EP0647497B1 - Verfahren zum Legieren eines Werkstückes unter Einsatz von Laserstrahlung - Google Patents

Verfahren zum Legieren eines Werkstückes unter Einsatz von Laserstrahlung Download PDF

Info

Publication number
EP0647497B1
EP0647497B1 EP94115659A EP94115659A EP0647497B1 EP 0647497 B1 EP0647497 B1 EP 0647497B1 EP 94115659 A EP94115659 A EP 94115659A EP 94115659 A EP94115659 A EP 94115659A EP 0647497 B1 EP0647497 B1 EP 0647497B1
Authority
EP
European Patent Office
Prior art keywords
workpiece
carbon
process according
combustible gas
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94115659A
Other languages
English (en)
French (fr)
Other versions
EP0647497A3 (de
EP0647497A2 (de
Inventor
Jürgen Dipl.-Ing. Scholz
Karl Dipl.-Ing. Niederberger
Barbara Dipl.-Ing. Schiffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0647497A2 publication Critical patent/EP0647497A2/de
Publication of EP0647497A3 publication Critical patent/EP0647497A3/de
Application granted granted Critical
Publication of EP0647497B1 publication Critical patent/EP0647497B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F3/00Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/306Fe as the principal constituent with C as next major constituent, e.g. cast iron

Definitions

  • the invention relates to a method for machining a workpiece using laser radiation, carbon being essentially used as the alloying element.
  • the graphite coating is mostly applied manually by means of graphite sprays or by applying liquids containing graphite to the workpiece surface.
  • the known coatings have disadvantages. With sprayed or brushed graphite coatings, it is only possible to achieve constant layer thicknesses with great effort. The application of the graphite coatings is difficult to automate.
  • the spray and liquid apart from graphite, the spray and liquid contain metallurgically undesirable accompanying substances (for example additives that increase adhesion), which adversely affect the machining result.
  • the solvents contained in the spray and liquid also cause environmental pollution.
  • Another disadvantage is that the removal of non-irradiated coatings is very expensive. For this reason, coating with graphite for laser beam alloying has not become established in industrial applications.
  • Laser beam alloying from the gas phase initially requires complex gas routing.
  • the amount of carbon that can be introduced with this method is relatively small. Problems arise in laser beam alloying due to contamination of the gas by air whirled into the gas jet.
  • There is also A disadvantage of the supply of carbon from the gas phase is that the carbon must not be used in pure form, but as CO 2 , C 2 H 4 or similar organic gases. Such quantities of hydrogen and oxygen can have a negative impact on the quality of the alloy.
  • the invention is based on the object of demonstrating a method of the type described in the introduction, wherein when a carbon coating is applied, a constant layer thickness of the coating and thus a uniform alloying are ensured, but at the same time the disadvantages of the known methods described are to be avoided. In particular, undesired components should be kept away from the workpiece surface.
  • This object is achieved in that an organic, combustible gas or gas mixture is burned, that the alloy coating is formed on the workpiece surface by addition of the carbon particles generated during the combustion and that the carbon is at least partially introduced into the melt generated by the laser beam and thus the workpiece is alloyed at the coated and laser-irradiated areas.
  • the coating of workpieces with carbon according to the invention for another purpose is known from an unrelated technical field, namely from the glass industry.
  • "Gas application in the glass industry” LINDE reports from technology and science, No. 65, 1990, pages 25 to 34, describes a process for coating molds for hollow glass production in order to ensure a residue-free separation of mold and glass to reach.
  • the application of a carbon coating under the name CARBOFLAM® is based on burning a flame from acetylene / air or acetylene / oxygen. Surprisingly, it has now been shown that such carbon coatings Bring advantages for alloying workpieces using laser radiation.
  • Carrying out the method according to the invention leads to the application of a uniform carbon layer on the workpiece surface to be coated.
  • the carbon layer is produced reproducibly. Additional advantages result from the fact that the carbon layer can be easily removed again after the laser processing of the surface of the workpiece which has not been processed with the laser.
  • the carbon layer applied according to the invention has very little contamination in comparison with conventional processes, so that no unwanted material changes occur on the workpiece due to the coating for the laser beam alloying.
  • the use of solvents and additives which increase adhesion can be dispensed with.
  • the combustion flame of the fuel gas or fuel gas mixture is advantageously directed onto the surface to be coated by means of a burner.
  • This makes it possible to produce a constant layer thickness of the attached carbon layer, the coating taking place independently of the position and geometry of the workpiece to be machined.
  • a value between 50 and 500 mm, preferably 50 to 200 mm, has proven itself as the distance between the burner and the surface of the workpiece to be coated.
  • Acetylene is advantageously used as the organic, combustible gas (fuel gas), optionally mixed with other organic fuel gases.
  • the carbon particles generated during the combustion of the organic fuel gas contain up to 1 to 3% by weight of hydrogen in addition to carbon.
  • Carbon layers obtained from the combustion of acetylene are characterized by a very high level of purity. They consist of over 99% pure carbon.
  • the average particle size is approximately 40 to 50 nm, the particle size ranging approximately from 5 to 250 nm.
  • the carbon particles formed during the combustion of the organic fuel gas are composed of a large number of small crystals with a size of 2 to 3 nm.
  • the crystals in turn consist of a series of graphitic layers (usually 3 to 5 layers), which then form an approximately spherical shape of the particles.
  • the carbon layer is applied directly to the surface of the workpiece to be coated by the flame in which the carbon particles form.
  • the flame should burn tightly, but not turbulently, since ambient air is whirled up in turbulent flames, which has a negative effect on the formation of the carbon particles.
  • the layers themselves are parallel to each other. Each can contain 30 carbon six-membered rings. In contrast to graphite, the C-6-rings are irregularly shifted against each other.
  • the lattice constants of the carbon crystals formed in the process according to the invention also differ significantly from those for pure graphite.
  • the carbon particles formed in a pure acetylene flame are black-brown. This means that the coating has a high absorption capacity for the laser radiation.
  • a fuel gas mixture can be used which, in addition to the organic fuel gas, contains an oxygen-containing gas such as air, oxygen-enriched air or pure oxygen.
  • a fuel gas mixture of acetylene and oxygen forms a deep black and well adhering carbon layer.
  • a fuel gas mixture with an oxygen content of 1 to 5 mol% is suitable.
  • a fuel gas mixture which contains between 5 and 10% by volume of air has proven itself in tests.
  • a sheath flow burner is preferably used in which the acetylene flame is enveloped and supported by a flowing air jacket.
  • the coating of the workpiece surface to be machined according to the invention can take place spatially and temporally separately from the laser beam alloying in a separate working step or immediately before the laser machining in an integrated working step.
  • the laser beam system for laser processing is usually CNC-controlled (Computerized Numerical Control).
  • the control of the burner can therefore advantageously be coupled with the control of the laser processing system, the CNC also taking over the control of the burner for carbon coating.
  • a torch adapted to the contour of the workpiece is used.
  • the shape of the burner opening is varied, for example by round, elliptical or slit-shaped burner openings. Thereby uniform and complete coating of the workpiece surfaces to be machined with the laser is ensured.
  • Covers and masks can be used to achieve a coating with any geometric shape on the workpiece surface. In this way it can be achieved that only the surfaces are coated with carbon, which are then also processed with the laser. Since no carbon is deposited on workpiece surfaces that are not subsequently processed with the laser, reworking of the workpiece can be omitted in which the workpiece surface is cleaned of the carbon coating after the laser processing.
  • FIG. 1 shows a workpiece 1 whose workpiece surface is to be subjected to an alloy with carbon.
  • Acetylene 2 is fed to a burner 3 as fuel gas.
  • oxygen or air is passed into the burner 3 as the gas 4 containing oxygen.
  • the fuel gas mixture thus formed burns in the flames 5, carbon particles being formed.
  • These carbon particles are carried onto the workpiece surface via the burner flames 5 and form an alloy coating 6 on the workpiece surface.
  • the focused or defocused laser beam 7 strikes the coated workpiece surface 6, where a large part of its energy is absorbed due to the coating 6. As a result, the workpiece is melted in the irradiated area. This process results in an alloyed metal workpiece after cooling and solidification. Since that If the workpiece is moved by the set feed according to the direction of the arrow shown, the processed and alloyed surface 8 results from the coating and laser irradiation.
  • FIG. 2 illustrates the integration of the coating according to the invention with direct processing by the laser beam from FIG. 1 in the control of the overall system.
  • the laser radiation 7 is thrown from the laser 9 onto the coated workpiece surface 6 via a beam guide 10, which is shown in simplified form.
  • the laser 9 interacts with the machine control 11, which in turn, symbolized by reciprocal arrows, interacts with both the processing system 12 and the burner control 13.
  • the burner control 13 is connected directly to the burner 3.
  • the burner 3 can be used in a clocked manner. In the pauses, i.e. if the carbon particle formation is to be reduced, the proportion of the fuel gas 2 in the fuel gas mixture can be reduced or the amount of the oxygen-containing gas 4 added can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Bearbeitung eines Werkstückes unter Einsatz von Laserstrahlung, wobei als Legierungselement im wesentlichen Kohlenstoff eingesetzt wird.
  • Beim Laserstrahllegieren mit Kohlenstoff als Legierungselement sind bislang zwei Möglichkeiten bekannt, wie der Kohlenstoff in die vom Laserstrahl erzeugte Schmelze eingebracht werden kann. Das Werkstück wird vor der Laserstrahlbearbeitung mit Graphit beschichtet oder der Kohlenstoff wird dem Schmelzgut gasförmig zugeführt.
  • Die Graphitbeschichtung wird zumeist manuell durch Graphitsprays oder durch das Aufbringen graphithaltiger Flüssigkeiten auf die Werkstückoberfläche aufgetragen. Die bekannten Beschichtungen weisen jedoch Nachteile auf. Bei aufgespritzten oder aufgestrichenen Graphitbeschichtungen sind nur mit sehr hohem Aufwand gleichbleibende Schichtdicken zu erzielen. Das Auftragen der Graphitbeschichtungen ist schwer automatisierbar. Darüber hinaus enthalten Spray und Flüssigkeit außer Graphit metallurgisch nicht erwünschte Begleitsubstanzen (beispielsweise die Haftfähigkeit erhöhnde Zusätze), die das Bearbeitungsergebnis nachteilig beeinflussen. Die in Spray und Flüssigkeit enthaltenen Lösungsmittel führen außerdem zu Umweltbelastungen. Des weiteren wirkt sich nachteilig aus, daß sich die Entfernung nicht-bestrahlter Beschichtungen sehr aufwendig gestaltet. In industrieller Anwendung hat sich daher das Beschichten mit Graphit für das Laserstrahllegieren nicht durchsetzen können.
  • Das Laserstrahlegieren aus der Gasphase macht zunächst einmal eine aufwendige Gasführung erforderlich. Die mit diesem Verfahren einbringbare Menge an Kohlenstoff ist relativ gering. Probleme ergeben sich beim Laserstrahllegieren aufgrund von Verunreinigungen des Gases durch in den Gasstrahl eingewirbelte Luft. Ferner besteht ein Nachteil der Kohlenstoffzufuhr aus der Gasphase darin, daß der Kohlenstoff nicht in reiner Form, sondern als CO2, C2H4 oder ähnlichen organischen Gasen verwendet werden muß. Wasserstoff und Sauerstoff in derartigen Mengen können aber die Qualität der Legierung negativ beeinflussen.
  • Die oben aufgezählten Verfahren sind beispielsweise bekannt aus
    • Laser Treatment of Materials, D. Müller, H.W. Bergmann, T. Endres und T. Heider, Seite 293 bis 298, herausgegeben von B.L. Mordike, DGM Informationsgesellschaft · Verlag , und
    • Strahlwerkzeug Laser, Helmut Hügel, Seite 320 bis 326, B.G. Teubner Stuttgart 1992.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs beschriebenen Art aufzuzeigen, wobei beim Auftrag einer Kohlenstoff-Beschichtung eine gleichbleibende Schichtdicke der Beschichtung und damit ein gleichmäßiges Legieren sichergestellt, gleichzeitig aber die beschriebenen Nachteile der bekannten Verfahren vermieden werden sollen. Insbesondere sollen dabei unerwünschte Bestandteile von der Werkstückoberfläche ferngehalten werden.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß ein organisches, brennbares Gas oder Gasgemisch verbrannt wird, daß durch Anlagerung der bei der Verbrennung erzeugten Kohlenstoff-Partikel die Legierungsbeschichtung auf der Werkstückoberfläche gebildet wird und daß der Kohlenstoff zumindestens teilweise in die vom Laserstrahl erzeugte Schmelze eingebracht und somit das Werkstück an den beschichteten und vom Laser bestrahlten Stellen legiert wird.
  • Das erfindungsgemäße Beschichtung von Werkstücken mit Kohlenstoff zu einem anderen Zweck ist aus einem nicht verwandten technischen Gebiet bekannt, nämlich aus der Glasindustrie. So wird beispielsweise in "Gaseanwendung in der Glasindustrie", LINDE-Berichte aus Technik und Wissenschaft, Nr. 65, 1990, Seiten 25 bis 34, ein Verfahren zur Beschichtung von Formen für die Hohlglasherstellung beschrieben, um eine rückstandsfreie Trennung von Form und Glas zu erreichen. Das Aufbringen einer Kohlenstoffbeschichtung unter der Bezeichnung CARBOFLAM® basiert auf dem Verbrennen einer Flamme aus Acetylen/Luft oder Acetylen/Sauerstoff. Überraschenderweise hat sich nun gezeigt, daß derartige Kohlenstoffbeschichtungen Vorteile für das Legieren von Werkstücken unter Einsatz von Laserstrahlung mit sich bringen.
  • Die Durchführung des erfindungsgemäßen Verfahrens führt zum Auftrag einer gleichmäßigen Kohlenstoffschicht auf der zu beschichtenden Werkstückoberfläche. Die Kohlenstoffschicht wird dabei reproduzierbar erzeugt. Zusätzliche Vorteile ergeben sich dadurch, daß sich die Kohlenstoffschicht nach der Laserbearbeitung der Oberfläche des Werkstückes, die nicht mit dem Laser bearbeitet wurden, leicht wieder entfernen läßt. Die erfindungsgemäß aufgetragene Kohlenstoffschicht weist im Vergleich mit herkömmlichen Verfahren sehr geringe Verunreinigungen auf, so daß keine ungewollten Werkstoffveränderungen am Werkstück durch das Beschichtung für das Laserstrahllegieren auftreten. Insbesondere kann beim erfindungsgemäßen Verfahren mit einer flammaufgetragenen Legierungsschicht aus Kohlenstoff-Partikeln auf der Werkstückoberfläche auf den Einsatz von Lösungsmitteln und die Haftung erhöhende Zusätze verzichtet werden.
  • Mit Vorteil wird die Verbrennungsflamme des Brenngases oder Brenngasgemisches mittels eines Brenners auf die zu beschichtende Oberfläche gerichtet. Dadurch läßt sich eine konstante Schichtdicke der angelagerten Kohlenstoffschicht erzeugen, wobei die Beschichtung unabhängig von Lage und Geometrie des zu bearbeitenden Werkstückes erfolgt. Als Abstand zwischen Brenner und zu beschichtender Oberfläche des Werkstücks hat sich ein Wert zwischen 50 und 500 mm, vorzugsweise 50 bis 200 mm, bewährt.
  • Vorteilhafterweise wird als organisches, brennbares Gas (Brenngas) Acetylen eingesetzt, gegebenenfalls gemischt mit anderen organischen Brenngasen. Die bei der Verbrennung des organischen Brenngases erzeugten Kohlenstoff-Partikel enthalten außer Kohlenstoff bis zu 1 bis 3 Gew.-% Wasserstoff. Aus der Verbrennung von Acetylen gewonnene Kohlenstoffschichten zeichnen sich durch eine sehr hohe Reinheit aus. Sie bestehen zu über 99 % aus reinem Kohlenstoff. Die durchschnittliche Teilchengröße liegt etwa bei 40 bis 50 nm, wobei die Partikelgröße in etwa von 5 bis 250 nm reicht. Die bei der Verbrennung des organischen Brenngases entstehenden Kohlenstoff-Partikel setzen sich aus einer großen Zahl kleiner Kristalle der Größe 2 bis 3 nm zusammen. Die Kristalle wiederum bestehen aus einer Reihe graphitischer Schichten, (in der Regel 3 bis 5 Schichten), die dann eine annähernde kugelige Form der Partikel bilden.
  • Die Kohlenstoffschicht wird durch die Flamme, in der sich die Kohlenstoff-Partikel bilden, direkt auf die zu beschichtende Oberfläche des Werkstückes aufgetragen. Die Flamme soll dabei straff, aber nicht turbulent brennen, da bei turbulenten Flammen Umgebungsluft eingewirbelt wird, was die Bildung der Kohlenstoff-Partikel negativ beeinflußt. Die Schichten selbst liegen parallel zueinander. Jede kann 30 Kohlenstoff-Sechserringe enthalten. Im Gegensatz zum Graphit sind die C-Sechserringe unregelmäßig gegeneinander verschoben. Auch die Gitterkonstanten der im erfindungsgemäßen Verfahren entstehenden Kohlenstoffkristalle unterscheiden sich wesentlich von denen für reines Graphit.
  • Die in einer reinen Acetylenflamme gebildeten Kohlenstoff-Partikel sind schwarz-braun. Damit besteht eine hohe Absorptionsfähigkeit der Beschichtung für die Laserstrahlung. Durch Verwendung eines Brenngasgemisches an Stelle des reinen organischen Brenngases kann die Haftfähigkeit, aber auch die Farbe der Kohlenstoff-Schicht beeinflußt werden. Dabei kann ein Brenngasgemisch verwendet werden, das neben dem organischen Brenngas ein Sauerstoff enthaltendes Gas wie Luft, mit Sauerstoff angereicherte Luft oder reinen Sauerstoff enthält. Ein Brenngasgemisch aus Acetylen und Sauerstoff bildet eine tiefschwarze und gut haftende Kohlenstoffschicht. Geeignet ist dabei ein Brenngasgemisch mit einem Sauerstoffanteil von 1 bis 5 Mol-%. Beim Einsatz eines Brenngasgemisches aus Acetylen und Luft entsteht eine dunkelgraue und gut haftende Kohlenstoffschicht. In Versuchen bewährt hat sich ein Brenngasgemisch, das zwischen 5 und 10 Vol.-% Luft enthält. Bevorzugt wird dabei ein Hüllstrombrenner eingesetzt, bei dem die Acetylenflamme von einem strömenden Luftmantel umhüllt und gestützt wird.
  • Das erfindungsgemäße Beschichten der zu bearbeitenden Werkstückoberfläche kann räumlich und zeitlich getrennt vom Laserstrahllegieren in einem separaten Arbeitsschritt oder aber unmittelbar vor der Laserbearbeitung in einem integrierten Arbeitsschritt erfolgen. Im letzteren Fall kann ausgenützt werden, daß die Laserstrahlanlage zur Laserbearbeitung üblicherweise CNC-gesteuert (Computerized Numerical Control) ist. Mit Vorteil kann daher die Steuerung des Brenners mit der Steuerung der Laserbearbeitungsanlage gekoppelt werden, wobei die CNC auch die Steuerung des Brenners zur Kohlenstoff-Beschichtung übernimmt.
  • In Ausgestaltung der Erfindung wird ein an die Kontur des Werkstückes angepaßter Brenner verwendet. Dabei wird insbesondere die Form der Brenneröffnung variiert, beispielsweise durch runde, elliptische oder schlitzförmige Brenneröffnungen. Dadurch wird eine gleichmäßige und vollständige Beschichtung der mit dem Laser zu bearbeiteten Werkstückoberflächen sichergestellt.
  • Mittels Abdeckungen und Masken kann eine Beschichtung mit einer beliebigen geometrischen Form auf der Werkstückoberfläche erzielt werden. Damit läßt sich erreichen, daß nur die Flächen mit Kohlenstoff beschichtet werden, welche auch anschließend mit dem Laser bearbeitet werden. Da hierbei kein Kohlenstoff auf Werkstückoberflächen angelagert wird, die anschließend nicht mit dem Laser bearbeitet werden, kann eine Nacharbeitung des Werkstückes entfallen, in der die Werkstückoberfläche nach der Laserbearbeitung von der Kohlenstoffbeschichtung gereinigt wird.
  • Die Erfindung wird im folgenden anhand zweier Figuren näher erläutert.
  • Hierbei zeigen:
  • Fig. 1:
    ein vereinfachtes Schema eines Ausführungsbeispieles mit einer erfindungsgemäßen Beschichtung der Werkstückoberfläche und unmittelbar anschließendem Laserstrahllegieren und
    Fig. 2:
    ein vereinfachtes Schema zur Integration des Ausführungsbeispiels der erfindungsgemäßen Beschichtung aus Fig. 1 in einer Anlage zur Laserbearbeitung.
  • Äquivalente sind in Fig. 1 und Fig. 2 mit gleichen Bezugszeichen versehen.
  • In Fig. 1 ist ein Werkstück 1 abgebildet, dessen Werkstückoberfläche einer Legierung mit Kohlenstoff unterzogen werden soll. Acetylen 2 wird als Brenngas einem Brenner 3 zugeführt. Gleichzeitig wird als Sauerstoff enthaltendes Gas 4 Sauerstoff oder Luft in den Brenner 3 geleitet. Das so gebildete Brenngasgemisch verbrennt in den Flammen 5, wobei sich Kohlenstoff-Partikel bilden. Diese Kohlenstoff-Partikel werden über die Brennerflammen 5 auf die Werkstückoberfläche getragen und bilden eine Legierungsbeschichtung 6 auf der Werkstückoberfläche. Der fokussierte oder defokussierte Laserstrahl 7 trifft auf die beschichtete Werkstückoberfläche 6, wo ein Großteil seiner Energie aufgrund der Beschichtung 6 absorbiert wird. Dadurch wird das Werkstück im bestrahlten Bereich aufgeschmolzen. Aus dieser Bearbeitung ergibt sich nach der Abkühlung und Verfestigung ein legiertes metallisches Werkstück. Da das Werkstück durch den eingestellten Vorschub entsprechend der gezeigten Pfeilrichtung bewegt wird, resultiert aus der Beschichtung und Laserbestrahlung die bearbeitete und legierte Fläche 8.
  • Fig. 2 verdeutlicht die Integration der erfindungsgemäßen Beschichtung mit direkt anschließender Bearbeitung durch den Laserstrahl aus Fig. 1 in die Steuerung der Gesamtanlage. Vom Laser 9 wird die Laserstrahlung 7 über eine vereinfacht dargestellte Strahlführung 10 auf die beschichtete Werkstückoberfläche 6 geworfen. Der Laser 9 steht dabei in Wechselwirkung mit der Maschinensteuerung 11, welche wiederum, durch wechselseitige Pfeile symbolisiert, sowohl mit der Bearbeitungsanlage 12, als auch mit der Brennersteuerung 13 zusammenwirkt. Die Brennersteuerung 13 ist direkt mit dem Brenner 3 verbunden.
  • Sollte es bei der beispielhaft in Fig. 2 dargestellten Integration von Brenner in die Bearbeitungsanlage gewünscht oder erforderlich sein, daß die Kohlenstoff-Partikel bildende Flamme 5 nicht kontinuierlich Kohlenstoff-Partikel erzeugt und auf der Werkstückoberfläche anlagert, kann der Brenner 3 getaktet eingesetzt werden. In den Taktpausen, d.h. wenn die Kohlenstoff-Partikelbildung reduziert werden soll, kann im Brenngasgemisch der Anteil des Brenngases 2 verkleinert oder die Menge des zugegebenen sauerstoffhaltigen Gases 4 vergrößert werden.

Claims (10)

  1. Verfahren zum Legieren eines Werkstückes unter Einsatz von Laserstrahlung, wobei als Legierungselement im wesentlichen Kohlenstoff eingesetzt wird, dadurch gekennzeichnet, daß ein organisches, brennbares Gas oder Gasgemisch verbrannt wird, daß durch Anlagerung der bei der Verbrennung erzeugten Kohlenstoff-Partikel die Legierungsbeschichtung auf der Werkstückoberfläche gebildet wird und daß der Kohlenstoff zumindestens teilweise in die vom Laserstrahl erzeugte Schmelze eingebracht und somit das Werkstück an den beschichteten und vom Laser bestrahlten Stellen legiert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verbrennungsflamme des Brenngases oder Brenngasgemisches mittels eines Brenners auf die zu beschichtende Oberfläche gerichtet wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß ein Abstand zwischen Brenner und zu beschichtender Werkstückoberfläche zwischen 50 und 500 mm, vorzugsweise zwischen 50 und 200 mm, eingestellt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als organisches, brennbares Gas Acetylen und/oder ein anderes organisches Brenngas eingesetzt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Brenngasgemisch neben dem organischen Brenngas ein Sauerstoff enthaltendes Gas wie Luft, mit Sauerstoff angereicherte Luft oder reinen Sauerstoff enthält.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Brenngasgemisch einen Sauerstoffanteil von 1 bis 5 Mol-% enthält.
  7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Brenngasgemisch zwischen 5 und 10 Vol.-% Luft enhält.
  8. Verfahren nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß die Steuerung des Brenners mit der Steuerung der Laserbearbeitungsanlage gekoppelt ist.
  9. Verfahren nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, daß ein an die Kontur des Werkstückes angepaßter Brenner verwendet wird.
  10. Verfahren nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß mittels Abdeckungen und Masken eine Beschichtung mit einer bestimmten geometrischen Form auf der Werkstückoberfläche erzielt wird.
EP94115659A 1993-10-08 1994-10-05 Verfahren zum Legieren eines Werkstückes unter Einsatz von Laserstrahlung Expired - Lifetime EP0647497B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4334409A DE4334409A1 (de) 1993-10-08 1993-10-08 Verfahren zum Legieren eines Werkstückes unter Einsatz von Laserstrahlung
DE4334409 1993-10-08

Publications (3)

Publication Number Publication Date
EP0647497A2 EP0647497A2 (de) 1995-04-12
EP0647497A3 EP0647497A3 (de) 1996-10-02
EP0647497B1 true EP0647497B1 (de) 1997-06-18

Family

ID=6499753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94115659A Expired - Lifetime EP0647497B1 (de) 1993-10-08 1994-10-05 Verfahren zum Legieren eines Werkstückes unter Einsatz von Laserstrahlung

Country Status (4)

Country Link
EP (1) EP0647497B1 (de)
AT (1) ATE154535T1 (de)
CZ (1) CZ286028B6 (de)
DE (2) DE4334409A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19931948B4 (de) * 1999-07-09 2004-11-11 Zwilling J. A. Henckels Ag Verfahren zur Herstellung einer Klinge eines Schneidwerkzeuges und damit hergestelltes Erzeugnis

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE714641A (de) * 1968-05-03 1968-09-30

Also Published As

Publication number Publication date
CZ286028B6 (cs) 1999-12-15
EP0647497A3 (de) 1996-10-02
ATE154535T1 (de) 1997-07-15
DE4334409A1 (de) 1995-04-13
EP0647497A2 (de) 1995-04-12
DE59403173D1 (de) 1997-07-24
CZ247894A3 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
DE102005005359B4 (de) Verfahren zum Kaltgasspritzen
DE10218563B4 (de) Verfahren zur Ventilsitz-Herstellung unter Verwendung eines Laserplattierprozesses
DE102012212954B4 (de) Kaltgesprühte und wärmebehandelte Beschichtung für Magnesium
DE2926879A1 (de) Verfahren zum beschichten der oberflaeche von metallsubstraten mit verschleissfesten materialien
DE112014005068T5 (de) Unterhalb der Oberfläche stattfindende Laserbearbeitung einer Wirbelschicht
EP0915184B1 (de) Verfahren zur Herstellung einer keramischen Schicht auf einem metallischen Grundwerkstoff
DE3506302C2 (de)
DE2523435A1 (de) Verfahren zum plasma-flammspritzen
DE102016223987A1 (de) Verfahren zur Herstellung eines Bauteils mit Kavitäten und/oder Hinterschneidungen
DE69512369T2 (de) Verfahren, vorrichtung und anlage zum beschichten von rohren, insbesondere pipelinen
DE3784548T2 (de) Verfahren zum Aufbringen von Überzügen hoher Qualität und komplexer Geometrie durch Plasmaspritzen.
DE69933384T2 (de) Verfahren zur herstellung von partikeln aus multikomponentenglas
EP0647497B1 (de) Verfahren zum Legieren eines Werkstückes unter Einsatz von Laserstrahlung
DE4236911C1 (de) Thermisches Spritzverfahren zur Erzeugung von Oberflächenbeschichtungen
DE102015113826A1 (de) Verfahren zur Ausbildung von dispersionsverfestigten Legierungen
EP0647498B1 (de) Verfahren zur Bearbeitung eines Werkstückes unter Einsatz von Laserstrahlung bei Erhöhung des Absorptionsgrades der Werkstückoberfläche
DE69313980T2 (de) Verfahren zum Auftragschweissen an einem Werkstück mittels Plasma mit übertragenem Lichtbogen
DE69025827T2 (de) Rostfreier korrosionsfester Stahl
CH414891A (de) Verfahren zum Schneiden von Werkstücken mittels eines Ladungsträgerstrahls
EP3473749B1 (de) Verfahren zum aufbringen einer schicht auf ein bauteil und bauteil hergestellt nach dem verfahren
DE19905739A1 (de) Verfahren und Vorrichtung zur Lasermaterialbearbeitung mit koaxialem Gasstrom
DE102015117888A1 (de) Verfahren zur Lichtbogen-Plasma-Oberflächenreinigung von Metallerzeugnissen und eine Einrichtung hierfür
DE102017208659A1 (de) Verwendung von Pulverschläuchen zum Zuführen von Lotmischungen bei der generativen Herstellung von Bauteilen mittels Laserauftragschweißen
EP3896190B1 (de) Verfahren und anlage zur metallischen beschichtung einer bohrungswand
DE4141317C1 (en) Prodn. of wear-reducing coating to reduce cracking and distortion - for screw surface in e.g. plastic extruder comprises introducing molybdenum@-contg. material into laser beam and depositing on steel body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19960924

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19970115

ITF It: translation for a ep patent filed
GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970618

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970618

REF Corresponds to:

Ref document number: 154535

Country of ref document: AT

Date of ref document: 19970715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59403173

Country of ref document: DE

Date of ref document: 19970724

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 19971031

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981020

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990929

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991011

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991013

Year of fee payment: 6

Ref country code: AT

Payment date: 19991013

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: LINDE AKTIENGESELLSCHAFT TRANSFER- LINDE TECHNISCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001005

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010629

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051005