EP0648865A1 - Process and apparatus for producing arsine electrolytically - Google Patents
Process and apparatus for producing arsine electrolytically Download PDFInfo
- Publication number
- EP0648865A1 EP0648865A1 EP94401974A EP94401974A EP0648865A1 EP 0648865 A1 EP0648865 A1 EP 0648865A1 EP 94401974 A EP94401974 A EP 94401974A EP 94401974 A EP94401974 A EP 94401974A EP 0648865 A1 EP0648865 A1 EP 0648865A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cathode
- arsine
- membrane
- ions
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000008569 process Effects 0.000 title abstract description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 239000001257 hydrogen Substances 0.000 claims abstract description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 24
- 150000002500 ions Chemical class 0.000 claims abstract description 19
- 239000012528 membrane Substances 0.000 claims description 47
- 239000000203 mixture Substances 0.000 claims description 39
- GOLCXWYRSKYTSP-UHFFFAOYSA-N Arsenious Acid Chemical compound O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 claims description 32
- 239000007789 gas Substances 0.000 claims description 30
- 239000002253 acid Substances 0.000 claims description 22
- 238000005755 formation reaction Methods 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 13
- 238000003860 storage Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 12
- 239000012466 permeate Substances 0.000 claims description 12
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 10
- 229910052785 arsenic Inorganic materials 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910001868 water Inorganic materials 0.000 claims description 9
- 125000002091 cationic group Chemical group 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 238000005868 electrolysis reaction Methods 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 239000003507 refrigerant Substances 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- 239000002808 molecular sieve Substances 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 150000002431 hydrogen Chemical class 0.000 claims description 4
- 229910052716 thallium Inorganic materials 0.000 claims description 4
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000010981 drying operation Methods 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- LZYIDMKXGSDQMT-UHFFFAOYSA-N arsenic dioxide Inorganic materials [O][As]=O LZYIDMKXGSDQMT-UHFFFAOYSA-N 0.000 abstract 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 229910003328 NaAsO2 Inorganic materials 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- PTLRDCMBXHILCL-UHFFFAOYSA-M sodium arsenite Chemical compound [Na+].[O-][As]=O PTLRDCMBXHILCL-UHFFFAOYSA-M 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000007832 Na2SO4 Substances 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 229910000070 arsenic hydride Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 1
- 241000287107 Passer Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- IKWTVSLWAPBBKU-UHFFFAOYSA-N a1010_sial Chemical compound O=[As]O[As]=O IKWTVSLWAPBBKU-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910000413 arsenic oxide Inorganic materials 0.000 description 1
- 229960002594 arsenic trioxide Drugs 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- WGRULTCAYDOGQK-UHFFFAOYSA-M sodium;sodium;hydroxide Chemical compound [OH-].[Na].[Na+] WGRULTCAYDOGQK-UHFFFAOYSA-M 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
Definitions
- the invention relates to a method and a device for generating arsine (AsH3) by electrolytic means.
- Gas hydrides are a key point in the semiconductor industry. We can thus cite the example of silane used as a precursor for the manufacture of silicon substrates or for the production of silica deposits, or even the example of arsine as a source of arsenic for doping semi- conductive or for the growth of epitaxial layers of GaAsP.
- arsine is not without posing safety problems linked to the highly toxic nature of this gas, justifying its handling under very careful conditions (use of hoods, etc.), both in terms of its production. than its storage or its transport in the form of bottles containing a generally reduced concentration of arsine in a carrier gas.
- document US-A-1,375,819 proposes a process for the production of arsine by electrolysis of a solution of an arsenic oxide (such as As2O3) in an acid medium (sulfuric acid) in which is also sulphate of potassium (K2SO4)
- the electrolyser used is of the tank type, the cathode is made of carbon covered with mercury, the anode is made of simple carbon.
- the configuration adopted gives rise to the production of a gas which is in fact a mixture of oxygen, hydrogen and arsine.
- the electrolytic cell is here also of the tank type, but consists of two concentric compartments playing the role of electrodes. These two electrodes are separated in their upper part by a solid cylindrical barrier (and concentric around the anode) whose objective is the separation of the gases produced at the anode and the cathode, before their evacuation from the top of the cell. .
- This "upper” barrier is supplemented by a “lower” barrier (always cylindrical and concentric around the anode), continuous or not with the preceding barrier, the objective of which is here also to separate the gases produced, at the bubbling stage.
- the invention proposes a process for generating arsine by electrolytic route from an electrochemical cell where a cathode supplied with H+ and AsO2 ⁇ ions are arranged, where two competing reactions producing respectively produce arsine and hydrogen gas, and an anode, where a reaction source of H+ ions takes place, in which the ratio of H+ / As concentrations to the cathode is controlled and kept constant.
- the reaction source of H+ ions can for example consist of the electrolysis of water (in the case of a conventional plane anode supplied with acid solution) or also by the oxidation of hydrogen (supply of gaseous hydrogen d '' a gas diffusion electrode).
- This second type of electrode having a very large specific surface generally has catalyst particles (platinum type) at the gas / liquid interface on which the hydrogen will oxidize to H+ ions, and on the gas side is treated so as to be made hydrophobic.
- the Applicant has indeed highlighted the key role of the H+ / As ratio at the cathode, and its influence on the yield of arsine obtained (concentration of arsine in the mixture gas obtained at the cathode).
- Each cell geometry corresponds to an optimum of the H+ / As ratio to be respected and maintained.
- the conversion rate is understood to mean, according to the invention, the ratio: (As e -As s ) / As e , where As e represents the concentration of arsenic in the fluid supplying the cathode compartment, and As s this same concentration in the outlet fluid which is recycled to the storage tank supplying the cathode compartment.
- the reserve of As2O3 (saturator) is located in the circuit between the cathode compartment and the storage of acid solution which comes to sweep the saturator.
- the reserve of As2O3 (saturator) is located in the circuit inside the storage of acid solution, within this solution, thus ensuring close contact between this solution and the walls of the saturator.
- a material such as that sold under the name NAFION R is suitable for the preparation of such a membrane.
- the use of the As2O3 saturator avoids the use of sodium salts, but also constitutes a kind of buffer capacity which ensures a regular and constant concentration of AsO2 ⁇ ions in the medium supplying the cathode.
- the acid medium used in the composition of the mixtures supplying the two compartments may include phosphoric, perchloric, or preferably sulfuric acid.
- the electrodes used for the implementation of the invention are advantageously made up as follows: at the cathode, a material promoting the formation of arsine to the detriment of the competing reaction of hydrogen formation, advantageously a material such as copper on which a deposit of bismuth, lead, or thallium or cadmium was carried out, with an electrode area of the order of 70 cm2. At the anode, a material such as titanium on which a deposit of ruthenium oxide or iridium was deposited, or an electrode for example of the felt type, will be used, depending on the case (conventional electrolysis or gas electrode). carbon.
- a step is carried out, downstream of the generator, of separation of the hydrogen / arsine mixture produced at the cathode, by treating this mixture on a membrane module, making it possible to obtain at the outlet (or rejection) of modulates a higher arsine concentration than in the arsine / hydrogen mixture treated at the entrance to the module, but also to obtain a high stability of this concentration.
- An assembly of one or more semi-permeable membranes mounted in series or in parallel, having good separation properties of arsine with respect to a carrier gas (selectivity), will advantageously be used to carry out this concentration step. This is the case for membranes of the polyimide or polyaramide (aromatic polyimide) type.
- this low pressure is compensated for by carrying out, on the permeate side of the membrane, a vacuum drawing or else a scanning with using a "tool" gas, so as to lower the partial pressure of the hydrogen (which we want to separate from arsine) on the permeate side.
- Low pressure is understood to mean, according to the invention, a pressure lying in the range 104 Pa to 5 x 105 Pa absolute.
- a gas other than that which it is desired to separate, and moreover having a low permeation of the permeate towards the interior of the membrane, so as to prevent this gas "tool” does not pollute the interior of the membrane and therefore does not affect the result obtained at the output of the module.
- nitrogen, or even SF comme will be used as the "tool" gas.
- the mixture produced at the cathode undergoes at least one drying operation, on a device such as a refrigerant (for example with Peltier effect), or else a molecular sieve, or a combination of these two means, and where appropriate, at least one filtering operation on a particle filter.
- a device such as a refrigerant (for example with Peltier effect), or else a molecular sieve, or a combination of these two means, and where appropriate, at least one filtering operation on a particle filter.
- Another object of the invention is to propose a device for implementing the method according to the invention.
- the device comprises at least one electrochemical cell where at least one cathode is placed, supplied with H+ and AsO2 ⁇ ions, where two competing reactions take place, producing respectively arsine and hydrogen gas, and at least one anode. , where a reaction source of H+ ions takes place; a cationic membrane separating the electrochemical cell into two compartments, anodic and cathodic; and to supply the cathode compartment with H+ and AsO2 ⁇ ions, a saturator constituted by a reserve of As2O3, which is swept away by an acid solution.
- the source reaction of H+ ions at the anode is the electrolysis of water, the anode compartment is then supplied with an acid solution.
- the source reaction of H+ ions at the anode is the oxidation of hydrogen and we are then in the presence of a gas diffusion electrode supplied with hydrogen gas.
- the saturator is located between the electrochemical cell and the storage tank for the acid solution supplying the cathode compartment.
- the saturator is located inside the storage tank for the acid solution supplying the cathode compartment, within this acid solution.
- a material will be used for the cathode which favors the arsine formation reaction to the detriment of the hydrogen formation reaction, such as copper on which a deposit of bismuth, lead, or thallium or cadmium has been carried out.
- a material such as titanium on which a deposit of ruthenium oxide or iridium was deposited, or an electrode of the carbon felt type, for example (conventional electrolysis or gas electrode) will be used, as the case may be .
- the device comprises, downstream of the electrochemical cell, a membrane module, on which the arsine / hydrogen mixture produced at the cathode undergoes a separation step, so as to obtain at the module output, a higher arsine concentration than in the initial mixture.
- the membrane module is connected to means allowing the permeate side of the membrane to be evacuated, so as to bring the pressure on the permeate side to a value of the order of 1 to 100 Pa (primary vacuum).
- the membrane module is connected to a gas source, making it possible to carry out a scanning of the permeate side of the membrane, using this gas, which advantageously will have according to the invention low permeation of the permeate towards the inside of the membrane, such as nitrogen or SF6.
- a gas source making it possible to carry out a scanning of the permeate side of the membrane, using this gas, which advantageously will have according to the invention low permeation of the permeate towards the inside of the membrane, such as nitrogen or SF6.
- the device comprises, upstream of the membrane module, at least one device for drying the mixture produced at the cathode, such as a refrigerant, for example with Peltier effect, or else a molecular sieve, or a combination of these two means, and where appropriate, at least one particle filter.
- a refrigerant for example with Peltier effect
- a molecular sieve or a combination of these two means
- Figure 2 illustrates the performance obtained using a generator such as that described above, using a current density (relative to the electrode surface) of 500A / m2.
- the observed evolution confirms the existence of an optimum for the H+ / As ratio, close to 1 for this cell geometry, giving rise to the production at cathode 7 of an arsine / hydrogen mixture containing 95% of arsine, with a flow rate of 50 l / h / m2 (m2 of electrode).
- the performances decrease rapidly around the optimum value.
- FIG. 3 illustrates, under these same cell and electrode conditions, the influence of the current density on the flow of arsine produced at cathode 7, this for a H+ / As ratio close to 1. It can be seen, in the range [200 A / m2, 1500 A / m2] of current density an increasing flow of arsine, from around 25 l / h / m2 to around 225 l / h / m2.
- An electrochemical cell 12 such as that described in FIG. 1 is recognized in FIG. 4.
- the compartment of the cell 12 is supplied with acid solution stored in the tank 4, via line 5 which here also incorporates a flow sensor 13.
- the tank 4 includes means for discharging the oxygen produced at the anode to a vent 14, via a valve 15 if necessary, and a pressure sensor 16.
- the cell compartment 12 is supplied with AsO2 ⁇ ions by the storage tank 10, via line 17 which includes a flow sensor 18.
- the reserve of As2O3 (saturator 8) is here included in the storage 10, within the acid liquid 19, continuously swept by it, to allow the continuous dissolution of the compound As2O3 in the solution, leading to its saturation in AsO2 ⁇ ions.
- the cathode container 10 includes means for evacuating gas to a vent 20, via a valve 21 if necessary. This evacuation is in particular used during the purging operations of the system.
- an inlet 22 of inert gas such as nitrogen
- inert gas such as nitrogen
- This nitrogen inlet is particularly used to carry out storage purge cycles, at the start of the installation, but also to purge the downstream of the installation via a line 48 derived from line 25.
- the tank 10 also includes a pressure sensor 26, and a temperature sensor 28.
- the arsine / hydrogen mixture produced at the cathode of cell 12 is first treated on a refrigerant 27 (the temperature of which is controlled by a sensor 29), so as to purify the mixture in question of a large part of its humidity.
- the mixture undergoes a second purification of water on a molecular sieve 30, before passing over a particle filter 31.
- the mixture then approaches a semi-permeable membrane module 32 of the type with hollow fibers, the active layer of which is a polyaramide (aromatic polyimide) offering a total module exchange surface of approximately 0.25 m2.
- the installation allows the permeate side of the membrane to be evacuated by a line 35, at a pressure of the order of 10 Pa absolute (primary vacuum).
- the mixture enriched in arsine, at the outlet (rejection) of membrane, is then directed via a line 46 comprising a non-return valve 33 to a buffer capacity 34 from which the mixture is directed. via a line 47 comprising a pressure sensor 36, to the reactor 39 using arsine.
- the mixture is filtered on a particulate filter 38.
- a vent 40 is provided if necessary at the end of the line 47.
- valves of two types All along the route there are valves of two types, depending on the fluids transported from the valves for the liquid circuit (such as valves 41, 42 etc.), and for the gas pipeline (such as valves 43, 44, 45 etc.).
- the application of this installation made it possible to obtain, at the outlet of the cathode compartment, concentrations of arsine in hydrogen varying from 50% to 95%, according to the H+ / As ratio applied (as illustrated in FIG. 2), with a flow rate of the mixture leaving the cell of at least 3 l / h.
- the drying stage consisting of the refrigerant 27 and a molecular sieve 30, makes it possible to obtain a mixture almost free of water, any additional drying which can be carried out on the membrane 30.
- the essential objective of the membrane is to concentrate the arsine in the mixture obtained at the membrane outlet.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
L'invention concerne un procédé et un dispositif de génération d'arsine (AsH₃) par voie électrolytique.The invention relates to a method and a device for generating arsine (AsH₃) by electrolytic means.
Les hydrures gazeux constituent un point clé de l'industrie des semi-conducteurs. On peut ainsi citer l'exemple du silane utilisé comme précurseur pour la fabrication de substrats de silicium ou pour la réalisation de dépots de silice, ou encore l'exemple de l'arsine en tant que source d'arsenic pour le dopage des semi-conducteurs ou pour la croissance de couches épitaxiées de GaAsP.Gas hydrides are a key point in the semiconductor industry. We can thus cite the example of silane used as a precursor for the manufacture of silicon substrates or for the production of silica deposits, or even the example of arsine as a source of arsenic for doping semi- conductive or for the growth of epitaxial layers of GaAsP.
L'utilisation de l'arsine n'est pas sans poser des problèmes de sécurité liés au caractère hautement toxique de ce gaz, justifiant sa manipulation dans des conditions de très grandes précautions (utilisation de hottes..), tant au niveau de sa production que de son stockage ou encore son transport sous forme de bouteilles contenant une concentration généralement réduite d'arsine dans une gaz vecteur.The use of arsine is not without posing safety problems linked to the highly toxic nature of this gas, justifying its handling under very careful conditions (use of hoods, etc.), both in terms of its production. than its storage or its transport in the form of bottles containing a generally reduced concentration of arsine in a carrier gas.
Il est donc apparu intéressant de mettre au point une méthode de production (ou génération) d'arsine sur site (ou "on site"), permettant de produire sur place, à l'entrée du réacteur utilisant cet hydrure, de l'arsine dans de bonnes conditions de sécurité et de pureté.It therefore appeared interesting to develop a method of producing (or generating) arsine on site (or "on site"), making it possible to produce on site, at the inlet of the reactor using this hydride, arsine in good conditions of safety and purity.
La réduction électrolytique de solutions contenant des sels d'arsenic est rapidement apparue comme constituant une bonne réponse à ce problème.Electrolytic reduction of solutions containing arsenic salts quickly appeared to be a good answer to this problem.
Ainsi, le document US-A-1,375,819 propose un procédé de production d'arsine par électrolyse d'une solution d'un oxyde d'arsenic (comme As₂O₃) en milieu acide (acide sulfurique) dans laquelle est par ailleurs présent du sulfate de potassium (K₂SO₄) L'electrolyseur utilisé est du type bac, la cathode est en carbone recouverte de mercure, l'anode est en carbone simple. La configuration adoptée donne lieu à la production d'un gaz qui est en fait un mélange d'oxygène, d'hydrogène et d'arsine. Si aucune composition précise du mélange n'est annoncée, on peut aisément déduire de cette configuration le fait qu'elle ne sépare pas les gaz émis à la cathode et à l'anode, qu'elle n'empèche pas les ions AsO₂⁻ présents en solution d'aller s'oxyder à l'anode, diminuant d'autant le rendement en arsine.Thus, document US-A-1,375,819 proposes a process for the production of arsine by electrolysis of a solution of an arsenic oxide (such as As₂O₃) in an acid medium (sulfuric acid) in which is also sulphate of potassium (K₂SO₄) The electrolyser used is of the tank type, the cathode is made of carbon covered with mercury, the anode is made of simple carbon. The configuration adopted gives rise to the production of a gas which is in fact a mixture of oxygen, hydrogen and arsine. If no precise composition of the mixture is announced, it can easily be deduced from this configuration that it does not separate the gases emitted at the cathode and at the anode, that it does not prevent the AsO₂⁻ ions present in solution to oxidize at the anode, thereby reducing the yield of arsine.
Dans ce contexte, le document US-A-4,178,224 (V. R. Porter) propose un système électrolytique de production d'arsine basé sur le principe suivant : la cellule electrolytique est ici aussi du type bac, mais se compose de deux compartiments concentriques tenant le rôle d'électrodes. Ces deux électrodes sont séparées dans leur partie supérieure par une barrière solide cylindrique (et concentrique autour de l'anode) dont l'objectif est la séparation des gaz produits à l'anode et la cathode, avant leur évacuation par le haut de la cellule. Cette barrière "supérieure" est complétée par une barrière "inférieure" (toujours cylindrique et concentrique autour de l'anode), continue ou pas avec la barrière précédente, dont l'objectif est ici aussi de séparer les gaz produits, au stade du bullage, mais aussi de permettre le passage des ions H⁺ de l'anode vers la cathode où ils vont alimenter la réaction de formation de l'arsine. Cette seconde barrière est envisagée dans un matériel tel que du polypropylène poreux, ou en PVC mais dans ce dernier cas, il est prévu la présence d'une petite fenêtre dans le bas de la cellule pour laisser passer les ions H⁺. Ces deux barrières pourraient être réunies, selon ce document, en une seule barrière solide, mais ici encore, une ouverture est alors à prévoir dans la partie inférieure pour laisser passer les ions H⁺. La cathode est alimentée en une solution acide (H₂SO₄) de NaAsO₂, injectée entre l'anode et la cathode à partir d'un récipient extérieur à la cellule, à l'aide d'une pompe. Néanmoins, les résultats obtenus montrent que le mélange produit à la cathode (exemple 1) n'atteint que 20 % d'arsine dans l'hydrogène en régime stationnaire, et pas plus de 38 % en pointe.In this context, document US-A-4,178,224 (VR Porter) proposes an electrolytic arsenic production system based on the following principle: the electrolytic cell is here also of the tank type, but consists of two concentric compartments playing the role of electrodes. These two electrodes are separated in their upper part by a solid cylindrical barrier (and concentric around the anode) whose objective is the separation of the gases produced at the anode and the cathode, before their evacuation from the top of the cell. . This "upper" barrier is supplemented by a "lower" barrier (always cylindrical and concentric around the anode), continuous or not with the preceding barrier, the objective of which is here also to separate the gases produced, at the bubbling stage. , but also to allow the passage of H⁺ ions from the anode to the cathode where they will feed the arsine formation reaction. This second barrier is envisaged in a material such as porous polypropylene, or PVC but in the latter case, provision is made for the presence of a small window at the bottom of the cell to allow the H⁺ ions to pass. These two barriers could be combined, according to this document, into a single solid barrier, but here again, an opening is then to be provided in the lower part to allow the H⁺ ions to pass. The cathode is supplied with an acid solution (H₂SO₄) of NaAsO₂, injected between the anode and the cathode from a container outside the cell, using a pump. Nevertheless, the results obtained show that the mixture produced at the cathode (Example 1) only reaches 20% of arsine in hydrogen in steady state, and not more than 38% at peak.
On peut citer également le document EP-A-393 897, proposant ici encore un production d'arsine par voie électrolytique. La cellule électrolytique est du type bac, contenant une solution de soude NaOH, les électrodes sont toutes deux constituées par de l'arsenic. Si le rendement en arsine annoncé est élevé (de l'ordre de 97 % dans l'hydrogène), le débit atteint est en revanche très faible (de l'ordre de 15 cm³/h à la pression atmosphérique).Mention may also be made of document EP-A-393 897, here again proposing production of arsine by electrolytic means. The electrolytic cell is of the bac type, containing a NaOH sodium hydroxide solution, the electrodes are both constituted by arsenic. If the yield of arsine announced is high (of the order of 97% in hydrogen), the flow rate achieved is however very low (of the order of 15 cm³ / h at atmospheric pressure).
L'objet de la présente invention est de proposer un procédé de génération d'arsine par voie électrolytique, permettant :
- d'atteindre des concentrations élevées d'arsine dans le gaz de sortie;
- d'obtenir des débits suffisamment élevés, au moins égaux à 1 litre/heure, sans dégradation du rendement en arsine;
- d'obtenir une bonne stabilité des caractéristiques de concentration du mélange produit;
- d'éviter l'utilisation, comme matière première, de sels de sodium (tel NaAsO₂) de façon à éviter la précipitation de sels tels que Na₂SO₄, et donc le risque d'une présence éventuelle de sodium dans la phase gazeuse, toujours préjudiciable aux utilisations ultérieures dans l'industrie électronique.
- achieve high concentrations of arsine in the outlet gas;
- obtain sufficiently high flow rates, at least equal to 1 liter / hour, without degrading the arsine yield;
- to obtain good stability of the concentration characteristics of the mixture produced;
- avoid the use, as raw material, of sodium salts (such as NaAsO₂) so as to avoid the precipitation of salts such as Na₂SO₄, and therefore the risk of a possible presence of sodium in the gas phase, always detrimental to subsequent uses in the electronics industry.
Pour ce faire, l'invention propose un procédé de génération d'arsine par voie électrolytique à partir d'une cellule electrochimique où sont disposées une cathode alimentée en ions H⁺ et AsO₂⁻, où se produisent deux réactions concurrentes produisant respectivement de l'arsine et de l'hydrogène gazeux, et une anode, où se produit une réaction source d'ions H⁺, dans lequel le rapport des concentrations H⁺/As à la cathode est contrôlé et maintenu constant.To do this, the invention proposes a process for generating arsine by electrolytic route from an electrochemical cell where a cathode supplied with H⁺ and AsO₂⁻ ions are arranged, where two competing reactions producing respectively produce arsine and hydrogen gas, and an anode, where a reaction source of H⁺ ions takes place, in which the ratio of H⁺ / As concentrations to the cathode is controlled and kept constant.
La réaction source d'ions H⁺ peut être par exemple constituée par l'électrolyse de l'eau (cas d'une anode plane classique alimentée en solution acide) ou encore par l'oxydation de l'hydrogène (alimentation en hydrogène gazeux d'une électrode à diffusion gazeuse). Ce second type d'électrode présentant une très grande surface spécifique, présente généralement à l'interface gaz/liquide des particules de catalyseur (type platine) sur lesquelles l'hydrogène va s'oxyder en ions H⁺, et du coté gaz est traitée de manière à être rendue hydrophobe.The reaction source of H⁺ ions can for example consist of the electrolysis of water (in the case of a conventional plane anode supplied with acid solution) or also by the oxidation of hydrogen (supply of gaseous hydrogen d '' a gas diffusion electrode). This second type of electrode having a very large specific surface, generally has catalyst particles (platinum type) at the gas / liquid interface on which the hydrogen will oxidize to H⁺ ions, and on the gas side is treated so as to be made hydrophobic.
La demanderesse a en effet mis en évidence le rôle clé du rapport H⁺/As à la cathode, et son influence sur le rendement en arsine obtenu (concentration en arsine dans le mélange gazeux obtenu à la cathode). A chaque géométrie de cellule correspond un optimum du rapport H⁺/As à respecter et à maintenir.The Applicant has indeed highlighted the key role of the H⁺ / As ratio at the cathode, and its influence on the yield of arsine obtained (concentration of arsine in the mixture gas obtained at the cathode). Each cell geometry corresponds to an optimum of the H⁺ / As ratio to be respected and maintained.
Selon un aspect de l'invention, le rapport H⁺/As est contrôlé par les étapes suivantes:
- On sépare, par une membrane cationique, la cellule électrochimique en deux compartiments anodique et cathodique, permettant ainsi la maitrise des flux de matière à l'intérieur de la cellule;
- On assure une circulation du fluide alimentant le compartiment cathodique suffisamment élevée pour obtenir un taux de conversion en arsenic à la cathode inférieur à 10 %;
- On alimente le compartiment cathodique en ions H⁺ et AsO₂⁻ via un saturateur constitué par une réserve de composé solide As₂O₃ que vient balayer une solution acide.
- The electrochemical cell is separated, by a cationic membrane, into two anodic and cathodic compartments, thus allowing the control of material flows inside the cell;
- The circulation of the fluid supplying the cathode compartment is sufficiently high to obtain a conversion rate of arsenic at the cathode of less than 10%;
- The cathode compartment is supplied with H⁺ and AsO₂⁻ ions via a saturator constituted by a reserve of solid compound As₂O₃ which is swept away by an acid solution.
On entend par taux de conversion, selon l'invention, le rapport : (Ase-Ass)/Ase, où Ase représente la concentration en arsenic dans le fluide alimentant le compartiment cathodique, et Ass cette même concentration dans le fluide de sortie qui est recyclé vers le bac de stockage alimentant le compartiment cathodique.The conversion rate is understood to mean, according to the invention, the ratio: (As e -As s ) / As e , where As e represents the concentration of arsenic in the fluid supplying the cathode compartment, and As s this same concentration in the outlet fluid which is recycled to the storage tank supplying the cathode compartment.
Le bilan des réactions chimiques intervenant à l'anode et à la cathode est le suivant:The balance of chemical reactions occurring at the anode and at the cathode is as follows:
réaction concurrente à la cathode : H⁺ + 1e → 1/2 H₂
concurrent reaction at the cathode: H⁺ + 1e → 1/2 H₂
Selon une des mises en oeuvre de l'invention, la réserve de As₂O₃ (saturateur) est localisée dans le circuit entre le compartiment cathodique et le stockage de solution acide qui vient balayer le saturateur.According to one of the embodiments of the invention, the reserve of As₂O₃ (saturator) is located in the circuit between the cathode compartment and the storage of acid solution which comes to sweep the saturator.
Selon une autre mise en oeuvre de l'invention, la réserve de As₂O₃ (saturateur) est localisée dans le circuit à l'intérieur du stockage de solution acide, au sein de cette solution, assurant ainsi un contact étroit entre cette solution et les parois du saturateur.According to another implementation of the invention, the reserve of As₂O₃ (saturator) is located in the circuit inside the storage of acid solution, within this solution, thus ensuring close contact between this solution and the walls of the saturator.
Par membrane cationique, on entend, selon l'invention, une membrane échangeuse d'ions permettant :
- de laisser passer les ions H⁺ produits à l'anode vers la cathode, où ils iront alimenter la réaction de formation d'arsine;
- d'isoler les gaz produits à l'anode de ceux produits à la cathode;
- d'empécher que les ions AsO₂⁻, en solution du coté compartiment cathode, passent du côté anode et aillent s'oxyder sur l'anode, diminuant d'autant le rendement en arsine.
- allowing the H⁺ ions produced at the anode to pass to the cathode, where they will feed the arsine formation reaction;
- isolating the gases produced at the anode from those produced at the cathode;
- to prevent the AsO₂⁻ ions, in solution on the cathode compartment side, from passing on the anode side and going to oxidize on the anode, thereby reducing the yield of arsine.
Un matériau tel que celui commercialisé sous l'appellation NAFIONR convient pour l'élaboration d'une telle membrane.A material such as that sold under the name NAFION R is suitable for the preparation of such a membrane.
L'utilisation du saturateur de As₂O₃ permet d'éviter l'emploi de sels de sodium, mais aussi constitue une sorte de capacité tampon qui assure une concentration régulière et constante en ions AsO₂⁻ dans le milieu alimentant la cathode.The use of the As₂O₃ saturator avoids the use of sodium salts, but also constitutes a kind of buffer capacity which ensures a regular and constant concentration of AsO₂⁻ ions in the medium supplying the cathode.
Le milieu acide entrant dans la composition des mélanges alimentant les deux compartiments pourra comporter de l'acide phosphorique, perchlorique, ou de préférence sulfurique.The acid medium used in the composition of the mixtures supplying the two compartments may include phosphoric, perchloric, or preferably sulfuric acid.
Les électrodes utilisées pour la mise en oeuvre de l'invention sont avantageusement constituées de la façon suivante : à la cathode, un matériau favorisant la formation d'arsine au détriment de la réaction concurrente de formation d'hydrogène, avantageusement un materiau tel que du cuivre sur lequel a été effectué un dépot de bismuth, de plomb, ou encore de thallium ou de cadmium, avec une surface d'électrode de l'ordre de 70 cm². A l'anode, on utilisera selon les cas (électrolyse classique ou électrode à gaz) un matériau tel que le titane sur lequel à été effectué un dépot d'oxyde de ruthénium ou d'iridium, ou une électrode par exemple du type feutre de carbone.The electrodes used for the implementation of the invention are advantageously made up as follows: at the cathode, a material promoting the formation of arsine to the detriment of the competing reaction of hydrogen formation, advantageously a material such as copper on which a deposit of bismuth, lead, or thallium or cadmium was carried out, with an electrode area of the order of 70 cm². At the anode, a material such as titanium on which a deposit of ruthenium oxide or iridium was deposited, or an electrode for example of the felt type, will be used, depending on the case (conventional electrolysis or gas electrode). carbon.
Le rapport H⁺/As ainsi mis en place et maintenu constant :
- grâce à l'utilisation d'électrodes appropriées,
- par l'utilisation d'une membrane cationique disposée entre les deux électrodes permettant une bonne maitrise des flux de matière intervenant d'une électrode à l'autre,
- par un apport régulier et constant en ions AsO₂⁻ à l'aide d'un saturateur As₂O₃, et
- par l'établissement d'une vitesse de circulation de fluides elevée permettant une bonne maitrise du taux de conversion à la cathode,
est étroitement lié à la géométrie de cellule utilisée (surface d'électrodes..). A chaque géométrie, correspond un rapport H⁺/As optimum. Cependant, ce rapport sera avantageusement maintenu, selon l'invention, dans la gamme [0.7, 1.5] préférentiellement dans la gamme [0.75, 1.25].The H⁺ / As ratio thus set up and kept constant:
- through the use of appropriate electrodes,
- by the use of a cationic membrane placed between the two electrodes allowing good control of the material flows occurring from one electrode to the other,
- by a regular and constant supply of AsO₂⁻ ions using an As₂O₃ saturator, and
- by establishing a high fluid circulation speed allowing good control of the cathode conversion rate,
is closely linked to the cell geometry used (electrode surface, etc.). Each geometry has an optimum H⁺ / As ratio. However, this ratio will advantageously be maintained, according to the invention, in the range [0.7, 1.5] preferably in the range [0.75, 1.25].
Selon un aspect de l'invention, on effectue, en aval du générateur, une étape de séparation du mélange hydrogène/arsine produit à la cathode, en traitant ce mélange sur un module membranaire, permettant d'obtenir en sortie (ou rejet) de module une concentration en arsine plus élevée que dans le mélange arsine/hydrogène traité à l'entrée du module, mais aussi d'obtenir une grande stabilité de cette concentration.According to one aspect of the invention, a step is carried out, downstream of the generator, of separation of the hydrogen / arsine mixture produced at the cathode, by treating this mixture on a membrane module, making it possible to obtain at the outlet (or rejection) of modulates a higher arsine concentration than in the arsine / hydrogen mixture treated at the entrance to the module, but also to obtain a high stability of this concentration.
On utilisera avantageusement, pour effectuer cette étape de concentration, un ensemble d'une ou plusieurs membranes semi-perméables montées en série ou en parallèle, présentant de bonnes propriétés de séparation de l'arsine par rapport à un gaz vecteur (sélectivité), comme c'est le cas pour des membranes du type polyimide ou encore polyaramide (polyimide aromatique).An assembly of one or more semi-permeable membranes mounted in series or in parallel, having good separation properties of arsine with respect to a carrier gas (selectivity), will advantageously be used to carry out this concentration step. this is the case for membranes of the polyimide or polyaramide (aromatic polyimide) type.
Selon une des mises en oeuvre de l'invention, pour les cas où le mélange arrive sur le module à basse pression, on compense cette basse pression en effectuant, coté perméat de la membrane, un tirage sous vide ou encore un balayage à l'aide d'un gaz "outil", de façon à abaisser la pression partielle de l'hydrogène (que l'on veut séparer de l'arsine) coté perméat.According to one of the embodiments of the invention, for the cases where the mixture arrives on the module at low pressure, this low pressure is compensated for by carrying out, on the permeate side of the membrane, a vacuum drawing or else a scanning with using a "tool" gas, so as to lower the partial pressure of the hydrogen (which we want to separate from arsine) on the permeate side.
On entend par "basse pression", selon l'invention, une pression se situant dans l'intervalle 10⁴ Pa à 5 x 10⁵ Pa absolus."Low pressure" is understood to mean, according to the invention, a pressure lying in the range 10⁴ Pa to 5 x 10⁵ Pa absolute.
On utilise préférentiellement, pour effectuer un balayage coté perméat de la membrane, un gaz, autre que celui que l'on souhaite séparer et présentant par ailleurs une faible perméation du perméat vers l'intérieur de la membrane, de façon à éviter que ce gaz "outil" n'aille polluer l'intérieur de la membrane et n'affecte de ce fait le résultat obtenu en sortie de module. On utilisera avantageusement, selon l'invention, comme gaz "outil", de l'azote, ou encore du SF₆.Preferably, to carry out a permeate-side sweep of the membrane, a gas, other than that which it is desired to separate, and moreover having a low permeation of the permeate towards the interior of the membrane, so as to prevent this gas "tool" does not pollute the interior of the membrane and therefore does not affect the result obtained at the output of the module. Advantageously, according to the invention, nitrogen, or even SF comme, will be used as the "tool" gas.
Selon un des aspects de l'invention, avant son arrivée sur le module membranaire, le mélange produit à la cathode subit au moins une opération de séchage, sur un dispositif tel qu'un réfrigérant (par exemple à effet Peltier), ou encore un tamis moléculaire, ou une combinaison de ces deux moyens, et le cas échéant, au moins une opération de filtrage sur un filtre à particule.According to one aspect of the invention, before arriving on the membrane module, the mixture produced at the cathode undergoes at least one drying operation, on a device such as a refrigerant (for example with Peltier effect), or else a molecular sieve, or a combination of these two means, and where appropriate, at least one filtering operation on a particle filter.
L'invention a pour autre objet de proposer un dispositif pour la mise en oeuvre du procédé selon l'invention.Another object of the invention is to propose a device for implementing the method according to the invention.
Le dispositif comprend au moins, une cellule électrochimique où sont disposées au moins une cathode, alimentée en ions H⁺ et AsO₂⁻, où se produisent deux réactions concurrentes produisant respectivement de l'arsine et de l'hydrogène gazeux, et au moins une anode, où se produit une réaction source d'ions H⁺; une membrane cationique séparant la cellule électrochimique en deux compartiments, anodique et cathodique; et pour alimenter le compartiment cathodique en ions H⁺ et AsO₂⁻, un saturateur constitué par une réserve de As₂O₃, que vient balayer une solution acide.The device comprises at least one electrochemical cell where at least one cathode is placed, supplied with H⁺ and AsO₂⁻ ions, where two competing reactions take place, producing respectively arsine and hydrogen gas, and at least one anode. , where a reaction source of H⁺ ions takes place; a cationic membrane separating the electrochemical cell into two compartments, anodic and cathodic; and to supply the cathode compartment with H⁺ and AsO₂⁻ ions, a saturator constituted by a reserve of As₂O₃, which is swept away by an acid solution.
Selon une des mise en oeuvre de l'invention, la réaction source d'ions H⁺ à l'anode est l'électrolyse de l'eau, le compartiment anodique est alors alimenté en une solution acide. Selon une autre mise en oeuvre de l'invention, la réaction source d'ions H⁺ à l'anode est l'oxydation de l'hydrogène et on se trouve alors en présence d'une électrode à diffusion gazeuse alimentée en hydrogène gazeux.According to one of the embodiments of the invention, the source reaction of H⁺ ions at the anode is the electrolysis of water, the anode compartment is then supplied with an acid solution. According to another implementation of the invention, the source reaction of H⁺ ions at the anode is the oxidation of hydrogen and we are then in the presence of a gas diffusion electrode supplied with hydrogen gas.
Selon un des aspects de l'invention, le saturateur est situé entre la cellule électrochimique et le bac de stockage de la solution acide alimentant le compartiment cathodique.According to one aspect of the invention, the saturator is located between the electrochemical cell and the storage tank for the acid solution supplying the cathode compartment.
Selon un autre aspect de l'invention, le saturateur est situé à l'intérieur du bac de stockage de la solution acide alimentant le compartiment cathodique, au sein de cette solution acide.According to another aspect of the invention, the saturator is located inside the storage tank for the acid solution supplying the cathode compartment, within this acid solution.
On utilisera préférentiellement pour la cathode un matériau favorisant la réaction de formation d'arsine au détriment de la réaction de formation d'hydrogène tel que du cuivre sur lequel a été effectué un dépot de bismuth, de plomb, ou encore de thallium ou de cadmium. A l'anode, on utilisera selon les cas (électrolyse classique ou électrode à gaz) un matériau tel que le titane sur lequel à été effectué un dépot d'oxyde de ruthénium ou d'iridium, ou une électrode par exemple du type feutre de carbone.Preferably, a material will be used for the cathode which favors the arsine formation reaction to the detriment of the hydrogen formation reaction, such as copper on which a deposit of bismuth, lead, or thallium or cadmium has been carried out. . AT the anode, a material such as titanium on which a deposit of ruthenium oxide or iridium was deposited, or an electrode of the carbon felt type, for example (conventional electrolysis or gas electrode) will be used, as the case may be .
Selon un des aspects de l'invention, le dispositif comporte, en aval de la cellule électrochimique, un module membranaire, sur lequel le mélange arsine/hydrogène produit à la cathode subit une étape de séparation, de façon à obtenir en sortie de module, une concentration en arsine plus élevée que dans le mélange initial.According to one aspect of the invention, the device comprises, downstream of the electrochemical cell, a membrane module, on which the arsine / hydrogen mixture produced at the cathode undergoes a separation step, so as to obtain at the module output, a higher arsine concentration than in the initial mixture.
Selon une des mise en oeuvre de l'invention, le module membranaire est raccordé à des moyens permettant d'effectuer une mise sous vide du coté perméat de la membrane, de façon à amener la pression coté perméat à une valeur de l'ordre de 1 à 100 Pa (vide primaire).According to one of the embodiments of the invention, the membrane module is connected to means allowing the permeate side of the membrane to be evacuated, so as to bring the pressure on the permeate side to a value of the order of 1 to 100 Pa (primary vacuum).
Selon une autre mise en oeuvre de l'invention, le module membranaire est raccordé à une source de gaz, permettant d' effectuer un balayage du coté perméat de la membrane, à l'aide de ce gaz, qui présentera avantageusement selon l'invention une faible perméation du perméat vers l'intérieur de la membrane, tel l'azote ou SF₆.According to another implementation of the invention, the membrane module is connected to a gas source, making it possible to carry out a scanning of the permeate side of the membrane, using this gas, which advantageously will have according to the invention low permeation of the permeate towards the inside of the membrane, such as nitrogen or SF₆.
Selon un des aspects de l'invention, le dispositif comprend, en amont du module membranaire, au moins un dispositif de séchage du mélange produit à la cathode, tel qu'un réfrigérant par exemple à effet Peltier, ou encore un tamis moléculaire, ou une combinaison de ces deux moyens, et le cas échéant, au moins un filtre à particule.According to one aspect of the invention, the device comprises, upstream of the membrane module, at least one device for drying the mixture produced at the cathode, such as a refrigerant, for example with Peltier effect, or else a molecular sieve, or a combination of these two means, and where appropriate, at least one particle filter.
D'autres caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation donnés à titre illustratif mais nullement limitatit, faite en relation avec les dessins annexés, sur lesquels :
- La figure 1 est une représentation schématique d'une cellule électrolytique entrant dans l'élaboration d'un générateur convenant pour la mise en oeuvre du procédé selon l'invention;
- La figure 2 représente une courbe donnant, pour une cellule selon la figure 1, la variation de la concentration d'arsine dans le mélange produit en fonction du rapport H⁺/As à la cathode, réalisée en plomb, et pour une densité de courant i= 500 A/m².
- La figure 3 représente une courbe illustrant pour une cellule selon la figure 1, l'influence de la densité de courant (rapportée à la surface d'électrode) sur le débit d'arsine à la cathode.
- La figure 4 est une représentation schématique d'une installation globale comprenant un générateur convenant pour la mise en oeuvre du procédé selon l'invention.
- Figure 1 is a schematic representation of an electrolytic cell used in the development of a generator suitable for the implementation of the method according to the invention;
- FIG. 2 represents a curve giving, for a cell according to FIG. 1, the variation of the concentration of arsine in the mixture produced as a function of the H⁺ / As ratio at the cathode, made of lead, and for a current density i = 500 A / m².
- FIG. 3 represents a curve illustrating for a cell according to FIG. 1, the influence of the current density (relative to the electrode surface) on the flow of arsine at the cathode.
- Figure 4 is a schematic representation of an overall installation comprising a generator suitable for implementing the method according to the invention.
On reconnait sur la figure 1 une cellule électrochimique 12, constituée :
D'un compartiment anodique 1, relié au pôle positif d'un générateur électrique, comportant une anode 3 où se produit une réaction d'oxydation de l'eau, conduisant à la formation d'oxygène gazeux et d'ions H⁺. Cette anode est constituée de titane sur lequel a été effectué un dépot d'oxyde de ruthénium. Le compartiment anodique est alimenté en une solution acide 1M d'acide sulfurique contenue dans un bac de stockage anodique 4, viaune ligne d'alimentation 5 par l'intermédiaire d'une pompe 6.D'un compartiment cathodique 2, relié au pôle négatif d'un générateur électrique, comportant unecathode 7, où se produisent deux réactions concurrentes, la première de formation d'arsine gazeux, la seconde de formation d'hydrogène gazeux. Cette cathode est constituée de plomb, elle présente une surface d'électrode de l'ordre de 70 cm². Le compartiment cathodique est alimenté en composé HAsO₂, donc en ions AsO₂⁻,par une ligne 17, viaun saturateur 8 constitué par une réserve de composé solide As₂O₃, que vient balayer, par l'intermédiaire d'une pompe 9, une solution acide 1M d'acide sulfurique 19, contenue dans un bac de stockage cathodique 10.D'une membrane cationique 11 en NAFIONR séparant les deux compartiments.
- An
anode compartment 1, connected to the positive pole of an electric generator, comprising ananode 3 where an oxidation reaction of water takes place, leading to the formation of gaseous oxygen and H⁺ ions. This anode consists of titanium on which a deposit of ruthenium oxide has been carried out. The anode compartment is supplied with a 1M acid solution of sulfuric acid contained in an anode storage tank 4, via asupply line 5 via a pump 6. - A
cathode compartment 2, connected to the negative pole of an electric generator, comprising acathode 7, where two competing reactions take place, the first of which forms arsenic gas, the second which forms hydrogen gas. This cathode is made of lead, it has an electrode area of the order of 70 cm². The cathode compartment is supplied with HAsO₂ compound, therefore in AsO₂⁻ ions, by aline 17, via asaturator 8 constituted by a reserve of solid compound As₂O₃, which is swept, via apump 9, an acid solution 1Msulfuric acid 19, contained in acathode storage tank 10. - A
cationic membrane 11 in NAFIONR separating the two compartments.
La figure 2 permet d'illustrer les performances obtenues à l'aide d'un générateur tel que celui décrit ci-dessus, mettant en oeuvre une densité de courant (rapportée à la surface d'électrode) de 500A/m². L'évolution observée confirme l'existence d'un optimum pour le rapport H⁺/As, voisin de 1 pour cette géométrie de cellule, donnant lieu à la production à la cathode 7 d'un mélange arsine/hydrogène contenant 95% d'arsine, avec un débit de 50 l/h/m² (m² d'electrode). Les performances décroissent rapidement autour de la valeur optimum.Figure 2 illustrates the performance obtained using a generator such as that described above, using a current density (relative to the electrode surface) of 500A / m². The observed evolution confirms the existence of an optimum for the H⁺ / As ratio, close to 1 for this cell geometry, giving rise to the production at
La figure 3 illustre dans ces mêmes conditions de cellule et d'electrode, l'influence de la densité de courant sur le débit d'arsine produit à la cathode 7, cela pour un rapport H⁺/As voisin de 1. On constate, dans la gamme [200 A/m², 1500 A/m²] de densité de courant un débit croissant d'arsine, d'environ 25 l/h/m² jusqu'à environ 225 l/h/m².FIG. 3 illustrates, under these same cell and electrode conditions, the influence of the current density on the flow of arsine produced at
On reconnait sur la figure 4 une cellule électrochimique 12 telle que celle décrite au niveau de la figure 1.An
Coté anodique, le compartiment de la cellule 12 est alimenté en solution acide stockée dans le bac 4, via la ligne 5 qui incorpore ici de plus un capteur de débit 13. Le bac 4 comporte des moyens d'évacuation de l'oxygène produit à l'anode vers un évent 14, via une soupape 15 si nécessaire, et un capteur de pression 16.On the anode side, the compartment of the
Coté cathodique, le compartiment de la cellule 12 est alimenté en ions AsO₂⁻ par le bac de stockage 10, via la ligne 17 qui comprend un capteur de débit 18. La réserve de As₂O₃ (saturateur 8) est ici incluse dans le stockage 10, au sein du liquide acide 19, continuellement balayée par celui-ci, pour permettre la dissolution continue du composé As₂O₃ dans la solution, menant à sa saturation en ions AsO₂⁻.On the cathode side, the
Le bac cathodique 10 comporte des moyens d'évacuation de gaz vers un évent 20, via une soupape 21 si nécessaire. Cette évacuation est en particulier utilisée durant les opérations de purge du système.The
On remarque aussi la présence, sur le dessus du bac 10, d'une arrivée 22 de gaz inerte (tel l'azote), transitant par un débimètre 23 et un clapet anti retour 24, pour alimenter en azote le bac 10 par une ligne d'entrée 25. Cette arrivée d'azote est particulièrement utilisée pour effectuer des cycles de purge du stockage, au démarrage de l'installation, mais aussi pour purger l'aval de l'installation via une ligne 48 dérivée de la ligne 25.We also note the presence, on the top of the
Le bac 10 comporte également un capteur de pression 26, et un capteur de température 28.The
Le mélange arsine/hydrogène produit à la cathode de la cellule 12 est tout d'abord traité sur un réfrigérant 27 (dont on contrôle la température par un capteur 29), de façon à épurer le mélange en question d'une grande part de son humidité.The arsine / hydrogen mixture produced at the cathode of
En sortie de réfrigérant 27, via une vanne 44, le mélange subit une seconde épuration d'eau sur un tamis moléculaire 30, avant de passer sur un filtre à particules 31. Le mélange aborde alors un module à membrane semi-perméable 32 du type à fibres creuses dont la couche active est un polyaramide (polyimide aromatique) offrant une surface totale d'échange du module d'environ 0.25 m².At the outlet of the refrigerant 27, via a
L'installation permet d'effectuer une mise sous vide du côté perméat de la membrane par une ligne 35, à une pression de l'ordre de 10 Pa absolus (vide primaire).The installation allows the permeate side of the membrane to be evacuated by a
Le mélange enrichi en arsine, en sortie (rejet) de membrane, est alors dirigé via une ligne 46 comprenant un clapet anti-retour 33 vers une capacité tampon 34 d'où le mélange est dirigé. via une ligne 47 comprenant un capteur de pression 36, vers le réacteur 39 utilisateur d'arsine. Eventuellement au passage, le mélange est filtré sur un filtre à particules 38. Un évent 40 est prévu en cas de nécessité en bout de ligne 47.The mixture enriched in arsine, at the outlet (rejection) of membrane, is then directed via a
Tout le long du trajet sont présentes des vannes de deux types, selon les fluides transportés des vannes pour le circuit liquide (telle que les vannes 41, 42 etc..), et pour le citcuit gaz (telles que les vannes 43, 44, 45 etc..).All along the route there are valves of two types, depending on the fluids transported from the valves for the liquid circuit (such as
L'application de cette installation a permis d'obtenir, en sortie de compartiment cathodique, des concentrations en arsine dans l'hydrogène variant de 50 % à 95 %, selon le rapport H⁺/As appliqué (comme illustré figure 2), avec un débit du mélange en sortie de cellule d'au moins 3 l/h. L'étage de séchage, constitué du réfrigérant 27 et d'un tamis moléculaire 30, permet d'obtenir un mélange quasi exempt d'eau, un complément de séchage éventuel pouvant s'effectuer sur la membrane 30. L'objectif essentiel de la membrane est de concentrer l'arsine dans le mélange obtenu en sortie de membrane. Les expérimentations effectuées ont montré qu'à partir de mélanges très variables tels que ceux cités plus haut, il était possible de concentrer le mélange en arsine en sortie de membrane jusqu'à des teneurs d'au moins 99.5 % dans l'hydrogène, cela avec des débits en sortie de membrane de l'ordre de 1l/h d'arsine pur (le débit du mélange à 99.5 étant légèrement plus élevé). L'utilisation d'une étape de post-concentration par membrane permettant d'atteindre des précisions sur la teneur en arsine produite de l'ordre de 0.1 % , mais aussi une excellente stabilité de cette concentration dans le temps.The application of this installation made it possible to obtain, at the outlet of the cathode compartment, concentrations of arsine in hydrogen varying from 50% to 95%, according to the H⁺ / As ratio applied (as illustrated in FIG. 2), with a flow rate of the mixture leaving the cell of at least 3 l / h. The drying stage, consisting of the refrigerant 27 and a
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9311082 | 1993-09-17 | ||
FR9311082A FR2710043B1 (en) | 1993-09-17 | 1993-09-17 | Method and device for generating arsine electrolytically. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0648865A1 true EP0648865A1 (en) | 1995-04-19 |
EP0648865B1 EP0648865B1 (en) | 1999-12-29 |
Family
ID=9450959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94401974A Expired - Lifetime EP0648865B1 (en) | 1993-09-17 | 1994-09-06 | Process and apparatus for producing arsine electrolytically |
Country Status (6)
Country | Link |
---|---|
US (1) | US5425857A (en) |
EP (1) | EP0648865B1 (en) |
JP (1) | JPH07180076A (en) |
DE (1) | DE69422367T2 (en) |
FR (1) | FR2710043B1 (en) |
TW (1) | TW285780B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997020965A1 (en) * | 1995-12-06 | 1997-06-12 | Electron Transfer Technologies, Inc. | Method and apparatus for constant composition delivery of hydride gases for semiconductor processing |
US6080297A (en) * | 1996-12-06 | 2000-06-27 | Electron Transfer Technologies, Inc. | Method and apparatus for constant composition delivery of hydride gases for semiconductor processing |
US6277342B1 (en) | 1999-08-23 | 2001-08-21 | Air Products And Chemicals, Inc. | Storage and safe delivery of hazardous specialty gases by acid/base reactions with ionic polymers |
AU2002301803B2 (en) * | 2001-11-08 | 2004-09-09 | L'oreal | Cosmetic compositions containing an aminosilicone and a conditioner, and uses thereof |
FR2831803B1 (en) * | 2001-11-08 | 2004-07-30 | Oreal | COSMETIC COMPOSITIONS CONTAINING AN AMINO SILICONE AND A THICKENING AGENT AND THEIR USES |
US8021536B2 (en) | 2006-04-13 | 2011-09-20 | Air Products And Chemical, Inc. | Method and apparatus for achieving maximum yield in the electrolytic preparation of group IV and V hydrides |
US20090159454A1 (en) | 2007-12-20 | 2009-06-25 | Air Products And Chemicals, Inc. | Divided electrochemical cell and low cost high purity hydride gas production process |
RU2369666C1 (en) * | 2008-02-05 | 2009-10-10 | Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии" (ОАО "ВНИИХТ") | Method of obtaining arsine and device to this end |
TWI421601B (en) | 2008-04-25 | 2014-01-01 | Au Optronics Corp | Display panel capable of being cut by laser, and mother substrate including the display panels thereof |
US8361303B2 (en) * | 2010-09-02 | 2013-01-29 | Air Products And Chemicals, Inc. | Electrodes for electrolytic germane process |
GB201015022D0 (en) | 2010-09-09 | 2010-10-20 | Johnson Matthey Plc | Metal passivation |
CN110950382B (en) * | 2018-09-26 | 2022-03-15 | 紫石能源有限公司 | Process for the preparation of arsine |
CN111103392A (en) * | 2018-10-29 | 2020-05-05 | 东泰高科装备科技有限公司 | Arsenic alkane gas absorption and filtration system |
CN111378979B (en) * | 2018-12-29 | 2022-03-15 | 紫石能源有限公司 | Arsenic nano-particles, preparation method thereof, system and method for preparing arsine through electrolysis |
CN114438534A (en) * | 2022-01-05 | 2022-05-06 | 飞马牧场(上海)信息咨询服务有限公司 | High-purity gas preparation device and preparation method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4178224A (en) * | 1978-01-19 | 1979-12-11 | Texas Instruments Incorporated | Apparatus for generation and control of dopant and reactive gases |
SU962335A1 (en) * | 1980-03-24 | 1982-09-30 | Казахский Ордена Трудового Красного Знамени Государственный Университет Им.С.М.Кирова | Electrolyzer for producing volatile hydrides |
US5158656A (en) * | 1991-03-22 | 1992-10-27 | Electron Transfer Technologies, Inc. | Method and apparatus for the electrolytic preparation of group IV and V hydrides |
-
1993
- 1993-09-17 FR FR9311082A patent/FR2710043B1/en not_active Expired - Fee Related
-
1994
- 1994-09-06 DE DE69422367T patent/DE69422367T2/en not_active Expired - Fee Related
- 1994-09-06 EP EP94401974A patent/EP0648865B1/en not_active Expired - Lifetime
- 1994-09-07 TW TW083108247A patent/TW285780B/zh active
- 1994-09-13 JP JP6219198A patent/JPH07180076A/en active Pending
- 1994-09-14 US US08/305,835 patent/US5425857A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4178224A (en) * | 1978-01-19 | 1979-12-11 | Texas Instruments Incorporated | Apparatus for generation and control of dopant and reactive gases |
SU962335A1 (en) * | 1980-03-24 | 1982-09-30 | Казахский Ордена Трудового Красного Знамени Государственный Университет Им.С.М.Кирова | Electrolyzer for producing volatile hydrides |
US5158656A (en) * | 1991-03-22 | 1992-10-27 | Electron Transfer Technologies, Inc. | Method and apparatus for the electrolytic preparation of group IV and V hydrides |
Also Published As
Publication number | Publication date |
---|---|
DE69422367D1 (en) | 2000-02-03 |
DE69422367T2 (en) | 2000-08-24 |
FR2710043B1 (en) | 1995-10-13 |
FR2710043A1 (en) | 1995-03-24 |
TW285780B (en) | 1996-09-11 |
US5425857A (en) | 1995-06-20 |
JPH07180076A (en) | 1995-07-18 |
EP0648865B1 (en) | 1999-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0648865B1 (en) | Process and apparatus for producing arsine electrolytically | |
EP0644153B1 (en) | Process for the separation of a silane with the aid of a membrane | |
EP0113931B1 (en) | Cathode for the electrolytic production of hydrogen, and its use | |
FR2981368A1 (en) | PROCESS FOR GENERATING HYDROGEN AND OXYGEN BY ELECTROLYSIS OF WATER VAPOR | |
FR2933714A1 (en) | SILANE RECYCLING PROCESS (SIH4) | |
EP1966079A2 (en) | Process and equipment for producing hydrogen from solar energy | |
FR2803856A1 (en) | SYNTHESIS OF TETRAMETHYLAMMONIUM HYDROXIDE | |
WO2019193280A1 (en) | Electrochemical method for producing pressurised hydrogen gas by electrolysis and subsequent depolarisation | |
EP3560015A1 (en) | System comprising a fuel-cell stack, and associated control method | |
FR2480794A1 (en) | PROCESS FOR CONCENTRATING AN ALKALI METAL HYDROXIDE IN A SERIES OF HYBRID CELLS | |
FR2542763A1 (en) | METHOD AND APPARATUS FOR ELECTROLYSIS OF AQUEOUS SOLUTION DILUTED FROM CAUSTIC ALKALI | |
BE1023865A1 (en) | PHOTO-CATALYTIC DEVICE FOR THE PRODUCTION OF HYDROGEN GAS | |
WO2015097648A1 (en) | Process for treating effluents loaded with ammoniacal nitrogen, and reactor for the implementation of the process | |
FR2758546A1 (en) | ELECTROCATALYTIC PROCESS FOR DEOXYGENATION OF SEA WATER AND DEVICE FOR ITS IMPLEMENTATION | |
EP3028330B1 (en) | Device for supplying and recirculating hydrogen for a fuel cell | |
FR2993902A1 (en) | ELECTROLYSIS CELL | |
EP3947295B1 (en) | Device and method for controlling fluids necessary for using a fixed or movable facility, such as a vehicle | |
EP3174793B1 (en) | Method for managing fluids necessary for the operation of a vehicle and device for implementing same | |
EP0221790A1 (en) | Process for the production of glyoxylic acid by the electrochemical reduction of oxalic acid | |
EP0538143A1 (en) | Inorganic filtration membranes with essentially oxygen-free ceramic separating layer | |
EP0283357B1 (en) | Process and installation for the treatment of waste gases containing sulphur dioxide with oxygen | |
BE1016282A3 (en) | Method and equipment for disposal of ammonium ion electrochemical and / or nitrates content in liquid waste. | |
WO2013107841A1 (en) | Method for increasing the lifespan of a fuel cell with a proton exchange membrane | |
FR2666998A1 (en) | BIPOLAR ALPHASSEMBLY OF ANIONIC AND CATIONIC MEMBRANES AND ITS USE. | |
JP2002113466A (en) | Method and apparatus for generating electrolytic gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940909 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB IT |
|
17Q | First examination report despatched |
Effective date: 19951227 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT |
|
REF | Corresponds to: |
Ref document number: 69422367 Country of ref document: DE Date of ref document: 20000203 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000303 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000811 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000823 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050906 |