EP0651052B1 - Waschmittelzusammensetzungen für Geschirrspülmaschinen - Google Patents

Waschmittelzusammensetzungen für Geschirrspülmaschinen Download PDF

Info

Publication number
EP0651052B1
EP0651052B1 EP93308800A EP93308800A EP0651052B1 EP 0651052 B1 EP0651052 B1 EP 0651052B1 EP 93308800 A EP93308800 A EP 93308800A EP 93308800 A EP93308800 A EP 93308800A EP 0651052 B1 EP0651052 B1 EP 0651052B1
Authority
EP
European Patent Office
Prior art keywords
weight
machine dishwashing
acidification agent
alkali metal
dishwashing detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP93308800A
Other languages
English (en)
French (fr)
Other versions
EP0651052A1 (de
Inventor
Fiona Susan Macbeath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8214589&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0651052(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to DE69320637T priority Critical patent/DE69320637T2/de
Priority to EP93308800A priority patent/EP0651052B1/de
Priority to AT93308800T priority patent/ATE170215T1/de
Priority to ES93308800T priority patent/ES2121955T3/es
Priority to PCT/US1994/012246 priority patent/WO1995012657A1/en
Priority to AU81253/94A priority patent/AU8125394A/en
Priority to US08/633,764 priority patent/US5747438A/en
Publication of EP0651052A1 publication Critical patent/EP0651052A1/de
Publication of EP0651052B1 publication Critical patent/EP0651052B1/de
Application granted granted Critical
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3761(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds

Definitions

  • the present invention relates to particulate solid machine dishwashing detergent compositions containing a coated percarbonate bleach component, a bleach activator component, an acidification agent and a means for enabling delayed release of said acidification agent into the wash solution.
  • Detergent compositions designed for use in automatic dishwasher machines are well known, and a consistent effort has been made by detergent manufacturers to improve the cleaning and/or rinsing efficiency of said compositions on dishes and glassware, as reflected by numerous patent publications.
  • the inorganic perhydrate bleach most widely used in machine dishwashing detergent compositions is sodium perborate in the form of either the monohydrate or tetrahydrate.
  • concerns about the impact of boron salts on the environment have led to an increasing interest in other perhydrate salts, of which sodium percarbonate is the most readily available.
  • Detergent compositions containing sodium percarbonate are known in the art.
  • Sodium percarbonate is an attractive perhydrate for use in detergent compositions because it dissolves readily in water, is weight efficient and, after giving up its available oxygen, provides a source of carbonate ions to the wash solution.
  • percarbonate salts have been restricted hitherto by the relative instability of such salts in the detergent matrix environment.
  • percarbonate salt components of such detergent compositions decompose rapidly when stored in moist and/or warm atmospheres. It is known that acceptable storage characteristics may however be obtained through the protection of the percarbonate by coating the crystalline product, or by the inclusion of stabilizing agents during its manufacture, or both.
  • suitable coating agents have been proposed including silicates and mixtures of inorganic sulphate and carbonate salts.
  • Laundry washing and bleaching methods using compositions containing a hydrogen peroxide source and peroxyacid bleach precursor (bleach activator) and involving an initially alkaline (e.g.: pH 10 - 11) wash solution, and delayed release of acid into the wash solution to provide a final wash solution of lower pH are known in the art, having been disclosed for example, in EP-A-396,287 and EP-A-290,081.
  • washing methods are referred to generally as 'controlled pH release washing methods'.
  • the coating of the percarbonate bleach which is necessary for its storage stability in the detergent product, will act such as to inhibit the required rapid release of hydrogen peroxide into the initial alkaline wash solution. Release of the hydrogen peroxide is particularly impaired where the initial wash solution temperature is close to room temperature, e.g.; as with 'cold fill' dishwashing machines. The overall performance of the washing method is thus impaired.
  • the percarbonate is formulated in combination with a bleach activator, an acidification agent and means of delayed release of said acidification agent.
  • the first essential component of the detergent compositions in accord with the invention is alkali metal percarbonate bleach coated with a mixed salt comprising an alkali metal carbonate and an alkali metal sulphate salt.
  • the coated alkali metal percarbonate is present at a level of from 3% to 40%, preferably from 4% to 30%, most preferably from 5% to 25% by weight of the compositions.
  • the percarbonate is incorporated in coated form, which provides for storage stability of the percarbonate salt in the granular product.
  • the coating material comprises a mixed salt of an alkali metal sulphate and carbonate. Such mixed salt coatings together with coating processes have previously been described in GB-1,466,799, granted to Interox on 9th March 1977.
  • the weight ratio of the mixed salt coating material to percarbonate lies in the range from 1 : 200 to 1 : 4, more preferably from 1 : 99 to 1 : 9, and most preferably from 1 : 49 to 1 : 19.
  • the mixed salt is of sodium sulphate and sodium carbonate which has the general formula Na 2 SO 4 .n.Na 2 CO 3 wherein n is from 0.1 to 3, preferably n is from 0.3 to 1.0 and most preferably n is from 0.2 to 0.5.
  • Sodium percarbonate which is the preferred alkali metal percarbonate, is an addition compound having a formula corresponding to 2Na 2 CO 3 .3H 2 O 2 , and is available commercially as a crystalline solid.
  • the median particle size of the coated percarbonate particles herein are preferably in the range 150 to 1400 microns, preferably 250 to 1000 microns.
  • sodium percarbonate is present as the only inorganic perhydrate salt.
  • Other inorganic perhydrate salts may however, less desirably also be present.
  • examples of other inorganic perhydrate salts include perborate, perphosphate, persulfate and persilicate salts.
  • the inorganic perhydrate salts are normally the alkali metal salts.
  • compositions of the invention contain from 0.5% to 15% by weight, preferably from 0.8% to 8% by weight, most preferably from 1% to 6% by weight of a peroxyacid bleach precursor.
  • Peroxyacid bleach precursors for inclusion in the machine dishwashing detergent compositions in accordance with the invention can contain one or more N- or O- acyl groups, which precursors can be selected from a wide range of classes. Suitable classes include anhydrides, esters, imides and acylated derivatives of imidazoles and oximes, and examples of useful materials within these classes are disclosed in GB-A-1586789. The most preferred classes are esters such as are disclosed in GB-A-836988, 864798, 1147871 and 2143231 and imides such as are disclosed in GB-A-855735 & 1246338.
  • Particularly preferred bleach precursor compounds are the N,N,N',N'-tetra acetylated compounds of formula (CH 3 CO) 2 -(CH 2 ) x -(CH 3 CO) 2 , wherein x can be O or an integer between 1 & 6.
  • TAMD tetra acetyl methylene diamine
  • TAED tetra acetyl ethylene diamine
  • TAHD tetracetyl hexylene diamine
  • peroxyacid bleach activator compounds are the amide substituted compounds described in EP-A-0170386.
  • Useful peroxyacid bleach precursor compounds include sodium nonanoyloxy benzene sulfonate, sodium trimethyl hexanoyloxy benzene sulfonate, sodium acetoxy benzene sulfonate and sodium benzoyloxy benzene sulfonate as disclosed in, for example, EP-A-0341947.
  • peroxyacid bleach precursor compounds include the acyl lactams, especially the acyl caprolactams, particularly benzoyl caprolactam, and the acyl valerolactams, particularly nonanoyl valerolactam. Also useful are penta acetylated glucose (PAG) and 1-benzoyl-2,3,4,6-tetra acetyl glucose.
  • PAG penta acetylated glucose
  • 1-benzoyl-2,3,4,6-tetra acetyl glucose are also useful.
  • the third essential component of the machine dishwashing detergent compositions of the invention is an acidification agent present at a level of from 0.1% to 40% by weight, preferably from 0.5% to 30%, more preferably from 1% to 25% by weight of the compositions.
  • acidification agents herein it is meant any component which when released, acts such as to reduce the pH of the wash solution containing the dissolved/dispersed composition.
  • Preferred acidification agents include inorganic and organic acids including, for example, carboxylate acids, such as citric and succinic acids, polycarboxylate acids, such as polyacrylic acid, and also acetic acid, boric acid, malonic acid, adipic acid, fumaric acid, lactic acid, glycolic acid, tartaric acid, tartronic acid, maleic acid, their derivatives and any mixtures of the foregoing.
  • Bicarbonates, particularly sodium bicarbonate, are useful acidification agents herein.
  • a highly preferred acidification acid is citric acid which has the advantage of providing builder capacity to the wash solution.
  • the release of acidification agent into the wash solution does not occur immediately on introduction of the composition of the invention into the wash solution. Rather, there is a delayed release of said acidification agent such that the pH of the composition as a 1% solution in water at 20 o C is from 9.5 to 13.0 prior to release of the acidification agent, preferably from 9.8 to 12.0, and such that the pH of said composition as a 1% solution in water at 20 o C is from 9.3 to 7.0, preferably from 9.2 to 8.0 subsequent to complete release of the acidification agent.
  • complete release of said acidification agent occurs in a time period of from 30 seconds to 10 minutes, preferably from 2 minutes to 8 minutes, most preferably from 3 minutes to 7 minutes after introduction of the composition to the wash solution.
  • no acidification agent is released into the wash solution less than 30 seconds, more preferably less than 2 minutes, most preferably less than 3 minutes after introduction of the composition into the wash solution.
  • Said means can include coating the acidification agent with a coating designed to provide said delayed release.
  • the coating may therefore, for example, comprise a poorly water soluble material, or be a coating of sufficient thickness that the kinetics of dissolution of the thick coating provide the delayed release.
  • the coating material may be applied using various methods.
  • the coating material is typically present at a weight ratio of coating material to acidification agent of from 1:99 to 1:2, preferably from 1:49 to 1:9.
  • Suitable coating materials include triglycerides (e.g. (partially) hydrogenated vegetable oil, soy bean oil, cotton seed oil) mono or diglcerides, microcrystalline waxes, gelatin, cellulose, fatty acids and any mixtures thereof.
  • triglycerides e.g. (partially) hydrogenated vegetable oil, soy bean oil, cotton seed oil
  • mono or diglcerides e.g. (partially) hydrogenated vegetable oil, soy bean oil, cotton seed oil
  • microcrystalline waxes e.g. (partially) hydrogenated vegetable oil, soy bean oil, cotton seed oil
  • gelatin e.g. (partially) hydrogenated vegetable oil, soy bean oil, cotton seed oil
  • a paticularly peferred coated acidification agent particle comprises an acidification agent, preferably citric acid, particle with a dual coating comprising an inner wax (paraffin) coating and an outer silica coating, wherein the wax (paraffin) typically has a melting point in the range 50°C to 90°C.
  • This dual coating allows for improved particle flow and for improved control over rate of dissolution in the wash solution.
  • One method for applying the coating material involves agglomeration. Any conventional agglomerator/mixer may be used including but not limited to pan, rotary drum and vertical blender types. Molten coating compositions may also be applied either by being poured onto, or spray atomized onto a moving bed of acid source comprising, for example, citric acid.
  • Other means of providing delayed release may include mechanical means for altering the physical characteristics of the acid to control its solubility and rate of release, particularly for acid compounds in dry form; suitable protocols could include compaction, mechanical injection, manual injection, solubility adjustment of the acid compound by selected particle size etc. Additional protocols could include ionic strength adjustment for regulating the rate of dissolution for the acid compound, thus altering characteristics of the acid itself, for example, by modifying a short chain carboxylic acid through the addition of branches or other groups.
  • a further delayed release means could involve blending of the acid compound with a less soluble or hydrophobic compound acting as a carrier, for example clays, zeolite, or polymeric resins.
  • the present invention also encompasses a machine dishwashing method for cleaning soiled tableware comprising contacting said soiled tableware with a wash solution formed by dispersing therein an effective amount of a composition in accord with the invention, such that the initial pH of the said wash solution prior to release of the acidification agent component of the composition is from 9.5 to 13.0, preferably from 9.8 to 12.0, and such that the pH of the wash solution is from 9.3 to 7.0, preferably from 9.2 to 8.0, subsequent to complete release of the acidification agent.
  • an effective amount of the machine dishwashing composition it is typically meant from 8g to 60g of product dispensed into from 3 to 10 litres of wash solution.
  • the wash solution typically has a pH in the 9.5 to 13.0 region for a time period of from 30 seconds to 10 minutes, preferably from 2 minutes to 8 minutes, more preferably from 3 minutes to 7 minutes, subsequent to the introduction of the detergent composition to the wash solution.
  • a highly preferred component of the machine dishwashing detergent composition of the present invention is detergent builder compound present at a level of from 1% to 80% by weight, preferably from 5% to 70% by weight, most preferably from 10% to 60% weight of the composition.
  • Suitable detergent builder compound is largely or wholly water-soluble, and can, for example, be selected from monomeric polycarboxylates or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, carbonates, bicarbonates, borates, phosphates, silicates and mixtures of any of the foregoing.
  • Suitable water-soluble monomeric or oligomeric carboxylate builders can be selected from a wide range of compounds but such compounds preferably have a first carboxyl logarithmic acidity/constant (pK 1 ) of less than 9, preferably of between 2 and 8.5, more preferably of between 4 and 7.5.
  • pK 1 first carboxyl logarithmic acidity/constant
  • the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
  • Monomeric and oligomeric builders can be selected from acyclic, alicyclic, heterocyclic and aromatic carboxylates.
  • Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831,368, 821,369 and 821,370.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegenschrift 2,446,686, and 2,446,687 and U.S. Patent No. 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623.
  • Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
  • Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran - cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol.
  • Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.
  • the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts e.g. citric acid or citrate/citric acid mixtures are also contemplated as components of builder systems of detergent compositions in accordance with the present invention.
  • Water-soluble detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric metaphosphates), phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), and sulfates.
  • Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions can also be used but are not preferred at wash conditions less that about 50°C, especially less than about 40°C.
  • phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymetaphosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
  • Suitable silicates include the water soluble sodium silicates with an Si0 2 : Na 2 0 ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.4 being preferred, and 2.0 ratio being most preferred.
  • the silicates may be in the form of either the anhydrous salt or a hydrated salt.
  • Sodium silicate with an SiO 2 : Na 2 0 ratio of 2.0 is the most preferred silicate.
  • Silicates are preferably present in the machine dishwashing detergent compositions at the invention at a level of from 1% to 50% by weight of the composition, more preferably from 5% to 40% by weight, most preferably from 3% to 15% by weight.
  • water-soluble detergent builders are essential components of the detergent compositions of the invention the compositions may also include less water soluble builders although preferably their levels of incorporation are minimized.
  • less water soluble builders include the crystalline layered silicates and the largely water insoluble sodium aluminosilicates.
  • Suitable aluminosilicate zeolites have the unit cell formula Na 2 [(AlO 2 ) z (SiO 2 )y]. xH 2 O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
  • the builder component herein may also contain carbonate species, such as alkali metal carbonates and bicarbonates.
  • compositions contain less than 10% by weight, more preferably less than 8% by weight, most preferably less than 6% by weight of organic dispersant compound.
  • organic polymeric dispersant compound it is meant essentially any polymeric organic compound commonly used as a dispersant in detergent compositions.
  • organic polymeric dispersant compounds include the water soluble organic homo- or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of the latter type are disclosed in GB-A-1,596,756.
  • salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.
  • organic polymeric dispersant compounds include the polymers of acrylamide and acrylate having a molecular weight of from 3,000 to 100,000, and the acrylate/fumarate copolymers having a molecular weight of from 2,000 to 80,000.
  • Other organic polymeric compounds include the polyamino compounds such as those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
  • Preferred polyamino compounds include the homo and/or copolymers containing D/L or L/D aspartic acid with a molecular weight of from 1,500 to 20,000, preferably from 5,000 to 7,000.
  • compositions may also contain corrosion inhibitor.
  • corrosion inhibitors are preferred components of machine dishwashing compositions in accord with the invention, and are preferably incorporated at a level of from 0.05% to 10%, preferably from 0.1% to 5% by weight of the total composition.
  • Suitable corrosion inhibitors include paraffin oil typically a predominantly branched aliphatic hydrocarbon having a number of carbon atoms in the range of from 20 to 50, a preferred paraffin oil being selected from predominantly branched C 25-45 species with a ratio of cyclic to noncyclic hydrocarbons of about 32:68.
  • paraffin oil meeting these characteristics is sold by Wintershall, Salzbergen, Germany, under the trade name WINOG 70.
  • Suitable corrosion inhibitor compounds include benzotriazole and any derivatives thereof, mercaptans and diols, especially mercaptans with 4 to 20 carbon atoms including lauryl mercaptan, thiophenol, thionapthol, thionalide and thioanthranol.
  • mercaptans and diols especially mercaptans with 4 to 20 carbon atoms including lauryl mercaptan, thiophenol, thionapthol, thionalide and thioanthranol.
  • the C 12 -C 20 fatty acids, or their salts especially aluminium tristearate.
  • the C 12 -C 20 hydroxy fatty acids, or their salts are also suitable.
  • Phosphonated octa-decane and other anti-oxidants such as betahydroxytoluene (BHT) are also suitable.
  • the detergent compositions of the invention may be formulated to contain as a non-essential component heavy metal ion sequestrant, incorporated at a level of from 0.005% to 3%, preferably 0.05 to 1%, most preferably 0.07% to 0.4%, by weight of the total composition.
  • Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as amino alkylene poly (alkylene phosphonate), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
  • Preferred among the above species are diethylene triamine penta (methylene phosphonate), hexamethylene diamine tetra (methylene phosphonate) and hydroxyethylene 1,1 diphosphonate.
  • the phosphonate compounds may be present either in their acid form or as a complex with either an alkali or alkaline metal ion, the molar ratio of said metal ion to said phosphonate compound being at least 1:1.
  • Such complexes are described in US-A-4,259,200.
  • the organic phosphonate compounds are in the form of their magnesium salt.
  • Suitable heavy metal ion sequestrants for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid or the water soluble alkali metal salts thereof.
  • ethylenediamine-N,N'-disuccinic acid or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
  • Preferred EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof. Examples of such preferred sodium salts of EDDS include Na 2 EDDS and Na 3 EDDS. Examples of such preferred magnesium complexes of EDDS include MgEDDS and Mg 2 EDDS. The magnesium complexes are the most preferred for inclusion in compositions in accordance with the invention.
  • heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EPA 317 542 and EPA 399 133.
  • the heavy metal ion sequestrant herein can consist of a mixture of the above described species.
  • a highly preferred component of the machine dishwashing compositions of the invention is a surfactant system comprising surfactant selected from anionic, cationic, nonionic ampholytic and zwitterionic surfactants and mixtures thereof.
  • the surfactant system may be present at a level of from 0.5% to 30% by weight, more preferably 1% to 25% by weight, most preferably from 2% to 20% by weight of the compositions.
  • Sulphonate and sulphate surfactants are useful herein.
  • Sulphonates include alkyl benzene sulphonates having from 5 to 15 carbon atoms in the alkyl radical, and alpha-sulphonated methyl fatty acid esters in which the fatty acid is derived from a C 6 -C18 fatty source.
  • Preferred sulphate surfactants are alkyl sulphates having from 6 to 16, preferably 6 to 10 carbon atoms in the alkyl radical.
  • a useful surfactant system comprises a mixture of two alkyl sulphate materials whose respective mean chain lengths differ from each other.
  • the cation in each instance is again an alkali metal, preferably sodium.
  • the alkyl sulfate salts may be derived from natural or synthetic hydrocarbon sources.
  • the C 6 -C 16 alkyl ethoxysulfate salt comprises a primary alkyl ethoxysulfate which is derived from the condensation product of a C 6 -C 16 alcohol condensed with an average of from one to seven ethylene oxide groups, per mole.
  • alkali metal sarcosinates of formula R-CON (R 1 ) CH 2 COOM wherein R is a C 5 -C 17 linear or branched alkyl or alkenyl group, R 1 is a C 1 -C 4 alkyl group and M is an alkali metal ion.
  • R is a C 5 -C 17 linear or branched alkyl or alkenyl group
  • R 1 is a C 1 -C 4 alkyl group
  • M is an alkali metal ion.
  • Preferred examples are the lauroyl, Cocoyl (C 12 -C 14 ), myristyl and oleyl methyl sarcosinates in the form of their sodium salts.
  • anionic surfactants useful herein comprise the alkyl ester sulfonate surfactants which include linear esters of C 8 -C 20 carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous SO 3 according to "The Journal of the American Oil Chemists Society," 52 (1975), pp. 323-329. Suitable starting materials would include natural fatty substances as derived from tallow, or palm oil.
  • the preferred alkyl ester sulfonate surfactants have the structural formula: wherein R 3 is a C 8 -C 20 hydrocarbyl, preferably an alkyl, or combination thereof, R 4 is a C 1 -C 6 hydrocarbyl, preferably an alkyl, or combination thereof, and M is a cation which forms a water soluble salt with the alkyl ester sulfonate.
  • Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as monoethanolamine, diethanolamine, and triethanolamine.
  • R 3 is C 10 -C 16 alkyl
  • R 4 is methyl, ethyl or isopropyl.
  • methyl ester sulfonates wherein R 3 is C 10 -C 16 alkyl.
  • One class of nonionic surfactants useful in the present invention comprises the water soluble ethoxylated C 6 -C 16 fatty alcohols and C 6 -C 16 mixed ethoxylated/propoxylated fatty alcohols and mixtures thereof.
  • the ethoxylated fatty alcohols are the C 10 -C 16 ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the C 12 -C 16 ethoxylated fatty alcohols with a degree of ethoxylation from 3 to 40.
  • the mixed ethoxylated/propoxylated fatty alcohols have an alkyl chain length of from 10 to 16 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
  • C 6 -C 16 alcohol itself can be obtained from natural or synthetic sources.
  • C6-C16 alcohols derived from natural fats, or Ziegler olefin build-up, or OXO synthesis can form suitable sources for the alkyl group.
  • Examples of synthetically derived materials include Dobanol 25 (RTM) sold by Shell Chemicals (UK) Ltd which is a blend of C 12 -C 15 alcohols, Ethyl 24 sold by the Ethyl Corporation, which is a blend of C 12 -C 15 alcohols, a blend of C 13 -C 15 alcohols in the ratio 67% C 13 ,33% C 15 sold under the trade name Lutensol by BASF GmbH and Synperonic (RTM) by ICI Ltd., and Lial 125 sold by Liquichimica Italiana.
  • Examples of naturally occuring materials from which the alcohols can be derived are coconut oil and palm kernel oil and the corresponding fatty acids.
  • Nonionic surfactants comprises alkyl polyglucoside compounds of general formula RO (C n H 2n O) t Z x wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 6 to 16 carbon atoms preferably from 6 to 14 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.1 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides.
  • RO C n H 2n O
  • t Z x alkyl polyglucoside compounds of general formula RO (C n H 2n O) t Z x wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 6 to 16 carbon atoms preferably from 6 to 14 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.1 to 4, the compounds including less than 10% unreacted fatty
  • Another preferred nonionic surfactant is a polyhydroxy fatty acid amide surfactant compound having the structural formula: wherein R 1 is H, C 1 -C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferably C 1 -C 4 alkyl, more preferably C 1 or C 2 alkyl, most preferably C 1 alkyl (ie., methyl); and R 2 is a C 5 -C 15 hydrocarbyl, preferably straight chain C 5 -C 13 alkyl or alkenyl, more preferably straight chain C 5 -C 11 alkyl or alkenyl, most preferably straight chain C 5 -C 9 alkyl or alkenyl, or mixture thereof: and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxlylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from
  • a further class of surfactants are the semi-polar surfactants such as amine oxides.
  • Suitable amine oxides are selected from mono C 6 -C 20 , preferably C 6 -C 16 N-alkyl or alkenyl amine oxides and propylene-1,3-diamine dioxides wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxpropyl groups.
  • Cationic surfactants can also be used in the detergent compositions herein and suitable quaternary ammonium surfactants are selected from mono C 6 -C 16 , preferably C 6 -C 10 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • Another optional ingredient useful in detergent compositions is one or more enzymes.
  • Preferred enzymatic materials include amylases, neutral and alkaline proteases, lipases, and esterases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
  • protease enzymes include those sold under the tradenames Alcalase and Savinase by Novo Industries A/S (Denmark) and Maxatase by International Bio-Synthetics, Inc. (The Netherlands).
  • Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.005% to 2% active enzyme by weight of the composition.
  • Preferred amylases include, for example, ⁇ -amylases obtained from a special strain of B. licheniforms, described in more detail in GB 1,269,839 (Novo).
  • Preferred commercially available amylases include for example, Rapidase, sold by International Bio-Synthetics Inc, and Termamyl, sold by Novo Industries A/S. The invention at a level of from 0.001% to 2% active enzyme by weight of the composition.
  • a preferred lipase is derived from Pseudomonas pseudoalcaligenes , which is described in Granted European Patent, EP-B-0218272.
  • Another preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus oryza , as host, as described in European Patent Application, EP-A-0258068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase.
  • This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
  • compositions of the invention may contain a lime soap dispersant compound, which has a lime soap dispersing power (LSDP), as defined hereinafter of no more than 8, preferably no more than 7, most preferably no more than 6.
  • LSDP lime soap dispersing power
  • the lime soap dispersant compound is preferably present at a level of from 0.1% to 40% by weight, more preferably 1% to 20% by weight, most preferably from 2% to 10% by weight of the compositions.
  • a lime soap dispersant is a material that prevents the precipitation of alkali metal, ammonium or amine salts of fatty acids by calcium or magnesium ions.
  • a numerical measure of the effectiveness of a lime soap dispersant is given by the lime soap dispersing power (LSDP) which is determined using the lime soap dispersion test as described in an article by H.C. Borghetty and C.A. Bergman, J. Am. Oil. Chem. Soc., volume 27, pages 88-90, (1950).
  • This lime soap dispersion test method is widely used by practitioners in this art field being referred to , for example, in the following review articles; W.N. Linfield, Surfactant Science Series, Volume 7, page 3; W.N. Linfield, Tenside Surf. Det.
  • Polymeric lime soap dispersants suitable for use herein are described in the article by M.K. Nagarajan and W.F. Masler, to be found in Cosmetics and Toiletries, Volume 104, pages 71-73, (1989).
  • Examples of such polymeric lime soap dispersants include certain water-soluble salts of copolymers of acrylic acid, methacrylic acid or mixtures thereof, and an acrylamide or substituted acrylamide, where such polymers typically have a molecular weight of from 5,000 to 20,000.
  • Surfactants having good lime soap dispersant capability will include certain amine oxides, betaines, sulfobetaines, alkyl ethoxysulfates and ethoxylated alcohols.
  • the detergent compositions of the invention preferably comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.05% to 10%, most preferably from 0.1% to 5% by weight of the composition.
  • Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds, 2-alkyl alcanol antifoam compounds, and paraffin antifoam compounds.
  • antifoam compound any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
  • Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component.
  • silicone antifoam compounds also typically contain a silica component.
  • silica component The term "silicone” as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
  • Suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
  • the monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to about 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • Suitable antifoam compounds include, for example, high molecular weight hydrocarbons such as paraffin, fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C 18 -C 40 ketones (e.g. stearone), N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g.
  • hydrocarbons such as paraffin, fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C 18 -C 40 ketones (e.g. stearone), N-alkylated
  • the hydrocarbons such as paraffin and haloparaffin, can be utilized in liquid form.
  • the liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of -40°C and 5°C, and a minimum boiling point not less than 110°C (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferably having a melting point below about 100°C. Hydrocarbon suds suppressors are described, for example, in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al.
  • the hydrocarbons thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from 12 to 70 carbon atoms.
  • the term "paraffin”, as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
  • Copolymers of ethylene oxide and propylene oxide particularly the mixed ethoxylated/propoxylated fatty alcohols with an alkyl chain length of from 10 to 16 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10, are also suitable antifoam compounds for use herein.
  • 2-alky-alcanols antifoam compounds for use herein have been described in DE-A- 40 21 265.
  • the 2-alkyl-alcanols suitable for use herein consist of a C 6 to C 16 alkyl chain carrying a terminal hydroxy group, and said alkyl chain is substituted in the alpha position by a C 1 to C 10 alkyl chain.
  • Mixtures of 2-alkyl-alcanols can be used in the compositions according to the present invention.
  • compositions of the invention include antiredeposition, and soil-suspension agents, perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
  • the machine dishwashing compositions of the invention can be formulated in any particulate solid form such as powders and granulates, with granular forms being preferred.
  • granular detergent compositions in accordance with the present invention can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation.
  • the bulk density of the granular detergent compositions in accordance with the present invention typically have a bulk density of at least 650 g/litre, more usually at least 700 g/litre and more preferably from 800 g/litre to 1200 g/litre.
  • Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrical cup disposed below the funnel.
  • the funnel is 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base.
  • the cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
  • the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup.
  • the filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement e.g. a knife, across its upper edge.
  • the filled cup is then weighed and the value obtained for the weight of powder doubled to provide the bulk density in g/litre. Replicate measurements are made as required.
  • the particle size of the components of granular compositions in accordance with the invention should preferably be such that no more that 5% of particles are greater than 1.4mm in diameter and not more than 5% of particles are less than 0.15mm in diameter.
  • compositions A - D gave good cleaning performance when employed in a machine dishwashing method in accord with the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Claims (9)

  1. Teilchenförmige, feste Reinigerzusammensetzung für eine Geschirrspülmaschine, enthaltend
    (a) 3 bis 40 Gew.-% Alkalimetallpercarbonat-Bleichmittel, das mit einem gemischten Salz, umfassend ein Alkalimetallcarbonat- und ein Alkalimetallsulfatsalz, überzogen ist;
    (b) 0,5 bis 15 Gew.-% eines Peroxysäure-Bleichmittelvorläufers;
    (c) 0,1 bis 40 Gew.-% eines Acidifizierungsmittels;
    und eine Einrichtung, welche eine verzögerte Freigabe des Acidifizierungsmittels ermöglicht, so daß der pH der Zusammensetzung als eine 1 %-ige Lösung in Wasser bei 20°C 9,5 bis 13,0 vor Freigabe des Acidifizierungsmittels beträgt, und daß der pH der Zusammensetzung als eine 1 %-ige Lösung in Wasser bei 20°C nach vollständiger Freigabe des Acidifizierungsmittels 9,3 bis 7,0 beträgt.
  2. Reinigerzusammensetzung für eine Geschirrspülmaschine nach Anspruch 1, wobei das gemischte Salz in einem Gewichtsverhältnis von gemischtem Salz zu Alkalimetallpercarbonat-Bleichmittel von 1:99 bis 1:9 vorliegt.
  3. Reinigerzusammensetzung für eine Geschirrspülmaschine nach Anspruch 1 und/oder 2, wobei das gemischte Salz der allgemeinen Formel Na2SO4.n.Na2CO3 entspricht, worin n 0,3 bis 1,0 ist.
  4. Reinigerzusammensetzung für eine Geschirrspülmaschine nach mindestens einem der Ansprüche 1 bis 3, wobei das überzogene Alkalimetallpercarbonat-Bleichmittel in einem Anteil von 4 bis 30 Gew.-% der Zusammensetzung vorliegt.
  5. Reinigerzusammensetzung für eine Geschirrspülmaschine nach mindestens einem der Ansprüche 1 bis 4, wobei der Peroxysäure-Bleichmittelvorläufer Tetraacetylethylendiamin ist, das mit einem Anteil von 1 bis 6 Gew. -% der Zusammensetzung vorliegt.
  6. Reinigerzusammensetzung für eine Geschirrspülmaschine nach mindestens einem der Ansprüche 1 bis 5, wobei das Acidifizierungsmittel Citronensäure ist, welche in einem Anteil von 1 bis 25 Gew.-% der Zusammensetzung vorliegt.
  7. Reinigerzusammensetzung für eine Geschirrspülmaschine nach mindestens einem der Ansprüche 1 bis 6, wobei die Einrichtung, welche eine verzögerte Freigabe des Acidifizierungsmittels ermöglicht, eine Beschichtung des Acidifizierungsmittels umfaßt.
  8. Reinigerzusammensetzung für eine Geschirrspülmaschine nach Anspruch 7, wobei die Beschichtung eine Zweifachbeschichtung mit einer inneren Wachs (Paraffin] -Beschichtung und einer äußeren Silicabeschichtung umfaßt.
  9. Verfahren zum maschinellen Geschirrspülen zur Reinigung von verschmutztem Tafelgeschirr, umfassend das Kontaktieren des verschmutzten Tafelgeschirrs mit einer Waschlösung, welche gebildet wird durch Dispergieren darin einer wirksamen Menge einer Zusammensetzung nach mindestens einem der Ansprüche 1 bis 8, so daß der Anfangs-pH der Waschlösung vor Freigabe des Acidifizierungsmittels 9,5 bis 13,0 beträgt, und daß der pH der Waschlösung nach vollständiger Freigabe des Acidifizierungsmittels 9.3 bis 7,0 beträgt.
EP93308800A 1993-11-03 1993-11-03 Waschmittelzusammensetzungen für Geschirrspülmaschinen Revoked EP0651052B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE69320637T DE69320637T2 (de) 1993-11-03 1993-11-03 Waschmittelzusammensetzungen für Geschirrspülmaschinen
EP93308800A EP0651052B1 (de) 1993-11-03 1993-11-03 Waschmittelzusammensetzungen für Geschirrspülmaschinen
AT93308800T ATE170215T1 (de) 1993-11-03 1993-11-03 Waschmittelzusammensetzungen für geschirrspülmaschinen
ES93308800T ES2121955T3 (es) 1993-11-03 1993-11-03 Composiciones detergentes para lavavajillas.
PCT/US1994/012246 WO1995012657A1 (en) 1993-11-03 1994-10-21 MACHINE DISHWASHING DETERGENT CONTAINING COATED PERCARBONATE AND AN ACIDIFICATION AGENT TO PROVIDE DELAYED LOWERED pH
AU81253/94A AU8125394A (en) 1993-11-03 1994-10-21 Machine dishwashing detergent containing coated percarbonate and an acidification agent to provide delayed lowered ph
US08/633,764 US5747438A (en) 1993-11-03 1994-10-21 Machine dishwashing detergent containing coated percarbonate and an acidification agent to provide delayed lowered pH

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP93308800A EP0651052B1 (de) 1993-11-03 1993-11-03 Waschmittelzusammensetzungen für Geschirrspülmaschinen

Publications (2)

Publication Number Publication Date
EP0651052A1 EP0651052A1 (de) 1995-05-03
EP0651052B1 true EP0651052B1 (de) 1998-08-26

Family

ID=8214589

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93308800A Revoked EP0651052B1 (de) 1993-11-03 1993-11-03 Waschmittelzusammensetzungen für Geschirrspülmaschinen

Country Status (6)

Country Link
EP (1) EP0651052B1 (de)
AT (1) ATE170215T1 (de)
AU (1) AU8125394A (de)
DE (1) DE69320637T2 (de)
ES (1) ES2121955T3 (de)
WO (1) WO1995012657A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138346A (zh) 1993-12-21 1996-12-18 普罗格特-甘布尔公司 含有过碳酸盐和淀粉酶的去污剂组合物
DE4439193A1 (de) * 1994-11-03 1996-05-09 Bayer Ag Mischung zur Korrosionshemmung von Metallen
US5783540A (en) * 1996-12-23 1998-07-21 Lever Brothers Company, Division Of Conopco, Inc. Machine dishwashing tablets delivering a rinse aid benefit
US5837663A (en) * 1996-12-23 1998-11-17 Lever Brothers Company, Division Of Conopco, Inc. Machine dishwashing tablets containing a peracid
US5900395A (en) * 1996-12-23 1999-05-04 Lever Brothers Company Machine dishwashing tablets containing an oxygen bleach system
DE19721346A1 (de) * 1997-05-22 1998-11-26 Henkel Kgaa Verwendung von Asparaginsäure-haltigen Polymeren zusammen mit Hydroxycarbonsäuren zur Korrosionsinhibierung in Kühlkreisläufen
GB0017549D0 (en) * 2000-07-18 2000-09-06 Reckitt & Colmann Prod Ltd Improvements in or relating to chemical compositions and their use
DE10310377A1 (de) * 2003-03-07 2004-09-16 Bode Chemie Gmbh & Co. Kg Desinfektionsmittlelkonzentrate auf Basis quarternärer Ammoniumverbindungen sowie die Verwendung derselben zur chemothermischen Instrumentenaufbereitung
EP2216393B1 (de) * 2009-02-09 2024-04-24 The Procter & Gamble Company Reinigungsmittelzusammensetzung
EP3181679A1 (de) * 2015-12-17 2017-06-21 The Procter and Gamble Company Verfahren zur herstellung eines automatischen geschirrspülprodukts
EP3409754A1 (de) * 2017-05-31 2018-12-05 Dalli-Werke GmbH & Co. KG Beschichtete zitronensäureteilchen in reinigungsmitteln
CN117441006A (zh) * 2021-06-15 2024-01-23 联合利华知识产权控股有限公司 单位剂量片剂组合物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042621A (en) * 1957-11-01 1962-07-03 Colgate Palmolive Co Detergent composition
DE2318930A1 (de) * 1972-04-17 1973-10-31 Procter & Gamble Enzym enthaltende detergenzgemische
FR2226460B1 (de) * 1973-04-20 1976-12-17 Interox
US4105827A (en) * 1973-04-20 1978-08-08 Interox Particulate peroxygen compounds coated with sodium sesquicarbonate or Na2 SO4 mNa2 CO3
FR2323631A1 (fr) * 1975-09-15 1977-04-08 Ugine Kuhlmann Persels mixtes stables en melange lixiviel
GB8710690D0 (en) * 1987-05-06 1987-06-10 Unilever Plc Detergent bleach composition
EP0396287A3 (de) * 1989-05-04 1991-10-02 The Clorox Company Verfahren und Erzeugnis für ein verbessertes Bleichen unter in situ Bildung von Persäure
GB8910725D0 (en) * 1989-05-10 1989-06-28 Unilever Plc Bleach activation and bleaching compositions
GB9011618D0 (en) * 1990-05-24 1990-07-11 Unilever Plc Bleaching composition

Also Published As

Publication number Publication date
DE69320637D1 (de) 1998-10-01
DE69320637T2 (de) 1999-04-22
ATE170215T1 (de) 1998-09-15
ES2121955T3 (es) 1998-12-16
WO1995012657A1 (en) 1995-05-11
AU8125394A (en) 1995-05-23
EP0651052A1 (de) 1995-05-03

Similar Documents

Publication Publication Date Title
US5716923A (en) Laundry detergent containing a coated percarbonate and an acidification agent to provide delayed lowered pH
EP0651053A1 (de) Detergenszusammensetzungen für Wäsche
CA2154157C (en) Machine dishwashing detergent compositions
US5698504A (en) Machine dishwashing composition containing oxygen bleach and paraffin oil and benzotriazole compound silver tarnishing inhibitors
EP0706559B1 (de) Maschinengeschirrspülmittel enthaltend ein sauerstoffbleichmittel, paraffinöl und benzotriazolverbindungen als inhibitor des anlaufens von silber
US5747438A (en) Machine dishwashing detergent containing coated percarbonate and an acidification agent to provide delayed lowered pH
EP0651052B1 (de) Waschmittelzusammensetzungen für Geschirrspülmaschinen
EP0634478B1 (de) Waschmittelzusammensetzungen für Geschirrspülmaschinen
CA2145176C (en) Detergent composition comprising lime soap dispersant and lipase enzymes
US5772786A (en) Detergent composition comprising lime soap dispersant and lipase enzymes
GB2311536A (en) Dishwashing and laundry detergents
CA2144103C (en) Bleaching compositions
US5824630A (en) Machine dishwashing composition containing oxygen bleach and paraffin oil and nitrogen compound silver tarnishing inhibitors
GB2283494A (en) Machine dishwashing
US5776874A (en) Anti-tarnishing machine dishwashing detergent compositions containing a paraffin oil
WO1994007985A1 (en) Detergent composition comprising lime soap dispersant and lipase enzymes
CA2145177C (en) Detergent composition comprising a nonalkyloxylated nonionic surfactant
WO1995012652A1 (en) Detergent compositions
WO1994007974A1 (en) A detergent composition comprising a lime soap dispersing surfactant
CA2153314C (en) Machine dishwashing detergent compositions
WO1994016047A9 (en) Detergent compositions
EP0662119B1 (de) Verwendung eines Kalksteindispergiermittels in einer Waschmittelzusammensetzung enthaltend Lipase Enzyme
EP0662118B1 (de) Verwendung einer kalkseifendispergator und lipasehaltige waschmittelzusammensetzung
GB2288607A (en) Detergent Compositions Containing Diamine Tetracarboxylic Acid Or Salts Thereof
ES et al. Verwendung eines Kalksteindispergiermittels in einer Waschmittelzusammensetzung enthaltend Lipase Enzyme Utilisation d’un dispersant de savon de chaux dans une composition détergente contenant des lipases

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19951013

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971117

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980826

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980826

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980826

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980826

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980826

REF Corresponds to:

Ref document number: 170215

Country of ref document: AT

Date of ref document: 19980915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69320637

Country of ref document: DE

Date of ref document: 19981001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2121955

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: UNILEVER PLC/ UNILEVER NV

Effective date: 19990517

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000929

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001004

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20001103

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001107

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20001121

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001124

Year of fee payment: 8

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20001205

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20001205

NLR2 Nl: decision of opposition