden Schenkel aus dem hochohmigen Material bestehen.If the windings are arranged next to one another at a distance, then an O-shaped magnetic core can be used, in which at least the two windings are magnetic coupling core parts consist of the high-resistance magnetic material. The core parts passing through the windings, on the other hand, can consist of highly permeable, electrically highly conductive materials, in particular of metallic magnetic sheets. When using an O-core, the primary winding can also be replaced by the current-carrying conductor, which, for example, is led through the free cross-section of the core near one end leg, in which case the transformer is constructed as a current transformer. Here, too, the core can be made entirely of electrically insulating core material or, if necessary, the magnetic core parts adjacent to the windings or the current-carrying conductor to reduce the magnetic resistance can be made of electrically highly conductive magnetic materials and only the connecting legs can be made of the high-resistance material.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in zusätzlichen Ansprüchen niedergelegt.Further advantageous embodiments of the invention are laid down in additional claims.
Die Erfindung wird nachfolgend anhand der Prinzipskizzen von verschiedenen Ausführungsbeispielen näher erläutert.The invention is explained in more detail below on the basis of the schematic diagrams of various exemplary embodiments.
Es zeigen:
- Fig. 1 einen Spannungswandler mit Kammerspule im Längsschnitt,
- Fig.2 einen Querschnitt durch den Spannungswandler gemäß Fig. 1.
- Fig. 3 einen aus unterschiedlichen Magnetwerkstoffen aufgebauten Magnetkern für den Spannungswandler nach Fig. 1,
- Fig. 4 einen Spannungswandler mit räumlich getrennten, radial nebeneinanderliegenden Wicklungen,
- Fig. 5 in einer schematischen Seitenansicht einen Stromwandler und
- Fig. 6 den Stromwandler nach Fig. 5 in einem Längsschnitt.
- 1 shows a voltage converter with a chamber coil in longitudinal section,
- 2 shows a cross section through the voltage converter according to FIG. 1.
- 3 shows a magnetic core constructed from different magnetic materials for the voltage converter according to FIG. 1,
- 4 shows a voltage converter with spatially separated, radially adjacent windings,
- Fig. 5 is a schematic side view of a current transformer and
- Fig. 6 shows the current transformer of FIG. 5 in a longitudinal section.
Ein induktiver elektrischer Wandler, der vorzugsweise für die Spannungs- oder Strommessung in Mittelspannungsnetzen geeignet ist, weist einen für Wechselstrombetrieb geeigneten weichmagnetischen Kern 1 auf, dem eine Primärwicklung 2 und eine Sekundärwicklung 3 zugeordnet sind. Die senkrecht bzw. rechtwinkelig zur geerdeten Befestigungsfläche stehende Primärwicklung wird bei Spannungswandlern einerseits an die zu messende Hochspannung und andererseits an Massepotential angeschaltet, während die Sekundärwicklung ein Niederspannungssignal für Meß- oder Steuerzwecke abgibt. Hierbei besteht der Magnetkern 1 zumindest in dem oder den der Primärspule 2 benachbarten Abschnitten aus einem zwar magnetisch gut leitenden Magnetmaterial, das jedoch eine sehr geringe elektrische Leitfähigkeit also einen hohen elektrischen Widerstand aufweist. Hierfür eignet sich insbesondere ein Ferrit, der insbesondere auf der Basis von Nickel-Zink-Kobald-Eisen-Oxiden aufgebaut ist. Im Magnetkern 1 entsteht dadurch nicht über seine Ausdehnung hinweg gleiches elektrisches Potential, vielmehr paßt sich das Spannungspotential des hochohmigen Magnetkerns entweder über eine direkte erd- bzw. hochspannungsseitige Verbindung und/oder über die Spannungskopplung infolge von Wicklungskapazitäten an das benachbarte Potential insbesondere der Primärwicklung an. Das Spannungspotential wird somit sowohl in der Primärwicklung wie im benachbarten Magnetkern in etwa gleichem Maße über die Strecke längs der Primärwicklung abgebaut. Hieraus ergibt sich ein entsprechend geringer Potentialunterschied zwischen benachbarten Wicklungs- und Kernteilen, so daß nur entsprechend geringe Isolationsabstände erforderlich sind. Das Bauvolumen des Wandlers verringert sich dadurch erheblich.An inductive electrical converter, which is preferably suitable for voltage or current measurement in medium-voltage networks, has a soft-
Gemäß Fig.1 besteht der Magnetkern 1 aus durchgehend gleichem Magnetmaterial, das eine geringe elektrische Leitfähigkeit aufweist. Dabei ist die senkrecht bzw. rechtwinklig zur geerdeten Befestigungsfläche oder Grundfläche 7 stehende Primärspule dieses als Spannungswandler ausgebildeten Wandlers nach Art einer Kammerspule aufgebaut, bei welcher der Wicklungsdraht in einen in einzelne Kammern unterteilten Spulenkörper 4 eingewickelt ist. Die einzelnen Kammern liegen dabei in axialer Richtung der Primärspule 2 nebeneinander, wobei der Wicklungsdraht von einem Spulenkörperende 5 aus zunächst in eine axial erste endständige Kammer des Spulenkörpers 4 eingewickelt wird. Bei ausreichender Füllung der ersten Kammer wird der Wicklungsdraht zur nachfolgenden zweiten Kammer geführt und nach deren ausreichender Bewicklung weiter von Kammer zu Kammer, bis die der Primärwicklung zugeordnete letzte Kammer des Spulenkörpers mit der erforderlichen Windungszahl versehen ist. Die Potentialverteilung in der Primärwicklung nimmt somit im wesentlichen stufenförmig vom an Hochspannung zu legenden oberen Wicklungsende 5 bis zum unteren an Massepotential zu legenden Wicklungsende 6 über die axiale Länge ab. Aufgrund des wie elektrisches Isoliermaterial wirkenden Magnetkerns wird beispielsweise nicht das an der unteren, unisolierten Grundfläche 7 des Magnetkerns 1 anliegende Massepotential bis in den Bereich des oberen Wicklungsendes verschleppt. Vielmehr wirkt der Magnetkern über seine gesamte Länge als elektrischer Isolator, so daß zusätzliche Isolationsmaßnahmen weitgehend minimiert werden können.According to Figure 1, the
In der axialen Verlängerung der Primärwicklung 2 befindet sich die Sekundärwicklung 3, die vom gleichen Magnetkern 1 eingeschlossen ist. Die Sekundärwicklung ist dabei benachbart zum an Masse anzuschaltenden Wicklungsanschluß 6 angeordnet, so daß eine ggf. dazwischenliegende elektrische Isolierschicht 8 nur auf das Spannungspotential der Sekundärwicklung abgestimmt zu sein braucht.In the axial extension of the primary winding 2 is the secondary winding 3, which is enclosed by the same
Wenn der Magnetkern 1 aus Kostengründen oder aus Gründen der Permeabilitätswerte nicht insgesamt aus dem elektrisch hochohmigen Magnetmaterial bestehen soll, dann kann der Magnetkern 1 nach Fig. 1 gemäß Fig. 3 aus unterschiedlichen magnetischen Materialien aufgebaut werden. Hierbei genügt es, wenn der axial parallel zur Primärwicklung verlaufende Kernteil 1.1 sowohl des Spulenkörpers wie auch außerhalb desselben aus dem hochohmigen Magnetmaterial besteht, während ein als oberes Joch wirkender, die Kernteile 1.1 verbindender Kernteil 1.2 ebenso wie ein insbesondere die Sekundärwicklung 3 aufnehmender Kernteil 1.3, der ebenfalls die Kernteile 1.1 miteinander verbindet, aus hochpermeablem Magnetwerkstoff gefertigt wird. Dabei kann der untere Kernteil 1.3 ggf. auch einen Teil der Sekundärspule im Bereich des geerdeten Wicklungsanschlusses 6 axial übergreifen. Die durch die hochohmigen Magnetkernteile 1.1 gebildete Isolationsstrecke entlang der mit Hochspannung belasteten Primärspule bleibt dabei erhalten. Es wird jedoch durch die Kernteile 1.2 und 1.3 eine Verminderung des magnetischen Widerstandes im Magnetkreis herbeigeführt, ohne die elektrischen Eigenschaften zu mindern. Dabei kann der obere Kernteil 1.2 unmittelbar mit dem zu messenden Hochspannungspotential und der untere Kernteil 1.3 mit Massepotential verbunden sein. Jedenfalls bedarf eine Durchführung des oberen Wicklungsendes durch den Kernteil 1.2 keiner besonderen elektrischen Isolation.If the
Der Magnetkern gemäß den Fig. 1 bis 2 besteht aus zwei mit ihren offenen Seiten aneinander anstoßenden und in ihrer Form E-förmigen Kernteilen, wobei die Mittelschenkel 1.13 zentral in die Primär- bzw. Sekundärwicklung 2,3 eintauchen und die Außenschenkel 1.11, 1.12 diese Wicklungen 2,3 zumindest über einen Teil ihres Umfangs umschließen. Soll im Gegensatz zur Ausführungsform nach Fig. 2 ein voller Umschluß der Wicklungen 2,3 erfolgen, dann werden für die Kernteile Topfkerne verwendet.The magnetic core according to FIGS. 1 to 2 consists of two core parts which abut one another with their open sides and are E-shaped in their shape, the central limbs 1.13 immersing centrally in the primary and secondary windings 2.3 and the outer limbs 1.11, 1.12 these Enclose
Zur Erzielung einer ausreichenden elektrischen wie mechanischen Stablität werden die Hohlräume zwischen dem Kern 1 und den Wicklungen 2,3 und auch die nach außen freien Mantelflächen dieser Teile mit fließfähigem, aushärtendem Isoliermaterial 9 dicht und blasenfrei aus- bzw. umgossen. Dabei kann die Grundfläche 7 ohne Isolierschicht bleiben. Die äußere Isolierschicht 9 kann dabei gleichzeitig mit umlaufenden, radial nach außen gerichteten Rippen 10 versehen werden, welche die Isolierstrecke zwischen einem in den oberen Abschluß 11 der Isolierschicht eingegossenen, mit dem oberen Wicklungsende 5 verbundenen Anschlußelement 12 und der Grundfläche 7 verlängern. Die äußere Isolierschicht 9 kann zusätzlich im Bereich ihres Mantels mit einem Klemmenkasten 13 versehen sein, der die notwendigen Anschlussklemmen für die Sekundärwicklung 3 und ggf. für den Erdanschluß 6 der Primärwicklung 2 aufnimmt.In order to achieve sufficient electrical and mechanical stability, the cavities between the
Gemäß Fig. 4 ist bei einem Stromwandler der Magnetkern als O-Kern ausgebildet, wobei die Primärspule 2 und/oder die Sekundärspule 3 auf parallel zueinander verlaufenden Kernteilen 1.14 und 1.15 sitzen. Diese Kernteile 1.14 und 1.15 durchgreifen die radial nebeneinander angeordneten Wicklungen 2,3 jeweils beidseitig und bestehen aus elektrisch wie magnetisch hochleitendem Magnetmaterial. Die notwendige feste magnetische Kopplung zwischen diesen Kernteilen 1.14 und 1.15 erfolgt dabei durch weitere Kernteile 1.16, die jeweils überstehende Enden der Kernteile 1.14 und 1.15 miteinander verbinden und so den magnetischen Kreis schließen. Bei diesem Aufbau können die metallischen Kernteile 1.14 und 1.15 zumindest durch kapazitive Kopplung an Hochspannungspotential bzw. an Massepotential liegen, jedoch übernehmen bei guter magnetischer Kopplung die zwischengefügten Kernteile 1.16 aus elektrisch isolierendem Magnetmaterial die erforderliche Potentialtrennung. Dabei kann die Primärwicklung direkt auf den ihr zugeordneten Kernteil 1.14 und die Sekundärwicklung 3 direkt auf den ihr zugeordneten Kernteil 1.15 aufgewickelt sein. Selbstverständlich können auch die beiden Kernteile 1.14 und 1.15 aus elektrisch isolierendem und magnetisch hochleitfähigem Werkstoff bestehen.According to FIG. 4, in a current transformer the magnetic core is designed as an O-core, the
Soll ein Wandler dieser Art als Stromwandler Verwendung finden, dann wird gemäß den Fig. 5 und 6 ebenfalls ein etwa zu einem Rechteck ausgeformter O-förmiger Ringkern verwendet, der zumindest ebenfalls am Übergang von der Hochspannungsseite zur Sekundärwicklung 3 Kernteile aus dem elektrisch hochohmigen Kernmaterial aufweist. Dabei ist die Primärwicklung z.B durch einen geradlinigen Leiterstab 2.1. ersetzt, der im Bereich des der Sekundärwicklung gegenüberliegenden Kernteils durch den freien Querschnitt innerhalb des Magnetkerns 1 hindurchgeführt ist. Dabei ist dieser Leiter 2.1 vorzugsweise lösbar durch den Magnetkern 1 hindurchgeführt, so daß der Magnetkern mit der Sekundärwicklung 3 auch auf Sammelschienen oder dergl. aufgeschoben werden kann. Eine elektrische Isolierung 9 umschließt auch hier den Kern 1 mit der Sekundärwicklung 3. Wird der Wandler in einem Raum angeordnet, der mit Isoliergas wie SF6 gefüllt ist, kann das Isoliermaterial 9, das nachträglich eingebracht ist, entfallen.If a converter of this type is to be used as a current transformer, then an O-shaped ring core shaped approximately into a rectangle is also used according to FIGS. 5 and 6, which at least also has 3 core parts made of the electrically high-resistance core material at the transition from the high-voltage side to the secondary winding . The primary winding is e.g. by a straight conductor rod 2.1. replaced, which is guided in the region of the core part opposite the secondary winding through the free cross section within the
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4340020A DE4340020A1 (en) | 1993-11-24 | 1993-11-24 | Inductive electrical converter |
DE4340020 | 1993-11-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0654803A1 true EP0654803A1 (en) | 1995-05-24 |
EP0654803B1 EP0654803B1 (en) | 1998-01-07 |
Family
ID=6503316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94116686A Expired - Lifetime EP0654803B1 (en) | 1993-11-24 | 1994-10-22 | Electrical transformer |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0654803B1 (en) |
DE (2) | DE4340020A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2474986A1 (en) * | 2011-01-05 | 2012-07-11 | ABB Technology AG | Transformer coil |
CN103558440A (en) * | 2013-10-22 | 2014-02-05 | 江苏靖江互感器厂有限公司 | Intelligent electronic type voltage transformer |
CN104157437A (en) * | 2014-08-07 | 2014-11-19 | 正泰电气股份有限公司 | Electromagnetic voltage transformer with insulation function through capacitive impedance epoxy resin casting |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE280418C (en) * | ||||
GB141232A (en) * | 1919-06-05 | 1920-04-15 | Vickers Ltd | Improvements in or relating to electric transformers |
CH240528A (en) | 1944-01-05 | 1945-12-31 | Isaak Dr Goldstein | Transformer, especially voltage converter, with an open iron core. |
DE1003849B (en) * | 1953-12-12 | 1957-03-07 | Philips Nv | Transformer for high, especially pulse-like secondary voltage |
US3138742A (en) * | 1962-02-13 | 1964-06-23 | Jr Edmund O Schweitzer | Means for measuring current flow in and voltage of a high voltage alternating current conductor |
DE3803846A1 (en) * | 1988-02-09 | 1989-08-17 | Bernd Dipl Ing Sommer | High-voltage test transformer having insulated core segments |
EP0365407A1 (en) * | 1988-10-21 | 1990-04-25 | OREGA ELECTRONIQUE & MECANIQUE | Power transformer with reduced heat generation |
DE3913558A1 (en) * | 1989-04-25 | 1990-11-08 | Schroff Gmbh | Transformer with ferrite windings - has core with primary and secondary coils arranged on common sections in alternate manner |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1674433U (en) * | 1954-01-25 | 1954-04-01 | Friedrich Raupach | SINGLE-LINE CURRENT TRANSFORMER, IN PARTICULAR FOR LOW VOLTAGE. |
DE2348397B2 (en) * | 1973-09-24 | 1979-01-11 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Inductive voltage converter |
DE2554143A1 (en) * | 1975-11-28 | 1977-06-02 | Siemens Ag | VOLTAGE CONVERTER FOR HIGH VOLTAGES |
DE3218823C2 (en) * | 1982-04-22 | 1984-06-20 | LGZ Landis & Gyr Zug AG, Zug | Measuring transducer arrangement with two magnetic cores |
SU1488887A1 (en) * | 1987-10-30 | 1989-06-23 | Ki Polt I | Electromagnetic voltage transformer |
-
1993
- 1993-11-24 DE DE4340020A patent/DE4340020A1/en not_active Withdrawn
-
1994
- 1994-10-22 EP EP94116686A patent/EP0654803B1/en not_active Expired - Lifetime
- 1994-10-22 DE DE59404946T patent/DE59404946D1/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE280418C (en) * | ||||
GB141232A (en) * | 1919-06-05 | 1920-04-15 | Vickers Ltd | Improvements in or relating to electric transformers |
CH240528A (en) | 1944-01-05 | 1945-12-31 | Isaak Dr Goldstein | Transformer, especially voltage converter, with an open iron core. |
DE1003849B (en) * | 1953-12-12 | 1957-03-07 | Philips Nv | Transformer for high, especially pulse-like secondary voltage |
US3138742A (en) * | 1962-02-13 | 1964-06-23 | Jr Edmund O Schweitzer | Means for measuring current flow in and voltage of a high voltage alternating current conductor |
DE3803846A1 (en) * | 1988-02-09 | 1989-08-17 | Bernd Dipl Ing Sommer | High-voltage test transformer having insulated core segments |
EP0365407A1 (en) * | 1988-10-21 | 1990-04-25 | OREGA ELECTRONIQUE & MECANIQUE | Power transformer with reduced heat generation |
DE3913558A1 (en) * | 1989-04-25 | 1990-11-08 | Schroff Gmbh | Transformer with ferrite windings - has core with primary and secondary coils arranged on common sections in alternate manner |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2474986A1 (en) * | 2011-01-05 | 2012-07-11 | ABB Technology AG | Transformer coil |
CN103558440A (en) * | 2013-10-22 | 2014-02-05 | 江苏靖江互感器厂有限公司 | Intelligent electronic type voltage transformer |
CN104157437A (en) * | 2014-08-07 | 2014-11-19 | 正泰电气股份有限公司 | Electromagnetic voltage transformer with insulation function through capacitive impedance epoxy resin casting |
Also Published As
Publication number | Publication date |
---|---|
EP0654803B1 (en) | 1998-01-07 |
DE59404946D1 (en) | 1998-02-12 |
DE4340020A1 (en) | 1995-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2305700C3 (en) | Bobbin | |
DE3602005C2 (en) | ||
DE1297217B (en) | Tube winding for transformers | |
DE4025159C2 (en) | Feedthrough filter | |
DE69831949T2 (en) | DIODES-SPLIT HIGH VOLTAGE TRANSFORMER | |
DE1513870A1 (en) | High voltage transformer | |
EP0654803A1 (en) | Electrical transformer | |
DE69012258T2 (en) | Capacitor type barrier. | |
DE4311126C2 (en) | Current-compensated multiple choke in a compact design | |
DE2813026C2 (en) | ||
EP0275499B1 (en) | Current-compensated choke coil for spark interference suppression | |
DE731536C (en) | Current transformer with a multi-part insulating body | |
EP0697131B1 (en) | Metal-enclosed high-voltage switchgear with a current transformer | |
DE1638885A1 (en) | High voltage winding | |
DE102004008961B4 (en) | Coil body for closed magnetic core, has guiding units arranged outside supporting surface, winding space defined between units and under windings, and separating units designed as flat ledges | |
DE2843608C2 (en) | Transformer, especially voltage converter or test transformer | |
EP0666578A1 (en) | Current transformer with annular core to be built in a metal cast high-tension switchgear installation | |
EP1183696B1 (en) | Capacitively controlled high-voltage winding | |
DE4338537A1 (en) | Inductive electrical converter for medium voltage | |
DE2154398A1 (en) | Voltage transformer | |
EP0571319A2 (en) | Bar core current transformer | |
DE968893C (en) | Step voltage converter | |
DE3636938C2 (en) | ||
DE731897C (en) | High-voltage dry transformer, especially voltage converter | |
DE3022070A1 (en) | Screen for wound transformer core shanks - is used as coil former and consists of thin-wall insulating tube with layers of impregnated paper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19951117 |
|
17Q | First examination report despatched |
Effective date: 19960110 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980107 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59404946 Country of ref document: DE Date of ref document: 19980212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980407 |
|
ET | Fr: translation filed | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 19980107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19991018 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19991027 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19991228 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010629 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20010501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010703 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051022 |