EP0651591A2 - Electrode system - Google Patents

Electrode system Download PDF

Info

Publication number
EP0651591A2
EP0651591A2 EP94202797A EP94202797A EP0651591A2 EP 0651591 A2 EP0651591 A2 EP 0651591A2 EP 94202797 A EP94202797 A EP 94202797A EP 94202797 A EP94202797 A EP 94202797A EP 0651591 A2 EP0651591 A2 EP 0651591A2
Authority
EP
European Patent Office
Prior art keywords
electrode
gas
jacket
central
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94202797A
Other languages
German (de)
French (fr)
Other versions
EP0651591A3 (en
Inventor
Herbert Prof. Dr. Wilhelmi
Klaus Peters
Eberhard Prof. Dr. Steinmetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Griesheim GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Publication of EP0651591A2 publication Critical patent/EP0651591A2/en
Publication of EP0651591A3 publication Critical patent/EP0651591A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/10Mountings, supports, terminals or arrangements for feeding or guiding electrodes
    • H05B7/109Feeding arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • F27B3/085Arc furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • F27B3/183Charging of arc furnaces vertically through the roof, e.g. in three points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • H05B7/08Electrodes non-consumable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier

Definitions

  • the invention relates to an electrode system for melting and stirring and for temperature control in metallurgical vessels.
  • the heat source is an arc between the central electrode and the melt. This can in particular also be operated below the bath surface. As a result of the submerged operating state, purging and heating can be achieved in one step with a gas feed.
  • the invention is therefore based on the object to provide an electrode system for melting and stirring and for temperature control in metallurgical vessels, with which an optimal energy coupling can be achieved with minimal gas consumption and with which environmentally compatible processing of hazardous dusty residues is possible.
  • the under bath operation of the arc between the central electrode and the melt (metal or slag) in conjunction with a suitable gas metering achieves a very high level of energy coupling efficiency because the radiation of the arc on the furnace lining (walls and lid) is eliminated.
  • the hot arc gases heat up the feed and cool down significantly as they rise through the melt.
  • the furnace atmosphere is therefore not too hot, so that the metallurgical vessels above the surface of the molten bath do not need to be designed refrigerated.
  • the electrodes are made of graphite, the entire immersion lance system can be operated safely and reliably without additional cooling.
  • the graphite electrode materials do not react with the metal bath in the case of aluminum or copper melts.
  • the jacket electrode can be provided with a coating made of refractory material in order to reduce the unwanted carburization of the steel melt. If the melt should not come into contact with graphite, the melt-side end of the jacket electrode can be ceramic-coated on the outside and inside and the circuit is closed via the central electrode - melt - bottom electrode. In under-bath operation, a minimal gas consumption is required for melting and reheating the feed materials, which is achieved due to the elimination of the separate flushing gas and shorter homogenization times with suitable positioning of the electrodes. The gas requirement for Ar or N2 or reducing gas is only 50% compared to inflating systems.
  • granular goods in particular dusts
  • the annular space between the central and jacket electrodes Via the annular space between the central and jacket electrodes, granular goods, in particular dusts, can also be introduced directly into the interior of the melt with the blown-in gas, as a result of which uncontrolled material losses, for example into the slag or the exhaust gas system, are avoided.
  • the re-charging takes place in the hottest zone of the melt, so that the solid substances can be melted and dissolved more quickly.
  • the addition of mixtures ensures that components with a low boiling point, for example Pb and Zn, will largely evaporate.
  • the invention enables environmentally friendly processing even from dangerous, lumpy to dusty Residual materials, such as filter dusts from steelmaking and waste incineration or aluminum dross or residual materials from grinding companies, because the electrode compartment is closed, the residual materials are not introduced into the melt but are introduced into the melt and the hot metal bath makes the inorganic and organic pollutants harmless.
  • the electrode system shown in FIGS. 1 and 2 consists of a central and jacket electrode 11, which are each suspended from a support column 13.
  • the electrode support arms 14, 15 can be moved together and individually via the height adjustment 12 and can thus be positioned independently of one another.
  • the two electrodes 10, 11 are connected to a power source 16, the power being supplied either via cable / busbar connections or via live electrode support arms.
  • a sensor system 31 which detects the respective electrode position is provided on the support column 13 and on the support arms 14, 15 for the controlled operation of the furnace.
  • the sensor system consists of a rack, which is mounted on the support column, and a gear potentiometer system per support arm. The linear movement of the support arms is converted into an electrical voltage via the rack-and-pinion potentiometer system, the voltage changing in proportion to the travel path.
  • absolute positions are recorded, so that a single calibration, for example during assembly, is sufficient to determine the position.
  • a metallurgical vessel 17 is arranged under the electrode system.
  • the metallurgical vessel 17 can be equipped with transport rollers 18, 19, by means of which it can be moved on rails 20, 21. It is also possible to design the support column 13 as a king pin, so that the components 10, 11, 12, 13, 14, 15, 23, 24, 29, 30 and 31 can be pivoted about the axis 1.
  • the central electrode 10 can be used alone if a bottom electrode with power supply is installed in the metallurgical vessel. If the bottom electrodes are not provided, the electrode system is lowered into the metallurgical vessel 17, so that during the homogenization phase the current-carrying central electrode 10 and the jacket electrode 11 are immersed under the surface of the melt 22 (FIG. 2).
  • Gas for example argon (Ar), nitrogen (N2) or optionally also reducing gases, flows through the annular space 23 formed between the central electrode 10 and the jacket electrode 11.
  • the gas flows from the side facing away from the melt 22 via the line 24 connected to a gas source 25 into the annular space 23 and from there into the arc burning between central electrodes 10 and the surface of the molten bath, which thereby heats the gases.
  • the hot gas 26 escapes below the jacket electrode 11 through the melt 22, releases this energy and uses it for homogenization Move.
  • Granular goods, in particular dusts can also be introduced directly into the interior of the melt 22 with the gas which is blown in, as a result of which material losses, for example into the slag or the exhaust gas system, are avoided.
  • a closed system is provided with the aid of a cover 28 which closes the metallurgical vessel 17.
  • the cover 28 bears against the outer area of the jacket electrode 11. Due to the very low gas consumption, the amount of exhaust gas generated is small.
  • a ring 29 is provided between the central and jacket electrodes 10, 11 above the gas supply. The seal 29 closes off the annular space 23 from the atmosphere.
  • the closed system can be connected to a disposal system, not shown, for the disposal of dangerous, dusty or gaseous residues.
  • the central electrode 10 in tubular form, so that a further gas channel 30 can be used.
  • a further gas channel 30 can be used.
  • the amount of gas in a variety should be kept as small as possible for cost reasons and the desired gas atmosphere should nevertheless be set in the area of the focal spot. This is the case, for example, with the reducing melting of fine-grained materials.
  • the reducing gas for example hydrogen (H2) or methane (CH4) is supplied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

The invention relates to an electrode system for fusion and stirring as well as for temperature control in metallurgical vessels. For the purpose of optimum coupling in of power in conjunction with minimum gas consumption, the electrode system is characterised according to the invention by a central electrode (10) and a jacket electrode (11), which are each attached to a height adjusting means (12) and are connected to a common current source (16), in order to form an arc between the central electrode and the melt underneath the molten bath surface, and by an annular space (23) between the central electrode (10) and the jacket electrode (11), which space is connected to a gas source (25), the gas system being designed in such a way that fine-grained additives can also be charged into the melt. <IMAGE>

Description

Die Erfindung betrifft ein Elektrodensystem zum Aufschmelzen und Rühren sowie zur Temperaturführung in metallurgischen Gefäßen. Die Wärmequelle ist ein Lichtbogen zwischen Zentralelektrode und Schmelze. Dieser kann insbesondere auch unterhalb der Badoberfläche betrieben werden. Als Folge des getauchten Betriebszustandes kann das Spülen und Heizen mit einer Gaseinspeisung in einem Schritt erreicht werden.The invention relates to an electrode system for melting and stirring and for temperature control in metallurgical vessels. The heat source is an arc between the central electrode and the melt. This can in particular also be operated below the bath surface. As a result of the submerged operating state, purging and heating can be achieved in one step with a gas feed.

Für Elektrodensysteme für Tauchbrenner wird ebenso wie für andere Heizsysteme in der Metallurgie ein hoher Wirkungsgrad für die Energieeinkopplung gefordert, weil das Aufschmelzen und Nachheizen des stückigen Gutes hohe Schmelzleistungen erfordert. Zur Homogenisierung der Schmelze bezüglich Temperatur und Zusammensetzung muß die Schmelze außerdem gerührt werden. Ferner muß bei kontinuierlicher Betriebsweise das Chargieren körniger Einsatz- und Zusatzstoffe in die Schmelze ermöglicht werden. Darüber hinaus soll das Schmelz- und Heizverfahren flexibel hinsichtlich der Einsatz- und Zusatzstoffe sein sowie niedrige Emissionen und geringe Abfallmengen verursachen.For electrode systems for immersion burners as well as for other heating systems in metallurgy, a high level of efficiency is required for energy coupling, because the melting and reheating of the lumpy material requires high melting rates. To homogenize the melt with regard to temperature and composition the melt is also stirred. Furthermore, in the case of continuous operation, the charging of granular feedstocks and additives into the melt must be made possible. In addition, the melting and heating process should be flexible with regard to the ingredients and additives, as well as cause low emissions and low waste quantities.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Elektrodensystem zum Aufschmelzen und Rühren sowie zur Temperaturführung in metallurgischen Gefäßen zu schaffen, mit dem eine optimale Energieeinkopplung bei minimalem Gasverbrauch erreicht werden kann und mit dem eine umweltgerechte Verarbeitung auch von gefährlichen staubförmigen Reststoffen möglich ist.The invention is therefore based on the object to provide an electrode system for melting and stirring and for temperature control in metallurgical vessels, with which an optimal energy coupling can be achieved with minimal gas consumption and with which environmentally compatible processing of hazardous dusty residues is possible.

Ausgehend von dem im Oberbegriff des Anspruches 1 berücksichtigten Stand der Technik wird diese Aufgabe erfindungsgemäß gelöst mit den kennzeichnenden Merkmalen des Anspruches 1.Starting from the prior art considered in the preamble of claim 1, this object is achieved according to the invention with the characterizing features of claim 1.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous developments of the invention are specified in the subclaims.

Bei dem erfindungsgemäßen Elektrodensystem wird durch den Unterbadbetrieb des Lichtbogens zwischen Zentralelektrode und Schmelze (Metall oder Schlacke) in Verbindung mit einer geeigneten Gasdosierung ein sehr hoher Wirkungsgrad der Energieeinkopplung erreicht, weil die Abstrahlung des Lichtbogens auf die Ofenauskleidung (Wände und Deckel) entfällt. Die heißen Lichtbogengase heizen das Einsatzgut auf und kühlen während ihres Aufstiegs durch die Schmelze deutlich ab. Die Ofenatmosphäre ist also nicht zu heiß, so daß die metallurgischen Gefäße oberhalb der Schmelzbadoberfläche nicht gekühlt ausgelegt werden müssen. Bei einer Ausführung der Elektroden aus Graphit kann die gesamte Tauchlanzenanlage ohne zusätzliche Kühlung sicher und zuverlässig betrieben werden. Die Graphitelektrodenmaterialien reagieren bei Aluminium- oder Kupferschmelzen nicht mit dem Metallbad. Bei Stahlschmelzen kann die Mantelelektrode mit einem Überzug aus Feuerfestmaterial versehen werden, um die unerwünschte Aufkohlung der Stahlschmelze zu verkleinern. Wenn die Schmelze nicht mit Graphit in Kontakt treten soll, kann das schmelzseitige Ende der Mantelelektrode außen und innen keramisch überzogen werden und der Stromkreis wird über Zentralelektrode - Schmelze - Bodenelektrode geschlossen.
Im Unterbad-Betrieb ist ein minimaler Gasverbrauch zum Aufschmelzen und Nachheizen der Einsatzstoffe erforderlich, welcher aufgrund des Wegfalls des separaten Spülgases und verkürzter Homogenisierungszeiten bei geeigneter Positionierung der Elektroden erreicht wird. Der Gasbedarf an Ar bzw. N₂ oder Reduktionsgas liegt bei nur 50% verglichen mit aufblasenden Systemen.
Über den Ringraum zwischen der Zentral- und Mantelelektrode können mit dem eingeblasenen Gas auch körnige Güter, insbesondere Stäube, direkt ins Innere der Schmelze eingetragen werden, wodurch unkontrollierte Materialverluste z.B. in die Schlacke oder das Abgassystem vermieden werden. Das Nachchargieren erfolgt in der heißesten Zone der Schmelze, so daß die festen Stoffe schneller aufgeschmolzen und gelöst werden können. Gleichzeitig wird bei der Zugabe von Gemischen gewährleistet, daß Komponenten mit einem niedrigen Siedepunkt, z.B. Pb und Zn, weitgehend verdampfen werden.
In the electrode system according to the invention, the under bath operation of the arc between the central electrode and the melt (metal or slag) in conjunction with a suitable gas metering achieves a very high level of energy coupling efficiency because the radiation of the arc on the furnace lining (walls and lid) is eliminated. The hot arc gases heat up the feed and cool down significantly as they rise through the melt. The furnace atmosphere is therefore not too hot, so that the metallurgical vessels above the surface of the molten bath do not need to be designed refrigerated. If the electrodes are made of graphite, the entire immersion lance system can be operated safely and reliably without additional cooling. The graphite electrode materials do not react with the metal bath in the case of aluminum or copper melts. In the case of steel melts, the jacket electrode can be provided with a coating made of refractory material in order to reduce the unwanted carburization of the steel melt. If the melt should not come into contact with graphite, the melt-side end of the jacket electrode can be ceramic-coated on the outside and inside and the circuit is closed via the central electrode - melt - bottom electrode.
In under-bath operation, a minimal gas consumption is required for melting and reheating the feed materials, which is achieved due to the elimination of the separate flushing gas and shorter homogenization times with suitable positioning of the electrodes. The gas requirement for Ar or N₂ or reducing gas is only 50% compared to inflating systems.
Via the annular space between the central and jacket electrodes, granular goods, in particular dusts, can also be introduced directly into the interior of the melt with the blown-in gas, as a result of which uncontrolled material losses, for example into the slag or the exhaust gas system, are avoided. The re-charging takes place in the hottest zone of the melt, so that the solid substances can be melted and dissolved more quickly. At the same time, the addition of mixtures ensures that components with a low boiling point, for example Pb and Zn, will largely evaporate.

Die Erfindung ermöglicht eine umweltgerechte Verarbeitung auch von gefährlichen, stückigen bis staubförmigen Reststoffen, wie Filterstäube aus der Stahlerzeugung und der Müllverbrennung oder Aluminiumkrätze oder Reststoffe aus Schleifbetrieben, weil der Elektrodenraum geschlossen ausgeführt ist, die Reststoffe nicht auf, sondern in die Schmelze eingebracht werden und das heiße Metallbad die anorganischen und organischen Schadstoffe unschädlich macht.The invention enables environmentally friendly processing even from dangerous, lumpy to dusty Residual materials, such as filter dusts from steelmaking and waste incineration or aluminum dross or residual materials from grinding companies, because the electrode compartment is closed, the residual materials are not introduced into the melt but are introduced into the melt and the hot metal bath makes the inorganic and organic pollutants harmless.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben.An embodiment of the invention is shown in the drawing and will be described in more detail below.

Es zeigen

Fig. 1
das erfindungsgemäße Elektrodensystem bei einer Tauchlanzen-Anlage in Bereitschaft;
Fig. 2
das Elektrodensystem während des Unterbad-Einsatzes.
Show it
Fig. 1
the electrode system according to the invention in a diving lance system on standby;
Fig. 2
the electrode system during use in the bath.

Das in den Figuren 1 und 2 dargestellte Elektrodensystem besteht aus einer Zentral- 10 und Mantelelektrode 11, die jeweils an einer Tragsäule 13 aufgehängt sind. Über die Höhenverstellung 12 können die Elektrodentragarme 14, 15 gemeinsam und einzeln verfahren und damit unabhängig voneinander positioniert werden. Die beiden Elektroden 10, 11 sind mit einer Stromquelle 16 verbunden, wobei die Stromzufuhr wahlweise über Kabel-/Stromschienenverbindungen oder über stromführende Elektrodentragarme erfolgt.The electrode system shown in FIGS. 1 and 2 consists of a central and jacket electrode 11, which are each suspended from a support column 13. The electrode support arms 14, 15 can be moved together and individually via the height adjustment 12 and can thus be positioned independently of one another. The two electrodes 10, 11 are connected to a power source 16, the power being supplied either via cable / busbar connections or via live electrode support arms.

Zum kontrollierten Betrieb des Ofens ist an der Tragsäule 13 und an den Tragarmen 14, 15 ein die jeweilige Elektrodenposition erfassendes Sensorsystem 31 vorgesehen. Das Sensorsystem besteht aus einer Zahnstange, die an der Tragsäule montiert ist, und einem Zahnrad-Potentiometer-System je Tragarm. Die Linearbewegung der Tragarme wird über das Zahnstange-Zahnrad-Potentiometer-System in eine elektrische Spannung umgewandelt, wobei die Spannung sich proportional zum Verfahrweg ändert. Außerdem werden absolute Positionen erfaßt, so daß zur Positionsbestimmung eine einmalige Kalibrierung, z.B. bei der Montage, genügt.A sensor system 31 which detects the respective electrode position is provided on the support column 13 and on the support arms 14, 15 for the controlled operation of the furnace. The sensor system consists of a rack, which is mounted on the support column, and a gear potentiometer system per support arm. The linear movement of the support arms is converted into an electrical voltage via the rack-and-pinion potentiometer system, the voltage changing in proportion to the travel path. In addition, absolute positions are recorded, so that a single calibration, for example during assembly, is sufficient to determine the position.

Unter dem Elektrodensystem ist ein metallurgisches Gefäß 17 angeordnet. Das metallurgische Gefäß 17 kann mit Transportrollen 18, 19 ausgerüstet werden, mittels denen es auf Schienen 20, 21 verfahrbar ist. Es ist außerdem möglich, die Tragsäule 13 als Königsbolzen auszulegen, so daß die Komponenten 10, 11, 12, 13, 14, 15, 23, 24, 29, 30 und 31 um die Achse 1 schwenkbar sind. Zum Einschmelzen von stückigem Gut kann mit der Zentralelektrode 10 allein gearbeitet werden, wenn im metallurgischen Gefäß eine Bodenelektrode mit Stromzufuhr installiert ist. Bei nicht vorgesehener Bodenelektroden wird das Elektrodensystem in das metallurgische Gefäß 17 gesenkt, so daß während der Homogenisierungsphase die stromführend ausgelegte Zentralelektrode 10 und die Mantelelektrode 11 unter die Oberfläche der Schmelze 22 taucht (Fig. 2). Durch den zwischen Zentralelektrode 10 und Mantelelektrode 11 ausgebildeten Ringraum 23 strömt Gas, beispielsweise Argon (Ar), Stickstoff (N₂) oder gegebenenfalls auch Reduktionsgase. Das Gas strömt von der der Schmelze 22 abgewandten Seite über die mit einer Gasquelle 25 verbundene Leitung 24 in den Ringraum 23 und von dort in den zwischen Zentralelektroden 10 und Schmelzbadoberfläche brennenden Lichtbogen, der damit die Gase aufheizt. Das heiße Gas 26 entweicht unterhalb der Mantelelektrode 11 durch die Schmelze 22, gibt an diese Energie ab und setzt sie zur Homogenisierung in Bewegung. Mit dem eingeblasenen Gas können auch körnige Güter, insbesondere Stäube, direkt ins Innere der Schmelze 22 eingetragen werden, wodurch Materialverluste z.B. in die Schlacke oder das Abgassystem vermieden werden.A metallurgical vessel 17 is arranged under the electrode system. The metallurgical vessel 17 can be equipped with transport rollers 18, 19, by means of which it can be moved on rails 20, 21. It is also possible to design the support column 13 as a king pin, so that the components 10, 11, 12, 13, 14, 15, 23, 24, 29, 30 and 31 can be pivoted about the axis 1. To melt lumpy material, the central electrode 10 can be used alone if a bottom electrode with power supply is installed in the metallurgical vessel. If the bottom electrodes are not provided, the electrode system is lowered into the metallurgical vessel 17, so that during the homogenization phase the current-carrying central electrode 10 and the jacket electrode 11 are immersed under the surface of the melt 22 (FIG. 2). Gas, for example argon (Ar), nitrogen (N₂) or optionally also reducing gases, flows through the annular space 23 formed between the central electrode 10 and the jacket electrode 11. The gas flows from the side facing away from the melt 22 via the line 24 connected to a gas source 25 into the annular space 23 and from there into the arc burning between central electrodes 10 and the surface of the molten bath, which thereby heats the gases. The hot gas 26 escapes below the jacket electrode 11 through the melt 22, releases this energy and uses it for homogenization Move. Granular goods, in particular dusts, can also be introduced directly into the interior of the melt 22 with the gas which is blown in, as a result of which material losses, for example into the slag or the exhaust gas system, are avoided.

Eine umweltgerechte Verarbeitung auch von gefährlichen, staubförmigen Reststoffen wird dadurch erreicht, daß ein geschlossenes System mit Hilfe eines das metallurgische Gefäß 17 verschließenden Deckels 28 vorgesehen ist. Der Deckel 28 liegt hierbei an dem äußeren Bereich der Mantelelektrode 11 an. Infolge der sehr geringen Gasverbräuche ist die anfallende Abgasmenge klein. Weiterhin ist zur Vermeidung von Gasverlusten eine den Ringraum 23 zwischen der Zentral- und Mantelelektrode 10, 11 oberhalb der Gaszuführung angeordnete Dichtung 29 vorgesehen. Die Dichtung 29 schließt den Ringraum 23 gegenüber der Atmosphäre ab. Das geschlossene System kann zur Entsorgung von gefährlichen, staubförmigen bzw. gasförmigen Reststoffen an ein nicht näher dargestelltes Entsorgungssystem angeschlossen werden.Environmentally compatible processing of dangerous, dust-like residues is achieved in that a closed system is provided with the aid of a cover 28 which closes the metallurgical vessel 17. The cover 28 bears against the outer area of the jacket electrode 11. Due to the very low gas consumption, the amount of exhaust gas generated is small. Furthermore, to avoid gas losses, a ring 29 is provided between the central and jacket electrodes 10, 11 above the gas supply. The seal 29 closes off the annular space 23 from the atmosphere. The closed system can be connected to a disposal system, not shown, for the disposal of dangerous, dusty or gaseous residues.

Grundsätzlich ist es zudem möglich, die Zentralelektrode 10 ebenfalls rohrförmig auszulegen, so daß ein weiterer Gaskanal 30 genutzt werden kann. Dies ist insbesondere von Vorteil, wenn mit Gasgemischen gearbeitet wird, aber die Gasmenge einer Sorte aus Kostengründen möglichst klein gehalten werden soll und dennoch die gewünschte Gasatmosphäre im Bereich des Brennflecks eingestellt werden soll. Das ist beispielsweise über das reduzierende Schmelzen von feinkörnigen Materialien gegeben. Über den Ringspalt 23 zwischen der Zentral- und Mantelelektrode wird das Material mit Stickstoff aufgegeben und durch die Bohrung 30 der Zentralelektrode 10 wird das Reduktionsgas beispielsweise Wasserstoff (H₂) oder Methan (CH₄) zugeführt.In principle, it is also possible to also design the central electrode 10 in tubular form, so that a further gas channel 30 can be used. This is particularly advantageous when working with gas mixtures, but the amount of gas in a variety should be kept as small as possible for cost reasons and the desired gas atmosphere should nevertheless be set in the area of the focal spot. This is the case, for example, with the reducing melting of fine-grained materials. About the annular gap 23 between the central and jacket electrodes, the material is added with nitrogen and through the bore 30 of the central electrode 10, the reducing gas, for example hydrogen (H₂) or methane (CH₄) is supplied.

Claims (5)

Elektrodensystem zum Aufschmelzen und Rühren sowie zur Temperaturführung in metallurgischen Gefäßen,
gekennzeichnet durch eine Zentral- und eine Mantelelektrode (10, 11), welche jeweils an einer Höhenverstellung (12) befestigt und an eine gemeinsame Stromquelle (16) angeschlossen sind und durch einen zwischen Zentral- und Mantelelektrode (10, 11) vorgesehenen Ringraum (23), der mit einer Gasquelle (25) verbunden ist.
Electrode system for melting and stirring as well as for temperature control in metallurgical vessels,
characterized by a central and a jacket electrode (10, 11) which are each attached to a height adjustment (12) and are connected to a common power source (16) and by an annular space (23) provided between the central and jacket electrodes (10, 11) ), which is connected to a gas source (25).
Elektrodensystem nach Anspruch 1,
dadurch gekennzeichnet,
daß der Ringraum (23) zwischen der Zentral- und Mantelelektrode (10, 11) oberhalb der Gaszuführung mit einer Dichtung (29) gegenüber der Atmosphäre abgedichtet ist.
Electrode system according to claim 1,
characterized,
that the annular space (23) between the central and jacket electrodes (10, 11) above the gas supply with a seal (29) is sealed from the atmosphere.
Elektrodensystem nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß das Gefäß (17) mit einem bis an den äußeren Bereich der Mantelelektrode (11) reichenden Deckel (28) verschließbar ist.
Electrode system according to claim 1 or 2,
characterized,
that the vessel (17) can be closed with a cover (28) extending to the outer region of the jacket electrode (11).
Elektrodensystem nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß die Höhenverstellung (12) an die jeweilige Elektrodenposition erfassendes Sensorsystem (31) aufweist.
Electrode system according to one of claims 1 to 3,
characterized,
that the height adjustment (12) has a sensor system (31) that detects the respective electrode position.
Elektrodensystem nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
daß die Zentralelektrode (11) einen Gaskanal (30) aufweist, der an eine Gasquelle (34) angeschlossen ist.
Electrode system according to one of claims 1 to 4,
characterized,
that the central electrode (11) has a gas channel (30) which is connected to a gas source (34).
EP94202797A 1993-10-27 1994-09-27 Electrode system. Withdrawn EP0651591A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4336628 1993-10-27
DE4336628A DE4336628A1 (en) 1993-10-27 1993-10-27 Electrode system

Publications (2)

Publication Number Publication Date
EP0651591A2 true EP0651591A2 (en) 1995-05-03
EP0651591A3 EP0651591A3 (en) 1995-08-23

Family

ID=6501123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94202797A Withdrawn EP0651591A3 (en) 1993-10-27 1994-09-27 Electrode system.

Country Status (3)

Country Link
US (1) US5467366A (en)
EP (1) EP0651591A3 (en)
DE (1) DE4336628A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673285A (en) * 1994-06-27 1997-09-30 Electro-Pyrolysis, Inc. Concentric electrode DC arc systems and their use in processing waste materials
US5539768A (en) * 1995-03-21 1996-07-23 Ltv Steel Company, Inc. Electric arc furnace electrode consumption analyzer
US5759229A (en) * 1996-07-29 1998-06-02 Feitler; David Method for recovering cobalt/manganese/bromine values from residue containing used catalyst
US6075806A (en) * 1998-12-23 2000-06-13 Electro-Pyrolysis Inc Coaxial electrode assembly having insulating spacers
GB2351297B (en) * 1999-06-21 2004-01-21 Vacmetal Gmbh Metallurgical treatment apparatus
US12087828B2 (en) * 2018-12-04 2024-09-10 Uchicago Argonne, Llc Electrodes for making nanocarbon-infused metals and alloys

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE404547C (en) * 1924-10-18 Metallbank & Metallurg Ges Ag Method and device for operating electric ovens with hollow electrodes
US4082914A (en) * 1973-05-14 1978-04-04 Nikolai Iosifovich Bortnichuk Method of stabilizing arc voltage in plasma arc furnace and apparatus for effecting same
DE2758654A1 (en) * 1976-12-29 1978-07-13 Daido Steel Co Ltd PROCESS AND DEVICE FOR HEATING A METAL MELT IN A PAN

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147331A (en) * 1960-05-14 1964-09-01 Goldschmidt Ag Th Electric shaft furnace
DE1758759B1 (en) * 1968-08-02 1970-08-27 Knapsack Ag Method for feeding solid raw materials through a hollow electrode
SU510010A1 (en) * 1973-05-14 1976-04-05 Предприятие П/Я Г-4696 Plasma arc installation
US4039738A (en) * 1975-09-22 1977-08-02 Mikhail Davydovich Beskin Device for charging an electric arc furnace through its inner electrode pipe and permitting connection of additional lengths of pipes thereto
US4112246A (en) * 1976-10-20 1978-09-05 Viktor Iosifovich Lakomsky Plasmarc furnace for remelting metals and alloys
WO1987001137A1 (en) * 1985-08-16 1987-02-26 Belorussky Tekhnologichesky Institut Imeni S.M.Kir Method and device for treatment of melt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE404547C (en) * 1924-10-18 Metallbank & Metallurg Ges Ag Method and device for operating electric ovens with hollow electrodes
US4082914A (en) * 1973-05-14 1978-04-04 Nikolai Iosifovich Bortnichuk Method of stabilizing arc voltage in plasma arc furnace and apparatus for effecting same
DE2758654A1 (en) * 1976-12-29 1978-07-13 Daido Steel Co Ltd PROCESS AND DEVICE FOR HEATING A METAL MELT IN A PAN

Also Published As

Publication number Publication date
DE4336628A1 (en) 1995-05-04
EP0651591A3 (en) 1995-08-23
US5467366A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
DE4445209C2 (en) Method and device for operating a double-vessel arc furnace
EP0548041A2 (en) Electric furnace arrangement for producing steel
DE3232551C2 (en) Device for treating and refining liquid metal alloys
EP0193948A1 (en) Device and process for keeping molten metals warm
EP0651591A2 (en) Electrode system
DE2608279B2 (en) METHOD FOR MELTING STEEL FROM SCRAP IN THE ELECTRIC OVEN
DE69117782T2 (en) Stove floor for DC arc furnaces
EP3707451A1 (en) Melting furnace with simultaneously rotatable and movable electrode rod
EP0570046B1 (en) Method and apparatus for producing steel melts
DE2026780C2 (en)
EP0757109B1 (en) Smelting aggregate and its use for production of steel in one process step, in particular direct current (DC) arc furnace or oxygen converter
EP0166868B1 (en) Method of and installation for metallurgical after-treatment of premelted steel
DE102005007655A1 (en) Furnace plant and process for melting metallic or metal-containing starting materials
EP1629699B1 (en) Direct current arc furnace
EP1640462B1 (en) Method and device for the production of molten steel
DE2325593B1 (en) Continuous steel production
DE2821537A1 (en) PROCESS FOR MELTING METAL SPARKS AND DEVICE FOR CARRYING OUT THE PROCESS
DE4111385A1 (en) Filter dust smelting with reduced electrode erosion - in which electrodes are inserted into glass from above into mixt. of dust and additives
WO1997016051A1 (en) Electric heating element
EP0273975B1 (en) Induction plasma furnace
McCullough Plasmarc Furnace, A New Concept in Melting Metals
DE4409145A1 (en) Electric arc furnace plant for residue melting
US4150971A (en) Start-up method for an electroslag remelting system
DE2415925C3 (en) Electro-slag furnace for refining pig iron smelting
AT398487B (en) Electric arc furnace for producing steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19960224