EP0651061B1 - Process for producing grain-oriented electrical steel sheet and magnetic cores produced therefrom - Google Patents

Process for producing grain-oriented electrical steel sheet and magnetic cores produced therefrom Download PDF

Info

Publication number
EP0651061B1
EP0651061B1 EP94116869A EP94116869A EP0651061B1 EP 0651061 B1 EP0651061 B1 EP 0651061B1 EP 94116869 A EP94116869 A EP 94116869A EP 94116869 A EP94116869 A EP 94116869A EP 0651061 B1 EP0651061 B1 EP 0651061B1
Authority
EP
European Patent Office
Prior art keywords
temperature
magnetic steel
process according
steel strip
directions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94116869A
Other languages
German (de)
French (fr)
Other versions
EP0651061A1 (en
Inventor
Siegfried Dr. Mager
Jochen Dr. Wieting
Rolf Dr. Bürger
Horst Dr. Kleine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal Eisenhuettenstadt GmbH
Institut fuer Festkoerper und Werkstofforschung Dresden eV
Original Assignee
Institut fuer Festkoerper und Werkstofforschung Dresden eV
Eko Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Festkoerper und Werkstofforschung Dresden eV, Eko Stahl GmbH filed Critical Institut fuer Festkoerper und Werkstofforschung Dresden eV
Publication of EP0651061A1 publication Critical patent/EP0651061A1/en
Application granted granted Critical
Publication of EP0651061B1 publication Critical patent/EP0651061B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps

Definitions

  • the invention relates to a method for producing grain-oriented electrical steel with easy magnetization in four directions in the roller plane and of magnetic cores made from it for rotating and non-rotating Electrical machines.
  • a cube surface texture with an almost random one Cube edge distribution in the roller plane can then be achieved if after cold rolling with> 90% degree of deformation and an intermediate annealing treatment the material again in one step or in several stages is cold worked by 30 to 80%.
  • an intermediate annealing treatment the material again in one step or in several stages is cold worked by 30 to 80%.
  • 1100 ° C several hours glow time and hydrogen atmosphere specified.
  • the Intermediate annealing takes place according to the process at temperatures between 800 and 1100 ° C. This process for the production of grain-oriented electrical steel is due to the required technological steps, intermediate annealing 800 - 1100 ° C, several deformation levels and the specified Material composition very complex.
  • the object of the invention is to find a method with which the generation of grain-oriented electrical steel with an enrichment of cube surfaces or close to them in the roller plane and an accumulation of the cube edges in Directions that are about 45 ° to the rolling direction is possible and the production magnetic cores produced therefrom for electrical machines can be improved.
  • the material has a temperature between 930 ° C and 1100 ° C, preferably ⁇ 1000 ° C when using unalloyed steel and preferably between 1000 ° C and 1100 ° C when using Si-alloyed steel.
  • the final rolling temperature is between 800 ° C and 950 ° C, preferably between 840 ° C and 870 ° C for unalloyed material and preferably up to 920 ° C for alloyed materials, the stitch decreases during finish rolling not exceeding 35%.
  • the finished strip produced in this way is then coiled at a reel temperature of> 700 ° C without forced cooling.
  • the hot strip thickness should be selected so that degrees of deformation of> 86%, preferably> 90%, can be achieved in the following cold forming.
  • Thinner slabs in particular those produced using the thin slab casting technology, are hot-rolled in the same way, with the stitch decreases here being approximately 10% higher due to the lower deformation rates. It was found that with a hot strip produced in this way, the desired microstructure formation can be made considerably more economical by the subsequent cold forming. According to the process, it is advantageous if the cold forming which takes place after the usual pickling in several passes begins at elevated temperatures in the range from 150 ° C. to 350 ° C., preferably between 200 ° C. and 300 ° C.
  • the strip which is cold-formed with a degree of deformation> 86%, is then annealed for 0.5 to 20 h at 500 ° C. to 750 ° C. under neutral gas, preferably 1 to 5 h around 550 ° C. for unalloyed and at 620 ° C. to 680 ° C. for Si-alloyed material.
  • the material is subjected to a further cold working of 2 to 15%, preferably 6 to 12% (tempered) and then finally annealed at temperatures around 800 ° C., depending on the composition, at or slightly above AG 1 in an at least temporarily decarburizing atmosphere. It has proven to be advantageous if the strip produced in this way is treated a second time and finally annealed.
  • the final annealing can be carried out on the belt (fully finished) as well as on the stamped part or after packaging (semifinished).
  • the grain-oriented electrical steel produced in accordance with the method is characterized by four magnetic preferred directions, which are at 45 ° to the rolling direction in the sheet metal plane.
  • This structure formation, avoiding high-temperature annealing, can be designated with a structure orientation (001) ⁇ 110>.
  • the tape is particularly suitable for applications in which the magnetic flux is conducted in two mutually perpendicular directions. This is the case, for example, in stand packages of rotating or non-rotating electrical machines.
  • the punched parts required for this are punched out of the band-shaped material, taking into account the course of the four preferred directions of easy magnetization, and assembled into a package.
  • the core sheets for magnetic cores for rotating electrical machines can be made from circular blanks, which are each assembled into a package in such a way that core sheets that follow each other in each case are rotated by 45 ° to one another.
  • segments for magnetic cores for rotating electrical machines the individual segments are punched out of the band-shaped electrical steel strip so that the directions of easy magnetizability are detected by them.
  • Magnetic cores produced in this way have a significantly lower production and processing outlay and better magnetic properties than previously used stamped parts.
  • An unalloyed steel slab with a C content of 0.07% and a thickness of 250 mm is preheated to 1250 ° C and rolled in 7 passes to 32 mm. Finishing rolling is carried out in 5 passes at an inlet temperature of 965 ° C and a finish rolling temperature of 840 ° C, with a single pass decrease of ⁇ 30% to 5.6 mm with subsequent air cooling and reeling at> 700 ° C.
  • the pickled strip is annealed to 0.55 mm (degree of deformation 90%) at 560 ° C for 2 hours and then treated with 6%. This material is then subjected to a final annealing at 780 ° C., one hour in moist and four hours in dry H 2 .
  • the grain-oriented electrical steel produced afterwards has the following values for J and 2500 (T):
  • a Si-alloy steel slab with a Si content of 1.1% and a C content of 0.05% and a thickness of 250 mm is preheated to a temperature of 1250 ° C and heated in the same way with regard to the number of stitches and degree of and cold rolled as in Example A, but with the following parameters changed: Inlet temperature of finish rolls 1080 ° C Finish rolling temperature 895 ° C Intermediate annealing temperature 660 ° C (2h)
  • Example A an unalloyed steel slab as in Example A is hot-rolled at a slightly higher temperature, then cold-rolled and annealed, with the first tempering (10%) followed by another intermediate annealing at 780 ° C for 2 hours in dry H2 and then the band of another 10 % cold deformation is subjected.
  • the final annealing is carried out at 780 ° C for 1 h in moist and 4 h in dry H2.
  • the grain-oriented electrical steel produced afterwards has the following value for J 2500 (T): ⁇ 0 ° 15 ° 30 ° 45 ° 60 ° 75 ° 90 ° 1 trained 1.69 1.71 1.77 1.79 1,735 1,675 1.63 2 times 1.63 1.71 1.83 1.87 1.805 1.67 1.58
  • the grain-oriented electrical steel produced according to the invention is particularly suitable for applications in which the magnetic flux is conducted in two directions perpendicular to one another.
  • the stamped parts required for the assembly in the magnetic body are manufactured from the strip material in accordance with the arrangement of the sectional shapes shown in FIG. 1, the beams 1, 2, 3, 4 identifying the four directions of easier magnetization.
  • the magnetic cores for rotating electrical machines are manufactured in such a way that either immediately successive core sheets are arranged at 45 ° to one another or that, according to FIG. 2, the magnetic core is made up of segments, the segments capturing the angles of easy magnetization.
  • the magnetic cores produced afterwards are characterized by better magnetic ones Properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The invention relates to a process for producing grain-oriented magnetic steel strip which is readily magnetisable in four directions in the rolling plane and to magnet cores for rotary (rotating) and non-rotary (non-rotating) electrical machines (electric machinery). The process is characterised in that steel slabs having a C content of < 0.10% and an Si content of from 0 to 2% and contents of Al, Mn, S, N, O in the concentrations usual for magnetic steel strip are preheated to about 1250 DEG C, are roughed (cogged, bloomed) in from 5 to 9 passes with small reductions for each individual pass and are finish-rolled in a separate roll line, with an entrance temperature of from 930 DEG C to 1100 DEG C and a finishing temperature of from 800 DEG C to 950 DEG C, with reductions per pass of 35%, and the hot strip thus produced is reeled without forced cooling (controlled cooling, ducted cooling) at a temperature of > 700 DEG C and after cooling, while an amount of deformation (a degree of deformation) of > 86% is maintained, is subjected to cold working (cold forming) which is followed by an interannealing stage under a neutral gas at from 500 DEG C to 750 DEG C for from 0.5 h to 20 h and further cold working at from 2 to 15% and subsequent final annealing at temperatures around 800 DEG C in an at least intermittently decarburising atmosphere. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von kornorientiertem Elektroband mit in vier Richtungen leichter Magnetisierbarkeit in der Walzebene und von daraus hergestellten Magnetkernen für umlaufende und nicht umlaufende Elektromaschinen.The invention relates to a method for producing grain-oriented electrical steel with easy magnetization in four directions in the roller plane and of magnetic cores made from it for rotating and non-rotating Electrical machines.

Verfahren zur Herstellung von kornorientierten Elektrobändern mit sogenannter GOSS-Textur {011}<100> sind bekannt. Gemäß diesen Verfahren erfolgt die Ausrichtung der Elementarwürfel derart, daß eine Würfelkante eines Elementarwürfels in Walzrichtung liegt und zwei zueinander parallele Flächendiagonale in der Walzebene angeordnet sind. Auf diese Weise hergestelltes Material weist eine gute Magnetisierbarkeit in Walzrichtung auf. Als nachteilig tritt jedoch die schlechte Magnetisierbarkeit des Materials senkrecht zur Walzrichtung in Erscheinung. Zur Herstellung von kornorientiertem Elektroband mit anderer als GOSS-Textur ist in der DE-AS 1212124 ein Verfahren beschrieben, mit dem unter Verwendung eines Vormaterials mit 2 - 5 % Si-Gehalt ein Elektroband erzeugt wird, dessen Gefügeorientierung dadurch gekennzeichnet ist, daß zwei Flächen der Elementarwürfel parallel zur Blechoberfläche liegen und die in der Blechebene liegenden Würfelkanten sich um mindestens vier ausgezeichnete Richtungen häufen oder eine nahezu regel lose Verteilung aufweisen. Verfahrensgemäß wird das Material geglüht, gebeizt und anschließend in einem oder mehreren Schritten kaltgewalzt, wobei der Kaltwalzschritt oder der letzte Kaltwalzschritt mit einem Verformungsgrad von über >90 % erfolgt. Eine Würfelflächentextur mit einer nahezu regellosen Würfelkantenverteilung in der Walzebene läßt sich danach erreichen, wenn nach dem Kaltwalzen mit > 90 % Verformungsgrad und einer Zwischenglühbehandlung das Material nochmals in einem Schritt oder in mehreren Stufen um 30 bis 80 % kaltverformt wird. Für die Schlußglühung werden 1100 °C, mehrere Stunden Glühzeit und Wasserstoffatmosphäre angegeben. Die Zwischenglühungen erfolgen verfahrensgemäß bei Temperaturen zwischen 800 und 1100 °C. Dieses Verfahren zur Herstellung von kornorientiertem Elektroband ist auf Grund der erforderlichen technologischen Schritte, Zwischenglühungen bei 800 - 1100 °C, mehrere Verformungsstufen sowie der vorgegebenen Materialzusammensetzung sehr aufwendig. Insbesondere das Glühen der Bunde bei Temperaturen bis 1100 °C und einer Glühdauer von 5 Stunden erfordert Maßnahmen zur Vermeidung von Klebern, wodurch das Verfahren zusätzlich in seiner Wirtschaftlichkeit negativ beeinflußt wird. Weiterhin haben Versuche unter Anwendung des Verfahrens gezeigt, daß Kaltwalzgrade > 90 % nicht zwangsläufig zu einer scharfen vierzähligen Orientierungsausbildung im Material führen. Process for the production of grain-oriented electrical tapes with so-called GOSS texture {011} <100> are known. According to these procedures, the Alignment of the elementary cubes such that a cube edge of a Elementary cube lies in the rolling direction and two parallel to each other Area diagonal are arranged in the roller plane. In this way The material produced has good magnetizability in the rolling direction. As disadvantageously, however, the poor magnetizability of the material occurs vertically to the rolling direction in appearance. For the production of grain-oriented Electrical steel with a texture other than GOSS is described in DE-AS 1212124 Process described with which using a raw material with 2-5 % Si content an electrical steel is generated, its structural orientation is characterized in that two surfaces of the elementary cubes parallel to Sheet surface and the cube edges lying in the sheet plane are accumulate by at least four excellent directions or a nearly random one Have distribution. According to the process, the material is annealed, pickled and then cold rolled in one or more steps, the Cold rolling step or the last cold rolling step with a degree of deformation of more than 90%. A cube surface texture with an almost random one Cube edge distribution in the roller plane can then be achieved if after cold rolling with> 90% degree of deformation and an intermediate annealing treatment the material again in one step or in several stages is cold worked by 30 to 80%. For the final annealing, 1100 ° C, several hours glow time and hydrogen atmosphere specified. The Intermediate annealing takes place according to the process at temperatures between 800 and 1100 ° C. This process for the production of grain-oriented electrical steel is due to the required technological steps, intermediate annealing 800 - 1100 ° C, several deformation levels and the specified Material composition very complex. Especially the glow of the bundles at temperatures up to 1100 ° C and an annealing time of 5 hours Measures to avoid glue, which also makes the process in its economy is negatively affected. Furthermore, attempts have been made under Application of the method showed that cold rolling degrees> 90% did not inevitably leads to a sharp four-fold orientation training in the material to lead.

Aufgabe der Erfindung ist es ein Verfahren zu finden, mit dem die Erzeugung von kornorientiertem Elektroband mit einer Anreicherung von Würfelflächen oder ihnen naher Lagen in der Walzebene sowie eine Häufung der Würfelkanten in Richtungen die etwa 45 ° zur Walzrichtung liegen, möglich ist und die Fertigung daraus hergestellter Magnetkerne für Elektromaschinen verbessert werden kann.The object of the invention is to find a method with which the generation of grain-oriented electrical steel with an enrichment of cube surfaces or close to them in the roller plane and an accumulation of the cube edges in Directions that are about 45 ° to the rolling direction is possible and the production magnetic cores produced therefrom for electrical machines can be improved.

Erfindungsgemäß wird die Aufgabe durch die Merkmale der Ansprüche 1 und 8 gelöst. Hierbei wird ein Stahl mit einem Kohlenstoffgehalt von C < 0,10 % vorzugsweise mit C = 0,02 - 0,07 % einem Si-Gehalt von Si = 0 - 2 % und Gehalten an Al, Mn, S, N, O in den für Elektroband üblichen Konzentrationen verwendet. Es werden die 200 - 300 mm dicken Stahlbrammen dieser Zusammensetzung auf ca. 1250 °C vorgewärmt und anschließend in 5 bis 9 Stichen bei geringer Einzelstichabnahmen in einer Vorstraße warmgewalzt, wobei die Stichabnahmen < 20 % für die ersten beiden und < 30 % für die folgenden Stiche betragen. Bei Einlauf in die Fertigstaffel. weist das Material eine Temperatur zwischen 930 °C und 1100 °C auf, vorzugsweise < 1000 °C bei Einsatz von unlegiertem Stahl und vorzugsweise zwischen 1000 °C und 1100 °0 bei Einsatz von Si-legiertem Stahl. Die Endwalztemperatur liegt verfahrensgemäß zwischen 800 °C und 950 °C, bei unlegiertem Material vorzugsweise zwischen 840 °C und 870 °C und bei legiertem vorzugsweise bis 920 °C, wobei die Stichabnahmen beim Fertigwalzen 35 % nicht übersteigen. Das so hergestellte Fertigband wird ohne Zwangskühlung anschließend bei einer Haspeltemperatur von > 700 °C gehaspelt. In Abhängigkeit von der gewünschten Kaltbanddicke im Bereich von 0.1 bis 0,6 mm ist die Warmbanddicke so zu wählen, daß bei der folgenden Kaltverformung Verformungsgrade von > 86 % vorzugsweise > 90 % erreicht werden können. Dünnere Brammen, insbesondere solche nach der Dünnbrammengießwalztechnologie hergestellte, werden analog warmgewalzt, wobei hier aufgrund der geringeren Formänderungsgeschwindigkeiten die Stichabnahmen jeweils um ca. 10 % höher liegen können.
Es wurde gefunden, daß mit einem derart hergestellten Warmband die angestrebte Gefügeausbildung durch das anschließende Kaltverformen wesentlich wirtschaftlicher gestaltet werden kann. Verfahrensgemäß ist es vorteilhaft, wenn die nach dem üblichen Beizen in mehreren Stichen erfolgende Kaltverformung bei erhöhten Temperaturen im Bereich von 150 °C bis 350 °C beginnt, vorzugsweise zwischen 200 °C und 300 °C. Das mit einem Umformgrad > 86 % kaltverformte Band wird anschließend 0,5 bis 20 h bei 500 °C bis 750 °C unter neutralem Gas geglüht, vorzugsweise I bis 5 h um 550 °C für unlegiertes und bei 620 °C bis 680 °C für Si-legiertes Material. Nach dieser Zwischenglühung wird das Material einer weiteren Kaltverformung von 2 bis 15 %, vorzugsweise 6 bis 12 % unterzogen (dressiert) und anschließend bei Temperaturen um 800 °C je nach Zusammensetzung bei oder etwas oberhalb AG 1 in wenigstens zeitweise entkohlender Atmosphäre schlußgeglüht. Es hat sich als günstig erwiesen, wenn das so erzeugte Band ein zweites Mal dressiert und schlußgeglüht wird. Die Schlußglühung kann sowohl am Band (fully finished) als auch am Stanzteil bzw. nach dem Paketieren (Semifinished) vorgenommen werden. Das verfahrensgemäß hergestellte kornorientierte Elektroband ist gekennzeichnet durch vier magnetische Vorzugsrichtungen, die unter 45 ° zur Walzrichtung in der Blechebene liegen. Diese unter Vermeidung von Hochtemperaturglühungen erzeugte Gefügeausbildung kann mit einer Gefügeorientierung (001)<110> bezeichnet werden. Das Band ist besonders geeignet für Einsatzfälle, in denen der Magnetfluß in .zwei zueinander senkrechten Richtungen geführt wird. Das ist z.. B. in Ständerpaketen umlaufender oder nicht umlaufender Elektromaschinen der Fall. Die dazu benötigten Stanzteile werden, unter Beachtung des Verlaufs der vier Vorzugsrichtungen leichter Magnetisierbarkeit, aus dem bandförmigen Material ausgestanzt und zu einem Paket zusammengefügt. Die Kernbleche für Magnetkerne für umlaufende Elektromaschinen können dabei aus Ronden gefertigt sein, die jeweils so zu einem Paket zusammengefügt sind, daß jeweils unmittelbar aufeinanderfolgende Kernbleche zueinander um 45 ° gedreht angeordnet sind. Beim Einsatz von Segmenten für Magnetkerne für umlaufende Elektromaschinen werden die einzelnen Segmente so aus dem bandförmigen Elektroband ausgestanzt, daß durch sie die Richtungen der leichten Magnetisierbarkeit erfaßt werden. Derartig hergestellte Magnetkerne weisen gegenüber bisher eingesetzten Stanzteilen einen bedeutend geringeren Herstellungs- und Verarbeitungssaufwand sowie bessere magnetische Eigenschaften auf.
According to the invention the object is solved by the features of claims 1 and 8. Here a steel with a Carbon content of C <0.10% preferably with C = 0.02 - 0.07% a Si content of Si = 0 - 2% and contents of Al, Mn, S, N, O used in the concentrations customary for electrical steel. The 200 - 300 mm thick steel slabs of this composition are preheated to approx. 1250 ° C and then hot-rolled in 5 to 9 stitches with small single stitch decreases in a roughing mill, the stitch decreases <20% for the first two and <30% for the following Stitches. When entering the finishing line. the material has a temperature between 930 ° C and 1100 ° C, preferably <1000 ° C when using unalloyed steel and preferably between 1000 ° C and 1100 ° C when using Si-alloyed steel. According to the process, the final rolling temperature is between 800 ° C and 950 ° C, preferably between 840 ° C and 870 ° C for unalloyed material and preferably up to 920 ° C for alloyed materials, the stitch decreases during finish rolling not exceeding 35%. The finished strip produced in this way is then coiled at a reel temperature of> 700 ° C without forced cooling. Depending on the desired cold strip thickness in the range of 0.1 to 0.6 mm, the hot strip thickness should be selected so that degrees of deformation of> 86%, preferably> 90%, can be achieved in the following cold forming. Thinner slabs, in particular those produced using the thin slab casting technology, are hot-rolled in the same way, with the stitch decreases here being approximately 10% higher due to the lower deformation rates.
It was found that with a hot strip produced in this way, the desired microstructure formation can be made considerably more economical by the subsequent cold forming. According to the process, it is advantageous if the cold forming which takes place after the usual pickling in several passes begins at elevated temperatures in the range from 150 ° C. to 350 ° C., preferably between 200 ° C. and 300 ° C. The strip, which is cold-formed with a degree of deformation> 86%, is then annealed for 0.5 to 20 h at 500 ° C. to 750 ° C. under neutral gas, preferably 1 to 5 h around 550 ° C. for unalloyed and at 620 ° C. to 680 ° C. for Si-alloyed material. After this intermediate annealing, the material is subjected to a further cold working of 2 to 15%, preferably 6 to 12% (tempered) and then finally annealed at temperatures around 800 ° C., depending on the composition, at or slightly above AG 1 in an at least temporarily decarburizing atmosphere. It has proven to be advantageous if the strip produced in this way is treated a second time and finally annealed. The final annealing can be carried out on the belt (fully finished) as well as on the stamped part or after packaging (semifinished). The grain-oriented electrical steel produced in accordance with the method is characterized by four magnetic preferred directions, which are at 45 ° to the rolling direction in the sheet metal plane. This structure formation, avoiding high-temperature annealing, can be designated with a structure orientation (001) <110>. The tape is particularly suitable for applications in which the magnetic flux is conducted in two mutually perpendicular directions. This is the case, for example, in stand packages of rotating or non-rotating electrical machines. The punched parts required for this are punched out of the band-shaped material, taking into account the course of the four preferred directions of easy magnetization, and assembled into a package. The core sheets for magnetic cores for rotating electrical machines can be made from circular blanks, which are each assembled into a package in such a way that core sheets that follow each other in each case are rotated by 45 ° to one another. When using segments for magnetic cores for rotating electrical machines, the individual segments are punched out of the band-shaped electrical steel strip so that the directions of easy magnetizability are detected by them. Magnetic cores produced in this way have a significantly lower production and processing outlay and better magnetic properties than previously used stamped parts.

Das erfindungsgemäße Verfahren soll nachfolgend an drei Ausführungsbeispielen näher erläutert werden.The method according to the invention is intended to be based on three exemplary embodiments are explained in more detail.

Beispiel AExample A

Eine unlegierte Stahlbramme mit einem C-Gehalt von 0,07 % und einer Dicke von 250 mm wird auf 1250 °C vorgewärmt und in 7 Stichen auf 32 mm vorgewalzt. Das Fertigwalzen erfolgt in 5 Stichen bei einer Einlauftemperatur von 965 °C und einer Endwalztemperatur von 840 °C, bei Einzelstichabnahme < 30 % auf 5,6 mm mit anschließender Luflabkühlung und Haspeln bei >700 °C. Das gebeizte Band wird nach dem Kaltwalzen auf 0,55 mm (Verformungsgrad 90 %) bei 560 °C für 2 Stunden zwischengeglüht und anschließend mit 6 % dressiert. Nachfolgend wird dieses Material einer Schlußglühung bei 780 °C, eine Stunde in feuchtem und vier Stunden im trockenem H2 unterzogen. Das danach hergestellte kornorientierte Elektroband weist für J and 2500 (T) folgende Werte auf:An unalloyed steel slab with a C content of 0.07% and a thickness of 250 mm is preheated to 1250 ° C and rolled in 7 passes to 32 mm. Finishing rolling is carried out in 5 passes at an inlet temperature of 965 ° C and a finish rolling temperature of 840 ° C, with a single pass decrease of <30% to 5.6 mm with subsequent air cooling and reeling at> 700 ° C. After pickling, the pickled strip is annealed to 0.55 mm (degree of deformation 90%) at 560 ° C for 2 hours and then treated with 6%. This material is then subjected to a final annealing at 780 ° C., one hour in moist and four hours in dry H 2 . The grain-oriented electrical steel produced afterwards has the following values for J and 2500 (T):

Winkelabhängigkeit der magnetischen Polarisation bei H and = 2500 Am-1 (ϕ= Winkel zur Walzrichtung) ϕ 15° 30° 45° 60° 75° 90° J and 2500 / (T) 1,62 1,73 1,86 1,92 1,87 1,71 1,60 Der Mittelwert J über alle Richtungen beträgt

Figure 00040001
2500 = 1,78 T.Angular dependence of the magnetic polarization at H and = 2500 Am -1 (ϕ = angle to the rolling direction) ϕ 0 ° 15 ° 30 ° 45 ° 60 ° 75 ° 90 ° J and 2500 / (T) 1.62 1.73 1.86 1.92 1.87 1.71 1.60 The mean J across all directions is
Figure 00040001
2500 = 1.78 T.

Beispiel BExample B

Eine Si-legierte Stahlbramrne mit einem Si-Gehalt von 1,1 % und einem C-Gehalt von 0,05 % sowie einer Dicke von 250 mm wird auf Temperatur von 1250 °C vorgewärmt und in der gleichen Weise bezüglich Stichanzahl und Verfonnungsgrad warm- und kaltgewalzt wie in Beispiel A, jedoch unter Änderung folgender Parameter: Einlauftemperatur Fertigwalzen 1080 °C Endwalztemperatur 895 °C Zwischenglühtemperatur 660 °C (2h) A Si-alloy steel slab with a Si content of 1.1% and a C content of 0.05% and a thickness of 250 mm is preheated to a temperature of 1250 ° C and heated in the same way with regard to the number of stitches and degree of and cold rolled as in Example A, but with the following parameters changed: Inlet temperature of finish rolls 1080 ° C Finish rolling temperature 895 ° C Intermediate annealing temperature 660 ° C (2h)

Die Winkelabhängigkeit der magnetischen Polarisation ergibt sich zu ϕ 15° 30° 45° 60° 75° 90° J 2500 / (T) 1,64 1,685 1,77 1,795 1,64 1,635 1,56 mit einem Mittelwert J über alle Richtungen 2500 = 1,70 T The angular dependence of the magnetic polarization results in ϕ 0 ° 15 ° 30 ° 45 ° 60 ° 75 ° 90 ° J 2500 / (T) 1.64 1,685 1.77 1,795 1.64 1,635 1.56 with an average J across all directions 2500 = 1.70 T.

Beispiel CExample C

Eine unlegierte Stahlbramme wie nach Beispiel A wird jedoch mit einer etwas höheren Temperatur warmgewalzt, anschließend kaltgewalzt und zwischengeglüht, wobei sich dem 1. Dressieren (10%) eine weitere Zwischenglühung bei 780 °C 2h in trockenem H2 anschließt und danach das Band einer weiteren 10%igen Kaltverformung unterzogen wird. Die Schlußglühung erfolgt bei 780 °C 1 h in feuchtem und 4 h in trockenem H2. Das danach hergestellte kornorientierte Elektroband weist für J 2500 (T) folgende Wert auf: ϕ 15° 30° 45° 60° 75° 90° 1 mal dressiert 1,69 1,71 1,77 1,79 1,735 1,675 1,63 2 mal dressert 1,63 1,71 1,83 1,87 1,805 1,67 1,58 However, an unalloyed steel slab as in Example A is hot-rolled at a slightly higher temperature, then cold-rolled and annealed, with the first tempering (10%) followed by another intermediate annealing at 780 ° C for 2 hours in dry H2 and then the band of another 10 % cold deformation is subjected. The final annealing is carried out at 780 ° C for 1 h in moist and 4 h in dry H2. The grain-oriented electrical steel produced afterwards has the following value for J 2500 (T): ϕ 0 ° 15 ° 30 ° 45 ° 60 ° 75 ° 90 ° 1 trained 1.69 1.71 1.77 1.79 1,735 1,675 1.63 2 times 1.63 1.71 1.83 1.87 1.805 1.67 1.58

Die Mittelwerte J über alle Richtungen betragen im 1. Fall 2500 = 1,72 T im zweiten 2500 = 1,75 T.The mean values J across all directions are in the 1st case 2500 = 1.72 T in the second 2500 = 1.75 T.

Das erfindungsgemäß hergestellte kornorientierte Elektroband eignet sich besonders für Einsatzfälle, bei denen der Magnetfluß in zwei zueinander senkrechten Richtungen geführt wird. Dazu werden in nicht umlaufenden elektrischen Maschinen, die für den Aufbau im Magnetkörper erforderlichen Stanzteile entsprechend der in Figur 1 dargestellten Anordnung der Schnittformen aus dem Bandmaterial gefertigt, wobei die Strahlen 1, 2, 3, 4 die vier Richtungen leichter Magnetisierbarkeit kennzeichnen. Die Magnetkerne für umlaufende Elektromaschinen werden so gefertigt, daß entweder jeweils unmittelbar aufeinander folgende Kernbleche zueinander um 45 ° gedreht angeordnet sind oder daß entsprechend Figur 2 der Magnetkern aus Segmenten aufgebaut ist, wobei die Segmente die Winkel leichter Magnetisierbarkeit erfassen. Bei der erstgenannten alternierenden Schichtung der Ronden wurde für die Winkelabhängigkeit der J 2500-Werte für Ronden nach Beispiel C folgende Ergebnisse gefunden: 15° 30° 45° 60° 75° 90° Pr.1 1,72 1,76 1,85 1,89 1,835 1,72 1,57 Pr.2 1,68 1,73 1,81 1,84 1,79 1,67 1,60 0°-Schichtung 1,70 1,745 1,83 1,87 1,81 1,705 1,63 45°-Schichtung 1,79 1,795 1,79 1,77 1,775 1,77 1,75 The grain-oriented electrical steel produced according to the invention is particularly suitable for applications in which the magnetic flux is conducted in two directions perpendicular to one another. For this purpose, in non-rotating electrical machines, the stamped parts required for the assembly in the magnetic body are manufactured from the strip material in accordance with the arrangement of the sectional shapes shown in FIG. 1, the beams 1, 2, 3, 4 identifying the four directions of easier magnetization. The magnetic cores for rotating electrical machines are manufactured in such a way that either immediately successive core sheets are arranged at 45 ° to one another or that, according to FIG. 2, the magnetic core is made up of segments, the segments capturing the angles of easy magnetization. In the former alternating layering of the blanks, the following results were found for the angular dependence of the J 2500 values for blanks according to Example C: 0 ° 15 ° 30 ° 45 ° 60 ° 75 ° 90 ° Pr.1 1.72 1.76 1.85 1.89 1,835 1.72 1.57 Pr.2 1.68 1.73 1.81 1.84 1.79 1.67 1.60 0 ° stratification 1.70 1,745 1.83 1.87 1.81 1.705 1.63 45 ° stratification 1.79 1,795 1.79 1.77 1,775 1.77 1.75

Als Mittelwerte J 2500 über alle Richtungen erhält man für Pr. 1 Pr. 2 0°-Schichtung 45°-Schichtung 1,79 T 1,75 T 1,77 T 1,78 T The mean values J 2500 for all directions are obtained for Pr. 1 Pr. 2 0 ° stratification 45 ° stratification 1.79 T. 1.75 T. 1.77 T. 1.78 T.

Die danach hergestellten Magnetkerne zeichnen sich durch bessere magnetische Eigenschaften aus.The magnetic cores produced afterwards are characterized by better magnetic ones Properties.

Claims (10)

  1. Process for producing grain-oriented magnetic steel strip which is readily magnetizable in four directions in the rolling plane, in which steel slabs having a C content of <0.10% and an Si content of from 0 to 2% and contents of Al, Mn, S, N, O in the concentrations which are usual for magnetic steel strip are preheated to approximately 1250°C, are roughed in from 5 to 9 passes with small reductions for each individual pass and are finish-rolled in a separate roll line, with an entry temperature of from 930°C to 1100°C and a finishing temperature of from 800°C to 950°C, with reductions for each pass of (35%, and the hot strip produced in this way is coiled without forced cooling at a temperature of >700°C and, after cooling, while a degree of deformation of >86% is maintained, is subjected to cold working which is followed by intermediate annealing under neutral gas at from 500°C to 750°C for from 0.5 h to 20 h and further cold working of from 2 to 15% with subsequent final annealing at temperatures of around 800°C in an at least intermittently decarburizing atmosphere.
  2. Process according to Claim 1, characterized in that, in the case of unalloyed steel, the temperature on entry into the finishing roll line is <1000°C and on exit from the finishing roll line is from 840°C to 870°C.
  3. Process according to Claim 1, characterized in that, in the case of steel, the temperature on entry into the finishing roll line is from 1000°C to 1100°C and on exit from the finishing roll line is up to 920°C.
  4. Process according to Claims 1 to 3, characterized in that expediently, before cold working, the hot strip is preheated to a temperature of from 150°C to 350°C, preferably to 200°C to 300°C.
  5. Process according to Claims 1 and 2, characterized in that the unalloyed magnetic steel strip, after cold rolling, is subjected to intermediate annealing, preferably at 520°C to 580°C for one to five hours under neutral gas.
  6. Process according to Claims 1 and 3, characterized in that the alloyed magnetic steel strip, after cold rolling, is subjected to intermediate annealing, preferably at from 620°C to 680°C for one to five hours under neutral gas.
  7. Process according to Claims 1 to 5, characterized in that the cold-rolled magnetic steel strip is skin-rolled at 2-15% and undergoes final annealing intermittently in a decarburizing atmosphere, the magnetic steel strip, if appropriate, being subjected to further rerolling and final annealing.
  8. Process for producing magnet cores for electrical machines from grain-oriented magnetic steel strip which is produced according to one of Claims 1 to 7 and is readily magnetizable in four directions in the rolling plane, in which process the stamped parts which are to be produced for the magnet cores are stamped out taking into account the course of the four directions of ready magnetizability, which run at 45° to the direction of rolling, and are combined to form an assembly.
  9. Process according to Claim 8, characterized in that the stamped parts for magnet cores for rotary electrical machines comprising discs which are combined to form an assembly in such a way that core plates which immediately follow one another are arranged rotated through 45° with respect to one another.
  10. Process according to Claim 8, characterized in that the stamped parts for magnet cores for rotary electrical machines comprise segments which are combined to form an assembly in such a way that the individual segments each pick up the directions of ready magnetizability.
EP94116869A 1993-11-01 1994-10-26 Process for producing grain-oriented electrical steel sheet and magnetic cores produced therefrom Expired - Lifetime EP0651061B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4337605 1993-11-01
DE4337605A DE4337605C2 (en) 1993-11-01 1993-11-01 Method for producing grain-oriented electrical steel and magnetic cores made therefrom

Publications (2)

Publication Number Publication Date
EP0651061A1 EP0651061A1 (en) 1995-05-03
EP0651061B1 true EP0651061B1 (en) 1999-12-22

Family

ID=6501755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94116869A Expired - Lifetime EP0651061B1 (en) 1993-11-01 1994-10-26 Process for producing grain-oriented electrical steel sheet and magnetic cores produced therefrom

Country Status (3)

Country Link
EP (1) EP0651061B1 (en)
AT (1) ATE187984T1 (en)
DE (2) DE4337605C2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19807122C2 (en) * 1998-02-20 2000-03-23 Thyssenkrupp Stahl Ag Process for the production of non-grain oriented electrical sheet
DE10221793C1 (en) 2002-05-15 2003-12-04 Thyssenkrupp Electrical Steel Ebg Gmbh Non-grain oriented electrical steel or sheet and process for its manufacture
DE102006017762B4 (en) * 2006-04-12 2010-07-08 Siemens Ag Process for laminating an electrical steel strip for transformer cores
US7845065B2 (en) * 2007-11-07 2010-12-07 Gm Global Technology Operations, Inc. Method of making a rotating electric machine stator core

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1212124B (en) * 1959-12-24 1966-03-10 Vacuumschmelze Ag Process for the production of sheet metal from iron-silicon alloys
DE1256239B (en) * 1961-01-27 1967-12-14 Westinghouse Electric Corp Process for the production of cube texture in iron-silicon sheets
US4427462A (en) * 1981-06-18 1984-01-24 Matsushita Electric Industrial Co., Ltd. Electric apparatus and its magnetic core of (100)[011] silicon-iron sheet made by rapid quenching method
DD299102A7 (en) * 1989-12-06 1992-04-02 ������@����������@��������@��������@��@��������k�� METHOD FOR PRODUCING NONORIENTED ELECTROBLECH
IT1237481B (en) * 1989-12-22 1993-06-07 Sviluppo Materiali Spa PROCEDURE FOR THE PRODUCTION OF SEMI-FINISHED NON-ORIENTED WHEAT MAGNETIC SHEET.
BE1006599A6 (en) * 1993-01-29 1994-10-25 Centre Rech Metallurgique Method of manufacturing a plate hot rolled steel having high magnetic properties.

Also Published As

Publication number Publication date
ATE187984T1 (en) 2000-01-15
DE4337605A1 (en) 1995-05-04
DE59409021D1 (en) 2000-01-27
DE4337605C2 (en) 1996-02-08
EP0651061A1 (en) 1995-05-03

Similar Documents

Publication Publication Date Title
DE2819514C2 (en) Process for the production of a grain-oriented electromagnetic steel sheet
EP2612942B1 (en) Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal
DE2848867A1 (en) PROCESS FOR MANUFACTURING NON-ORIENTED SILICON STEEL SHEETS WITH EXCELLENT ELECTROMAGNETIC PROPERTIES
DE3220255C2 (en) Process for the production of grain-oriented electrical steel sheet or strip
DE2816880C2 (en) Grain-oriented magnetic steel sheet
EP1263993B1 (en) Method for producing non grain-oriented electric sheets
WO2000065103A2 (en) Method of producing non-grain-oriented electrical sheet
DE68916980T2 (en) Process for producing grain-oriented electrical steel sheets with high flux density.
DE102011119395A1 (en) Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications
DE1489620B2 (en) MAGNETIZABLE IRON SHEET AND METHOD FOR ITS PRODUCTION
DE3538609C2 (en)
EP1192287B1 (en) Method for producing non-grain oriented electric sheet steel
DE102018201622A1 (en) Afterglow, but not nachglühpflichtiges electrical tape
DE2307464A1 (en) IRON ALLOYS AND METHOD OF MANUFACTURING THEREOF
DE2730172C2 (en) Process for the production of a forsterite insulating film with good adhesion properties
DE3147584C2 (en) Process for the production of grain-oriented silicon steel in strip or sheet form
DE3229256A1 (en) GRAIN-ORIENTED ELECTRO-STEEL SHEET AND METHOD FOR THE PRODUCTION THEREOF
EP1506320A1 (en) Non-grain oriented electrical steel strip or electrical steel sheet and method for producing the same
EP0651061B1 (en) Process for producing grain-oriented electrical steel sheet and magnetic cores produced therefrom
DE69120738T2 (en) Process for the production of non-grain-oriented magnetic steel sheets and thus obtained steel sheets
DE69025417T3 (en) Process for the production of grain-oriented electrical steel sheets with excellent magnetic properties
DE3116419A1 (en) METHOD FOR PRODUCING A CORNORIENTED, ELECTROMAGNETIC STEEL TAPE
DE3232518C2 (en)
DE1294401B (en) Process for the production of iron-silicon sheets with the (100) plane in the rolling plane
DE102018201618A1 (en) Afterglow, but not nachglühpflichtiges electrical tape

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990203

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT SE

REF Corresponds to:

Ref document number: 187984

Country of ref document: AT

Date of ref document: 20000115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59409021

Country of ref document: DE

Date of ref document: 20000127

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000121

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101020

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101021

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101030

Year of fee payment: 17

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20111028

Year of fee payment: 18

Ref country code: SE

Payment date: 20111021

Year of fee payment: 18

Ref country code: FR

Payment date: 20111110

Year of fee payment: 18

BERE Be: lapsed

Owner name: *INSTITUT FUR FESTKORPER- UND WERKSTOFFORSCHUNG DR

Effective date: 20121031

Owner name: *EKO STAHL G.M.B.H.

Effective date: 20121031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 187984

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121026

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121026

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121026

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121026

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121026

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131018

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59409021

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59409021

Country of ref document: DE