EP0645020A1 - Omnidirectional surveillance device with optimal coverage of surrounding space by means of contiguous fields - Google Patents
Omnidirectional surveillance device with optimal coverage of surrounding space by means of contiguous fieldsInfo
- Publication number
- EP0645020A1 EP0645020A1 EP93913116A EP93913116A EP0645020A1 EP 0645020 A1 EP0645020 A1 EP 0645020A1 EP 93913116 A EP93913116 A EP 93913116A EP 93913116 A EP93913116 A EP 93913116A EP 0645020 A1 EP0645020 A1 EP 0645020A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- detector
- wide angle
- sensor
- field
- elementary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000001514 detection method Methods 0.000 claims abstract description 22
- 230000003287 optical effect Effects 0.000 claims description 17
- 230000010354 integration Effects 0.000 claims description 7
- 230000006978 adaptation Effects 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 abstract description 7
- 239000011159 matrix material Substances 0.000 description 16
- 241000251468 Actinopterygii Species 0.000 description 6
- 210000000887 face Anatomy 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 238000012806 monitoring device Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XRZCZVQJHOCRCR-UHFFFAOYSA-N [Si].[Pt] Chemical compound [Si].[Pt] XRZCZVQJHOCRCR-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/14—Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
Definitions
- the invention relates to the field of shooting or observation requiring significant angular coverage. Such observations are required, for example, when it comes to monitoring or panoramic surveillance.
- the spectral range concerned is that of visible or infrared radiation depending on the operating conditions (night, day, in space, on the ground).
- the choice of the type of detectors used is then determined in particular as a function of the coincidence between its spectral range of sensitivity and the domain targeted radiations.
- the object of the invention relates, more particularly, to an omni-directional watch device covering the entire surrounding space using adjoining observation fields.
- the invention applies both to airborne and terrestrial surveillance, without limiting the spectral range:
- the cover is then limited to the upper half space
- the spectral band covered is a function of the type of dedicated mission: for example, the spectral band concerned is 3 - 5 ⁇ m by setting up a detector with platinum-silicon (Pt-Si) when one s 'at- task more particularly to the detection of hot spots, such as missiles or propellants.
- Pt-Si platinum-silicon
- the first method consists in associating a fixed objective with very large field, conventionally called "fish eye” in the field of photography, with a two-dimensional detector of the matrix type.
- a two-dimensional detector of the matrix type The use in the infrared band of such a lens (with a field of 112 ° and an aperture at F / 1.2) associated with a Pt-Si detector matrix of 512 ⁇ 512 elementary sensors is described in SPIE Journal volume 1488, pages 368 to 375.
- the main advantage of this method lies in the fact that it makes it possible to dispense with the use of an optomechanical scanning device: in fact, a matrix detector directly captures the entire image of the scene observed, without the need for scanning by projection of this image onto the detector using an appropriate focusing optical group.
- the exploration of the landscape can thus be carried out at a very high rate, limited only by the integration times of the charges released at the level of the sensor in proportion to the illumination which it receives, according to the well-known CCD technique.
- the major drawback of this type of solution is its low angular resolution. Angular resolution is conventionally defined as the minimum angle for which two objects, located at a distance corresponding to a given range, are seen distinctly by the same sensor. The larger the field to be covered, the lower the resolution.
- the resolution is in fact directly limited by the area of the elementary sensors of the matrix detector and therefore, for a matrix of given dimension, by the number of elementary sensors in this matrix.
- this resolution can only be considered as constant along the field, that is to say for the sensors located in the center of the matrix and whose fields of conjugated objects undergo practically no distortion.
- a second method implements an optomechanical scanning system associated with a detector making it possible to cover a wider field.
- the detector then takes the form of a longitudinal strip comprising a reduced number of rows of elementary sensors.
- the optomechanical system performs the scanning of the strip on an intermediate image formed by an optical head system which, depending on the dimensions of the strip, is carried out in one direction (raster scanning) or two directions (line and raster scanning).
- the scanning is carried out using an oscillating mirror or a rotating prism with a certain period defining the scanning rate. For example, a system with mirror scanning head has been produced, providing 120 ° x 80 ° coverage in the infrared radiation field at a rate of 2 hertz.
- a prism scanning system is also described in the Journal SPIE volume 782, pages 300, 38 and following. This is an exploration of 3.3 steradians at a frequency of 3.6 hertz.
- the prior systems do not offer total coverage of the entire surrounding space.
- the invention proposes using several wide-field objectives of the "fish eye” type, each objective being associated with a two-dimensional detector to form a detection module, the set of detection modules optimally covering an object space of dimension as large as desired; in addition, the distortion of each objective is adapted so as to make the object fields of two adjoining detector mosaics without overlapping, the number of detection modules being determined as a function of the space to be covered.
- the invention relates to an omnidirectional monitoring device with coverage optimum of the surrounding space by joining fields, comprising optical means for forming images on at least one two-dimensional detector of the CCD type capable of delivering a video signal for displaying the projected image, characterized in that the optical means comprise several wide angle lenses of the "fish eye" type, each wide angle lens being associated with a two-dimensional detector to form a detection module, in that the number of detection modules is adapted to the overall dimension of the 'surrounding space to be covered, and in that each wide angle lens has a distortion law chosen to join the limited object fields covered by two neighboring detectors.
- the omnidirectional vei-lle device covers a complete object sphere, that is to say a solid angle of 4H steradians, using six wide angle objectives associated with six detectors to form six detection modules arranged on the faces of a cube.
- the device according to the invention offers a satisfactory and uniform angular resolution whatever the position of the object observed in the surrounding space. Indeed, the multiplication of the number of objectives restricting the field covered by each, for example of the order of 2 steradians in the proposed embodiment, the angular resolution is not tainted ( ⁇ 0.5 °) and remains uniform due to the relatively conservative distortion of the wide-angle lenses used.
- the invention allows high operating rates (100 Hz to 1 KHz) for minimum mechanical complexity, without the need for a dome of delicate design, nor for a scanning system.
- the detectors have insufficient filling rates of elementary sensors, there is added to each detector a micro-scanning element, of the rotating blade type, to remove the areas of the object space made inaccessible due to the existence of blind zones si ⁇ killed between the elementary sensors of the detector.
- FIGS. 5a to 5d four positions of an elementary sensor of the same two-dimensional detector during microscanning.
- FIG. 1 An example of optical architecture of a wide angle lens of the "fish eye” type, operating in the spectral band 3 to 5 ⁇ m, is provided in FIG. 1.
- This objective comprises an optical group of divergent input 1 associated, along the same optical axis XX ′, with a second globally convergent optical group 2.
- Such an objective open to F / 1 covers a field of 110 °; the light rays coming from this field such as those symbolized by arrowed lines on the fi gure 1, pass through the optical groups 1 and 2 so as to be projected onto a detector D.
- the plane of the exit pu ⁇ pile P of the optical system coincides with the cold screen of a cooling cryostat C in which is arranged the detector D, so that the latter only "sees" the useful flux coming from the field of observation.
- a conventional matrix detector of 256 x 256 elementary sensors forming a network of spatial pitch equal to 50 ⁇ m can be used in such a module; under these conditions, the objective then has a focal distance of the order of 8.2 mm and an exit pupil diameter of the same value, for an aperture F / 1.
- each of the six detection modules, EF1 to EF6, each module is composed of a wide angle lens, respectively 01 to 06, and of a detector Dl to D6; has an axis of symmetry which crosses perpendicularly and in its center, a face, respectively FI to F6, of a cube K.
- the axes of symmetry of two opposite focusing sets are merged and form three axes XI X6, X2 X4 and X3 X5 which intersect at the center 0 of the cube.
- the cooling cryostats of the detectors can be either independent, or grouped together to form a single common cooling system.
- Processing circuits video detectors form six sequences of images viewed simultaneously on six different monitors, or alternatively can, by switching, form one of the sequences of images on a single monitor.
- the realization of such cooling systems or such switching circuits is within the reach of the skilled person.
- the distortion of each wide angle lens is adapted so that the object fields of two neighboring detectors are join ⁇ tive without overlapping.
- FIG. 3 which represents the angular coverage of a fish eye makes it possible to define the conditions so that the fields covered by two neighboring objectives are contiguous.
- the preceding cube K has been represented, centered at point 0, and the vertices MNPQ of the front face F3 crossed by the axis X30X5 of the front and rear detection modules.
- the detection modules EF1 to EF6 of FIG. 2 are not shown in FIG. 3 for reasons of clarity.
- Each of the wide angle objectives must cover a minimum field so that the sum of all these fields covers all of the surrounding space. This minimum field is at the same time maximum so that the fields exploded by the six detection modules remain contiguous without overlapping on 411 steradians.
- the frontal detection module covers the solid angle centered on O and based on the vertices M, N, P, Q of the cube K.
- the field angle covered by each of the wide angle objectives of an omnidirectional standby device according to the invention is modulated by adapting the distortion caused by each of the wide angle objectives.
- ⁇ is the half-angle of field aperture k ( ⁇ ) is a function adaptation coefficient of ⁇ f is the paraxial focal length k ( ⁇ ) .f is the equivalent focal length p is the distance to the axis of a - elementary detector sensor.
- a simple calculation of k for extreme values of p that is to say for the elementary sensors located at the edge of the detector at a vertex and in the middle of the sides of a matrix detector supposed to be square and supposed to be placed near from the center 0, corresponding for example to the angular field apertures respectively 0X3, OP and 0X3, 01, shows that the coefficient k is a slightly increasing function of ⁇ from 0 ° to about 55 °: the adapted distortion therefore increases the focal equivalent at the edge of the field, which corresponds to a cushion-type distortion.
- a uniform angular resolution of 0.37 ° over 4fi steradians can be obtained.
- the elementary sensors of the two-dimensional detectors are not contiguous. For technological reasons, they are separated by non-photosensitive blind zones.
- micro-scan making it possible to capture the light fluxes normally intended for these blind areas but deflected, thanks to this micro-scan, on the elementary photosensitive sensors.
- microba ⁇ layings are obtained using blades with parallel faces, the implementation of which is described for example in patents FR 2 647 995 or EP 289 182.
- a blade with parallel faces in the flux converge of each detection module, for example between the exit pupil of each wide field objective and the associated detector, according to a particular implementation illustrated in FIG. 4.
- a blade with a parallel face L has a thickness e and is inclined at a very small angle ⁇ , excessively enlarged in the figure for the sake of clarity.
- the blade L is rotated around the optical axis XX 'and is placed in a convergent beam of each wide angle objective of the standby system.
- a motor for example an asynchronous motor, performs the rotation of the blade using a suitable pinion.
- This inclined blade causes an offset of the optical beams.
- the central radius, RC represented by an arrowed line in FIG. 4
- ⁇ ' is refracted by crossing the blade with parallel faces L at an angle ⁇ 'and comes out of the blade with a shift ⁇ equal to e sin ( ⁇ - ⁇ ') / cos ⁇ '.
- the angle ⁇ is calculated so that the rotation of the blade prints on the elementary field, corresponding to each elementary sensor, a nutation allowing the coverage of the blind field zones. This results in a corresponding "virtual" nutation of each elementary sensor allowing the coverage of the blind zones located on the detector.
- FIGS. 5a to 5d four "virtual" extreme positions have been shown, of an elementary sensor, RSTU, successively taken during the rotation of the blade with parallel faces.
- the hatched areas which represent the blind areas surrounding the elementary sensor, are successively layered by portion during the rotation of the blade.
- the angle of inclination ⁇ of the blade is calculated so that, for example> point S performs the nutation represented felt in FIG. 5a by the circular curve drawn in dotted lines, during the rotation of the blade.
- the integration of the charges is carried out between the different extreme positions a, b, c, d of FIG. 5.
- the integration is then done four times per turn of the blade.
- the refresh rate of the complete image being effected at each turn of the blade the exploration rate is divided by four in the proposed embodiment. For example, for integration times between each pass of the order of 2.5 milliseconds, or 400 KHz, the exploration rates obtained are 100 KHz, which remains much higher than the performance of scanning systems. (of the order of a few hertz.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Studio Devices (AREA)
Abstract
Omnidirectional surveillance device characterized by optimal coverage of surrounding space. The device comprises detection units, each having a wide angle objective (01 to 06) associated with a two dimensional detector (D1 to D6). The invention is characterized in that the law of distortion of each wide angle objective is selected so that fields covered by two adjacent detection units, are contiguous. Application in the detection of infrared spectral band hot points such as missiles or jet engines.
Description
DISPOSITIF DE VEILLE OMNIDIRECTIONNEL A COUVERTURE OPTIMALE DE L'ESPACE ENVIRONNANT PAR JONCTION DE OMNIDIRECTIONAL MONITORING DEVICE WITH OPTIMAL COVERAGE OF THE SURROUNDING SPACE BY JUNCTION OF
CHAMPS.FIELDS.
L'invention se rapporte au domaine de la prise de vue ou de l'observation nécessitant une couver¬ ture angulaire importante. De telles observations sont requises, par exemple, lorsqu'il s'agit d'effectuer de la veille ou de la surveillance panoramique. Le domaine spectral concerné est celui des radiations visibles ou infrarouges suivant les conditions de fonctionnement (de nuit, de jour, dans l'espace, au sol). Le choix du type de détecteurs utilisés (détecteurs CCD au sili- cium, détecteurs hybrides infrarouges, intensificateurs de lumière, tube vidicon, etc..) est alors déterminé en fonction notamment de la coïncidence entre son do¬ maine spectral de sensibilité et le domaine des radia¬ tions visé. L'objet de l'invention concerne, plus par¬ ticulièrement, un dispositif de veille omnidirection- nelle couvrant la totalité de l'espace environnant à l'aide de champs d'observation jointifs.The invention relates to the field of shooting or observation requiring significant angular coverage. Such observations are required, for example, when it comes to monitoring or panoramic surveillance. The spectral range concerned is that of visible or infrared radiation depending on the operating conditions (night, day, in space, on the ground). The choice of the type of detectors used (silicon CCD detectors, infrared hybrid detectors, light intensifiers, vidicon tube, etc.) is then determined in particular as a function of the coincidence between its spectral range of sensitivity and the domain targeted radiations. The object of the invention relates, more particularly, to an omni-directional watch device covering the entire surrounding space using adjoining observation fields.
L'invention s'applique aussi bien à la veille aéroportée que terrestre, sans limitation du domaine spectral :The invention applies both to airborne and terrestrial surveillance, without limiting the spectral range:
- en veille aéroportée, l'observation cou¬ vre alors 4U stéradians ;- in airborne standby, the observation then covers 4U steradians;
- en version sol-air, la couverture est alors limitée au demi espace supérieur ;- in ground-air version, the cover is then limited to the upper half space;
- la bande spectrale couverte est fonction du type de mission dédiée : par exemple, la bande spec¬ trale concernée est 3 - 5 μm par la mise en oeivre d'un détecteur au platine-silicium (Pt-Si) lorsque l'on s'at-
tache plus particulièrement à la détection de points chauds, tels que des missiles ou des propulseurs.- the spectral band covered is a function of the type of dedicated mission: for example, the spectral band concerned is 3 - 5 μm by setting up a detector with platinum-silicon (Pt-Si) when one s 'at- task more particularly to the detection of hot spots, such as missiles or propellants.
Pour obtenir une couverture d'espace angu¬ laire importante, deux méthodes sont à l'heure actuelle utilisées. Ces méthodes d'observation s'analysent tant sur le plan de la couverture spatiale fournie, que sur le plan de la résolution angulaire et de la cadence d'exploration obtenues.Two methods are currently used to obtain significant angular space coverage. These observation methods can be analyzed both in terms of the spatial coverage provided and in terms of the angular resolution and the exploration rate obtained.
La première méthode consiste à associer un objectif fixe à très grand champ, appelée classiquement "fish eye" dans le domaine de la photographie, à un détecteur bidimensionnel de type matriciel. L'utilisa¬ tion dans la bande infrarouge d'un tel objectif (avec un champ de 112° et une ouverture à F/1,2) associée à une matrice détectrice Pt-Si de 512 x 512 capteurs élé¬ mentaires est décrite dans le Journal SPIE volume 1488, pages 368 à 375.The first method consists in associating a fixed objective with very large field, conventionally called "fish eye" in the field of photography, with a two-dimensional detector of the matrix type. The use in the infrared band of such a lens (with a field of 112 ° and an aperture at F / 1.2) associated with a Pt-Si detector matrix of 512 × 512 elementary sensors is described in SPIE Journal volume 1488, pages 368 to 375.
L'avantage principal de cette méthode ré¬ side dans le fait qu'elle permet de s'affranchir de l'utilisation d'un dispositif de balayage optomécanique : en effet, un détecteur matriciel capte directement toute l'image de la scène observée, sans nécessiter de balayage par projection de cette image sur le détecteur à l'aide d'un groupe optique de focali- sation adapté. L'exploration du paysage peut ainsi s'ef¬ fectuer à une cadence très élevée, limitée seulement par les temps d'intégration des charges libérées au niveau du capteur proportionnellement à 1' éclairement qu'il reçoit, selon la technique CCD bien connue. L'inconvénient majeur de ce type de solu¬ tion est sa faible résolution angulaire. La résolution angulaire se définit classiquement comme l'angle mini¬ mal pour lequel deux objets, situés à une distance cor¬ respondant à une portée donnée, sont vus distinctement par un même capteur. Plus le champ à couvrir est impor-
tant, plus la résolution est médiocre. Dans le cas de détecteurs matriciels et pour un champ donné, la résolu¬ tion est en fait directement limitée par la surface des capteurs élémentaires du détecteur matriciel et donc, pour une matrice de dimension donnée, par le nombre de capteurs élémentaires dans cette matrice. D'autre part, cette résolution ne peut être considérée comme cons¬ tante que le long du champ, c'est-à-dire pour les cap¬ teurs situés au centre de la matrice et dont les champs objets conjugués ne subissent pratiquement pas de dis¬ torsion.The main advantage of this method lies in the fact that it makes it possible to dispense with the use of an optomechanical scanning device: in fact, a matrix detector directly captures the entire image of the scene observed, without the need for scanning by projection of this image onto the detector using an appropriate focusing optical group. The exploration of the landscape can thus be carried out at a very high rate, limited only by the integration times of the charges released at the level of the sensor in proportion to the illumination which it receives, according to the well-known CCD technique. The major drawback of this type of solution is its low angular resolution. Angular resolution is conventionally defined as the minimum angle for which two objects, located at a distance corresponding to a given range, are seen distinctly by the same sensor. The larger the field to be covered, the lower the resolution. In the case of matrix detectors and for a given field, the resolution is in fact directly limited by the area of the elementary sensors of the matrix detector and therefore, for a matrix of given dimension, by the number of elementary sensors in this matrix. On the other hand, this resolution can only be considered as constant along the field, that is to say for the sensors located in the center of the matrix and whose fields of conjugated objects undergo practically no distortion.
Une deuxième méthode, plus classiquement utilisée dans le domaine de l'infrarouge, met en oeuvre un système optomécanique de balayage associé à un détec- teur permettant de couvrir un champ plus large.A second method, more conventionally used in the infrared field, implements an optomechanical scanning system associated with a detector making it possible to cover a wider field.
Le détecteur se présente alors sous la forme d'une barrette longitudinale comportant un nombre réduit de rangées de capteurs élémentaires. Le système optomécanique effectue le balayage de la barrette sur une image intermédiaire formée par un système optique de tête qui, suivant les dimensions-de la barrette, est effectué selon une direction (balayage trame) ou deux directions (balayage ligne et trame). Le balayage est réalisé à l'aide d'un miroir oscillant ou d'un prisme tournant avec une certaine période définissant la ca¬ dence de balayage. Il a été par exemple réalisé un sys¬ tème à tête de balayage par miroir assurant une couver¬ ture de 120° x 80° dans le domaine des radiations infra¬ rouges à une cadence de 2 hertz. Un système à balayage par prisme est par ailleurs décrit dans le Journal SPIE volume 782, pages 300, 38 et suivantes. Ce j isme as¬ sure une exploration de 3,3 stéradians à une fréquence de 3,6 hertz.The detector then takes the form of a longitudinal strip comprising a reduced number of rows of elementary sensors. The optomechanical system performs the scanning of the strip on an intermediate image formed by an optical head system which, depending on the dimensions of the strip, is carried out in one direction (raster scanning) or two directions (line and raster scanning). The scanning is carried out using an oscillating mirror or a rotating prism with a certain period defining the scanning rate. For example, a system with mirror scanning head has been produced, providing 120 ° x 80 ° coverage in the infrared radiation field at a rate of 2 hertz. A prism scanning system is also described in the Journal SPIE volume 782, pages 300, 38 and following. This is an exploration of 3.3 steradians at a frequency of 3.6 hertz.
Les inconvénients des systèmes basés sur une exploration par balayage sont multiples :
les cadences d'exploration sont faibles : elles sont limitées par les besoins en por¬ tée qui imposent un champ objet élémentaire exploré faible durant le temps d'intégration des charges du détecteur ; la résolution que doit fournir le système (typiquement 0,5°) ne peut dès lors être atteinte qu'au détriment de la vitesse de balayage ; les rendements de balayage sont médiocres : au cours du balayage, les capteurs élémen- taires voisins sont amenés à "voir" des portions d'es¬ pace identiques de sorte que la couverture angulaire de l'espace n'est pas optimale ; de même l'obtention d'une résolution constante dans le champ impose généra¬ lement des rendements de balayage faible ; - ce type de système à très large champ de vision nécessite des hublots de fermeture (dômes) de réalisation complexe et de coût élevé.The drawbacks of systems based on scanning by scanning are manifold: the exploration rates are low: they are limited by the range requirements which impose a low elementary field explored object during the integration time of the charges of the detector; the resolution which the system must provide (typically 0.5 °) can therefore only be achieved at the expense of the scanning speed; the scanning yields are poor: during scanning, the neighboring elementary sensors are made to "see" identical portions of space so that the angular coverage of the space is not optimal; similarly, obtaining a constant resolution in the field generally requires low scanning yields; - This type of system with a very wide field of vision requires closing portholes (domes) of complex construction and high cost.
Mais, que ce soit avec ou sans système opto-mécanique de balayage, les systèmes antérieurs n'offrent pas une couverture totale de tout l'espace environnant. Afin d'obtenir une telle couverture, avec une bonne résolution angulaire et à une cadence de "ra¬ fraîchissement" d'image élevée, l'invention propose d'utiliser plusieurs objectifs à grand champ du type "fish eye", chaque objectif étant associé à un détec¬ teur bidimensionnel pour former un module de détection, l'ensemble des modules de détections couvrant de ma¬ nière optimale un espace objet de dimension aussi grande que voulue ; de plus, la distorsion de chaque objectif est adaptée de manière à rendre les champs objets de deux mosaïques détectrices jointives sans se chevaucher, le nombre de modules de détection étant déterminé en fonction de l'espace à couvrir.However, whether or not with an opto-mechanical scanning system, the prior systems do not offer total coverage of the entire surrounding space. In order to obtain such coverage, with good angular resolution and at a high rate of "refreshment" of the image, the invention proposes using several wide-field objectives of the "fish eye" type, each objective being associated with a two-dimensional detector to form a detection module, the set of detection modules optimally covering an object space of dimension as large as desired; in addition, the distortion of each objective is adapted so as to make the object fields of two adjoining detector mosaics without overlapping, the number of detection modules being determined as a function of the space to be covered.
Plus précisément, l'invention a pour objet un dispositif de veille omnidirectionnel à couverture
optimale de l'espace environnant par jonction de champs, comportant des moyens optiques de formation d'images sur au moins un détecteur bidimensionnel du type CCD capable de délivrer un signal vidéo de visuali- sation de l'image projetée, caractérisé en ce que les moyens optiques comprennent plusieurs objectifs grand angulaire de type "fish eye", chaque objectif grand angulaire étant associé à un détecteur bidimensionnel pour former un module de détection, en ce que le nombre de modules de détection est adapté à la dimension glo¬ bale de l'espace environnant à couvrir, et en ce que chaque objectif grand angulaire possède une loi de dis¬ torsion choisie pour rendre jointifs les champs objets limités couverts par deux détecteurs voisins. Selon une forme de réalisation, le disposi¬ tif de vei-lle omnidirectionnelle selon l'invention cou¬ vre une sphère objet complète, c'est-à-dire un angle solide de 4H stéradians, à l'aide de six objectifs grands angulaires associés à six détecteurs pour former six modules de détection disposés sur les faces d'un cube.More specifically, the invention relates to an omnidirectional monitoring device with coverage optimum of the surrounding space by joining fields, comprising optical means for forming images on at least one two-dimensional detector of the CCD type capable of delivering a video signal for displaying the projected image, characterized in that the optical means comprise several wide angle lenses of the "fish eye" type, each wide angle lens being associated with a two-dimensional detector to form a detection module, in that the number of detection modules is adapted to the overall dimension of the 'surrounding space to be covered, and in that each wide angle lens has a distortion law chosen to join the limited object fields covered by two neighboring detectors. According to one embodiment, the omnidirectional vei-lle device according to the invention covers a complete object sphere, that is to say a solid angle of 4H steradians, using six wide angle objectives associated with six detectors to form six detection modules arranged on the faces of a cube.
Le dispositif selon l'invention offre une résolution angulaire satisfaisante et uniforme quelle que soit la position de l'objet observé dans l'espace environnant. En effet, la multiplication du nombre d'ob¬ jectifs restreignant le champ couvert par chacun, par exemple de l'ordre de 2 stéradians dans la forme de réalisation proposée, la résolution angulaire n'est pas entachée (<0,5°) et reste uniforme du fait de la distor- sion relativement conservative des objectifs grand angu¬ laire utilisés.The device according to the invention offers a satisfactory and uniform angular resolution whatever the position of the object observed in the surrounding space. Indeed, the multiplication of the number of objectives restricting the field covered by each, for example of the order of 2 steradians in the proposed embodiment, the angular resolution is not tainted (<0.5 °) and remains uniform due to the relatively conservative distortion of the wide-angle lenses used.
L'invention autorise des cadences d'explo¬ ration importantes (100 Hz à 1 KHz) pour une complexité mécanique minimale, sans nécessiter de dôme de ferme- ture de conception délicate, ni de système de balayage.
Avantageusement, lorsque les détecteurs présentent des taux de remplissage de capteurs élémen¬ taires insuffisants, il est adjoint à chaque détecteur un élément de microbalayage, du type à lame tournante, pour supprimer les zones de l'espace objet rendues inac¬ cessibles du fait de l'existence de zones aveugles si¬ tuées entre les capteurs élémentaires du détecteur.The invention allows high operating rates (100 Hz to 1 KHz) for minimum mechanical complexity, without the need for a dome of delicate design, nor for a scanning system. Advantageously, when the detectors have insufficient filling rates of elementary sensors, there is added to each detector a micro-scanning element, of the rotating blade type, to remove the areas of the object space made inaccessible due to the existence of blind zones si¬ killed between the elementary sensors of the detector.
L'invention sera mieux comprise et d'au¬ tres caractéristiques et avantages apparaîtront à la lecture de la description qui suit, faite en référence aux figures annexées qui représentent respectivement :The invention will be better understood and other characteristics and advantages will appear on reading the description which follows, made with reference to the appended figures which represent respectively:
- à la figure 1, un exemple d'objectif grand angulaire de type "fish eye" utilisé par l'invention ; - à la figure 2, un mode de réalisation de l'invention permettant de couvrir un espace de 41Ï stéradians ;- in Figure 1, an example of a wide angle lens of the "fish eye" type used by the invention; - in Figure 2, an embodiment of the invention for covering a space of 41Ï steradians;
- à la figure 3, un schéma illustrant la couverture angulaire d'un objectif grand angulaire lors- que les champs couverts par deux objectifs voisins du dispositif selon l'invention sont jointifs ;- in Figure 3, a diagram illustrating the angular coverage of a wide angle lens when the fields covered by two neighboring objectives of the device according to the invention are contiguous;
- à la figure 4, une lame à faces parallè¬ les de microbalayage pour un détecteur bidimensionnel ;- In Figure 4, a blade with parallel faces microscanning for a two-dimensional detector;
- aux figures 5a à 5d, quatre positions d'un capteur élémentaire du même détecteur bidimension¬ nel au cours du microbalayage.- In FIGS. 5a to 5d, four positions of an elementary sensor of the same two-dimensional detector during microscanning.
Un exemple d'architecture optique d'un objectif grand angulaire de type "fish eye", opérant dans la bande spectrale 3 à 5 μm, est fournie à la fi- gure 1. Cet objectif comporte un groupe optique d'en¬ trée divergent 1 associé, le long d'un même axe optique XX' , à un second groupe optique globalement convergent 2. Un tel objectif ouvert à F/1 couvre un champ de 110° ; les rayons lumineux provenant de ce champ tels que ceux symbolisés par des traits fléchés sur la fi-
gure 1, traversent les groupes optiques 1 et 2 de façon à être projetés sur un détecteur D. Le plan de la pu¬ pille de sor tie P du système optique coïncide avec l'écran froid d'un cryostat de refroidissement C dans lequel est disposé le détecteur D, de sorte que ce der¬ nier ne "voit" que le flux utile provenant du champ d'observation.An example of optical architecture of a wide angle lens of the "fish eye" type, operating in the spectral band 3 to 5 μm, is provided in FIG. 1. This objective comprises an optical group of divergent input 1 associated, along the same optical axis XX ′, with a second globally convergent optical group 2. Such an objective open to F / 1 covers a field of 110 °; the light rays coming from this field such as those symbolized by arrowed lines on the fi gure 1, pass through the optical groups 1 and 2 so as to be projected onto a detector D. The plane of the exit pu¬ pile P of the optical system coincides with the cold screen of a cooling cryostat C in which is arranged the detector D, so that the latter only "sees" the useful flux coming from the field of observation.
L'association entre un objectif grand angu¬ laire du type décrit et un détecteur de type bidimen- sionnel est appelé dans ce qui suit un module de détec¬ tion. Un détecteur matriciel classique de 256 x 256 capteurs élémentaires formant un réseau de pas spatial égal à 50 μm peut être utilisé dans un tel module ; dans ces conditions, l'objectif possède alors une dis- tance focale de l'ordre de 8,2 mm et un diamètre de pupille de sortie de même valeur, pour une ouverture F/1.The association between a wide-angle objective of the type described and a two-dimensional type detector is called in the following a detection module. A conventional matrix detector of 256 x 256 elementary sensors forming a network of spatial pitch equal to 50 μm can be used in such a module; under these conditions, the objective then has a focal distance of the order of 8.2 mm and an exit pupil diameter of the same value, for an aperture F / 1.
Une association de six modules de détec¬ tion, tel que celui qui vient d'être décrit constitue une forme de réalisation du dispositif de veille omnidi¬ rectionnel selon l'invention. Cette forme de réalisa¬ tion est représentée à la figure 2. Sur cette figure, chacun des six modules de détection, EF1 à EF6, chaque module est composé d'un objectif grand angulaire, res- pectivement 01 à 06, et d'un détecteur Dl à D6 ; possède un axe de symétrie qui traverse perpendiculai¬ rement et en son centre, une face, respectivement FI à F6, d'un cube K. Les axes de symétrie de deux ensembles de focalisation opposés sont confondus et forment trois axes XI X6, X2 X4 et X3 X5 qui se croisent au centre 0 du cube.An association of six detection modules, such as that which has just been described, constitutes an embodiment of the omni-directional monitoring device according to the invention. This embodiment is shown in FIG. 2. In this figure, each of the six detection modules, EF1 to EF6, each module is composed of a wide angle lens, respectively 01 to 06, and of a detector Dl to D6; has an axis of symmetry which crosses perpendicularly and in its center, a face, respectively FI to F6, of a cube K. The axes of symmetry of two opposite focusing sets are merged and form three axes XI X6, X2 X4 and X3 X5 which intersect at the center 0 of the cube.
Les cryostats de refroidissement des détec¬ teurs (non représentés) peuvent être soit indépen¬ dants, soit regroupés pour ne former qu'un seul système de refroidissement commun. Les circuits de traitement
vidéo des détecteurs forment six séquences d'images visualisées simultanément sur six moniteurs différents, ou bien peuvent, par commutation, former alternative¬ ment une des séquences d'images sur un seul moniteur. La réalisation de tels systèmes de refroidissement ou de tels circuits de commutation est à la portée de l'homme du métier.The cooling cryostats of the detectors (not shown) can be either independent, or grouped together to form a single common cooling system. Processing circuits video detectors form six sequences of images viewed simultaneously on six different monitors, or alternatively can, by switching, form one of the sequences of images on a single monitor. The realization of such cooling systems or such switching circuits is within the reach of the skilled person.
Selon l'invention, la distorsion de chaque objectif grand angulaire est adaptée pour que les champs objets de deux détecteurs voisins soient join¬ tifs sans se chevaucher. Le schéma de la figure 3 qui représente la couverture angulaire d'un fish eye permet de définir les conditions pour que les champs couverts par deux objectifs voisins soient jointifs. Sur cette figure, a été représenté le cube K précédent, centré au point 0, et les sommets MNPQ de la face frontale F3 traversée par l'axe X30X5 des modules de détection fron¬ tale et arrière. Les modules de détection EF1 à EF6 de la figure 2 ne sont pas représentés sur la figure 3 pour des raisons de clarté.According to the invention, the distortion of each wide angle lens is adapted so that the object fields of two neighboring detectors are join¬ tive without overlapping. The diagram in FIG. 3 which represents the angular coverage of a fish eye makes it possible to define the conditions so that the fields covered by two neighboring objectives are contiguous. In this figure, the preceding cube K has been represented, centered at point 0, and the vertices MNPQ of the front face F3 crossed by the axis X30X5 of the front and rear detection modules. The detection modules EF1 to EF6 of FIG. 2 are not shown in FIG. 3 for reasons of clarity.
Chacun des objectifs grand angulaire doit couvrir un champ minimal pour que la somme de tous ces champs couvre tout l'espace environnant. Ce champ mini¬ mal est en même temps maximal pour que les champs explo- rés par les six modules de détection restent jointifs sans se chevaucher sur 411 stéradians. Par exemple sur la figure 3, le module de détection frontale couvre l'angle solide centré sur O et s'appuyant sur les som¬ mets M, N, P, Q du cube K. Dans ces conditions, le demi angle maximal de champ jointif pour l'objectif frontal est défini par l'angle (0X3, ON) et vaut : θmax = Arc cos (1/-T 3) ≈ 54,735° ce qui correspond à un champ maximal d'ouverture dou¬ ble, c'est-à-dire d'environ 109,5°.
Afin d'obtenir des champs jointifs, l'an¬ gle de champ couvert par chacun des objectifs grand angulaire d'un dispositif de veille omnidirectionnelle selon l'invention est modulé en adaptant la distorsion provoquée par chacun des objectifs grand angulaire.Each of the wide angle objectives must cover a minimum field so that the sum of all these fields covers all of the surrounding space. This minimum field is at the same time maximum so that the fields exploded by the six detection modules remain contiguous without overlapping on 411 steradians. For example in FIG. 3, the frontal detection module covers the solid angle centered on O and based on the vertices M, N, P, Q of the cube K. Under these conditions, the maximum half angle of field contiguous for the frontal objective is defined by the angle (0X3, ON) and is worth: θmax = Arc cos (1 / -T 3) ≈ 54.735 ° which corresponds to a maximum opening field dou¬ ble, c ' that is to say about 109.5 °. In order to obtain contiguous fields, the field angle covered by each of the wide angle objectives of an omnidirectional standby device according to the invention is modulated by adapting the distortion caused by each of the wide angle objectives.
Une telle adaptation dans l'exemple de réalisation proposée peut résulter d'un calcul basé sur une loi générale de distorsion du type :Such an adaptation in the proposed embodiment may result from a calculation based on a general distortion law of the type:
P = k (β) .f.θ P = k (β) .f.θ
dans laquelle θ est le demi-angle d'ouverture de champ k(θ) est un coefficient d'adaptation fonc- tion de θ f est la focale paraxiale k(θ).f est la focale équivalente p est la distance à l'axe d'un --apteur élémentaire du détecteur. Un calcul simple de k pour des valeurs extrêmes de p, c'est-à-dire pour les capteurs élémentai¬ res situés en bordure du détecteur à un sommet et à un milieu des côtés d'un détecteur matriciel supposé carré et supposé disposé près du centre 0, correspondant par exemple aux ouvertures angulaires de champ respective¬ ment 0X3, OP et 0X3, 01, montre que le coefficient k est une fonction faiblement croissante de θ de 0° à environ 55° : la distorsion adaptée augmente donc la focale équivalente en bordure de champ, ce qui corres- pond à une distorsion de type coussinet. Plus exacte¬ ment, pour un détecteur matriciel carré de demi-côté a et pour un capteur élémentaire quelconque de ce détec¬ teur matriciel repéré à l'aide de coordonnées cartésien¬ nes y et z par rapport au centre de la mosaïque, le coefficient k varie selon la loi suivante :
k = ly +z / Arc cos (a/1y •»z +a ) Cette loi fournit des valeurs de k proches de 1, en variant de 1,273 pour les capteurs situés en bordure du détecteur matriciel sur les milieux des cô- tés de la matrice (θ = 45°), à k = 1,480 pour les cap¬ teurs situés aux sommets de la matrice (θ=θmax≈55°) .in which θ is the half-angle of field aperture k (θ) is a function adaptation coefficient of θ f is the paraxial focal length k (θ) .f is the equivalent focal length p is the distance to the axis of a - elementary detector sensor. A simple calculation of k for extreme values of p, that is to say for the elementary sensors located at the edge of the detector at a vertex and in the middle of the sides of a matrix detector supposed to be square and supposed to be placed near from the center 0, corresponding for example to the angular field apertures respectively 0X3, OP and 0X3, 01, shows that the coefficient k is a slightly increasing function of θ from 0 ° to about 55 °: the adapted distortion therefore increases the focal equivalent at the edge of the field, which corresponds to a cushion-type distortion. More exactly, for a square matrix detector of half-side a and for any elementary sensor of this matrix detector identified using Cartesian coordinates y and z relative to the center of the mosaic, the coefficient k varies according to the following law: k = ly + z / Arc cos (a / 1y • »z + a) This law provides values of k close to 1, varying from 1.273 for the sensors located at the edge of the matrix detector on the midpoints of the sides the matrix (θ = 45 °), at k = 1.480 for the sensors located at the vertices of the matrix (θ = θmax≈55 °).
Dans ces conditions la loi de distorsion est proche de la loi p= f.θ et le champ élémentaire couvert par chaque objectif grand angulaire est alors relativement conservatif : la résolution, qui peut être mesurée, pour une portée donnée, par la dimension du champ élémentaire correspondant à un capteur élémen¬ taire du détecteur via l'objectif grand angulaire, est donc relativement conservative c'est-à-dire uniforme le long de chaque champ objet correspondant à chaque objec¬ tif grand angulaire. Ainsi, pour un détecteur matriciel de 256 x 256 capteurs élémentaires, supposés jointifs, une résolution angulaire uniforme de 0,37° sur 4fi stéradians peut être obtenue. En réalité les capteurs élémentaires des détecteurs bidimensionnels ne sont pas jointifs. Pour des raisons d'ordre technologique, ils sont séparés par des zones aveugles non photosensibles. Pour accéder à l'information perdue par ces zones aveugles, il est connu d'effectuer un microbalayage permettant de capter les flux lumineux normalement destinés à ces zones aveu¬ gles mais déviés, grâce à ce microbalayage, sur les capteurs élémentaires photosensibles. De tels microba¬ layages sont obtenus à l'aide de lames à faces parallè- les dont la mise en oeuvre est décrite par exemple dans les brevets FR 2 647 995 ou EP 289 182.Under these conditions the law of distortion is close to the law p = f.θ and the elementary field covered by each wide angle objective is then relatively conservative: the resolution, which can be measured, for a given range, by the dimension of the field elementary corresponding to an elementary sensor of the detector via the wide angle objective, is therefore relatively conservative, that is to say uniform along each object field corresponding to each wide angle objective. Thus, for a matrix detector of 256 x 256 elementary sensors, assumed to be contiguous, a uniform angular resolution of 0.37 ° over 4fi steradians can be obtained. In reality, the elementary sensors of the two-dimensional detectors are not contiguous. For technological reasons, they are separated by non-photosensitive blind zones. To access the information lost by these blind areas, it is known to carry out a micro-scan making it possible to capture the light fluxes normally intended for these blind areas but deflected, thanks to this micro-scan, on the elementary photosensitive sensors. Such microba¬ layings are obtained using blades with parallel faces, the implementation of which is described for example in patents FR 2 647 995 or EP 289 182.
Pour obtenir une couverture totale sans zone de champ aveugle dans l'espace objet, correspon¬ dant aux zones aveugles des détecteurs, il est proposé d'adjoindre .une lame à faces parallèles dans le flux
convergent de chaque module de détection, par exemple entre la pupille de sortie de chaque objectif grand champ et le détecteur associé, selon une mise en oeuvre particulière illustrée à la figure 4. Sur cette figure, une lame à face parallèle L a une épaisseur e et est inclinée selon un très petit angle α, exagérément agran¬ di sur la figure à des fins de clarté. La lame L est entraînée en rotation autour de l'axe optique XX' et est placée en faisceau convergent de chaque objectif grand angulaire du système de veille. Un moteur, par exemple un moteur asynchrone, effectue la rotation de la lame à l'aide d'une pignonerie adaptée.To obtain total coverage without a blind field zone in the object space, corresponding to the blind zones of the detectors, it is proposed to add a blade with parallel faces in the flux. converge of each detection module, for example between the exit pupil of each wide field objective and the associated detector, according to a particular implementation illustrated in FIG. 4. In this figure, a blade with a parallel face L has a thickness e and is inclined at a very small angle α, excessively enlarged in the figure for the sake of clarity. The blade L is rotated around the optical axis XX 'and is placed in a convergent beam of each wide angle objective of the standby system. A motor, for example an asynchronous motor, performs the rotation of the blade using a suitable pinion.
Cette lame inclinée provoque un décalage des faisceaux optiques. Par exemple le rayon central, RC, représenté par un trait fléché sur la figure 4, est réfracté en traversant la lame à faces parallèles L selon un angle α' et ressort de la lame avec un déca¬ lage Δ égal à e sin(α-α' )/cosα ' . L'angle α est calculé pour que la rotation de la lame imprime au champ élémen- taire, correspondant à chaque capteur élémentaire, une nutation permettant la couverture des zones de champ aveugle. Ceci se traduit par une nutation "virtuelle" correspondante de chaque capteur élémentaire permettant la couverture des zones aveugles situées sur le détec- teur.This inclined blade causes an offset of the optical beams. For example, the central radius, RC, represented by an arrowed line in FIG. 4, is refracted by crossing the blade with parallel faces L at an angle α 'and comes out of the blade with a shift Δ equal to e sin (α -α ') / cosα'. The angle α is calculated so that the rotation of the blade prints on the elementary field, corresponding to each elementary sensor, a nutation allowing the coverage of the blind field zones. This results in a corresponding "virtual" nutation of each elementary sensor allowing the coverage of the blind zones located on the detector.
Sur les figures 5a à 5d, ont été représen¬ tées quatre positions extrêmes "virtuelles", d'un cap¬ teur élémentaire, RSTU, successivement prises au cours de la rotation de la lame à faces parallèles. Les zones hachurées, qui représentent les zones aveugles entou¬ rant le capteur élémentaire, sont successivement ba¬ layées par portion au cours de la rotation de la lame. L'angle d'inclinaison α de la lame est calculé pour que, par exemple> le point S effectue la nutation repré-
sentée sur la figure 5a par la courbe circulaire dessi¬ née en pointillés, pendant la rotation de la lame.In FIGS. 5a to 5d, four "virtual" extreme positions have been shown, of an elementary sensor, RSTU, successively taken during the rotation of the blade with parallel faces. The hatched areas, which represent the blind areas surrounding the elementary sensor, are successively layered by portion during the rotation of the blade. The angle of inclination α of the blade is calculated so that, for example> point S performs the nutation represented felt in FIG. 5a by the circular curve drawn in dotted lines, during the rotation of the blade.
Pour adapter la résolution du système à la dimension des capteurs élémentaires "virtuels", l'inté- gration des charges est effectuée entre les différentes positions extrêmes a, b, c, d de la figure 5. L'intégra¬ tion se fait alors quatre fois par tour de lame.' La cadence de rafraîchissement de l'image complète s'effec¬ tuant à chaque tour de lame, la cadence d'exploration est divisée par quatre dans l'exemple de réalisation proposée. Par exemple, pour des temps d'intégration entre chaque passage de l'ordre de 2,5 millisecondes, soit 400 KHz, les cadences d'exploration obtenues sont de 100 KHz, ce qui reste bien supérieur aux performan- ces des systèmes à balayage (de l'ordre de quelques hertz.To adapt the resolution of the system to the dimension of the elementary "virtual" sensors, the integration of the charges is carried out between the different extreme positions a, b, c, d of FIG. 5. The integration is then done four times per turn of the blade. ' The refresh rate of the complete image being effected at each turn of the blade, the exploration rate is divided by four in the proposed embodiment. For example, for integration times between each pass of the order of 2.5 milliseconds, or 400 KHz, the exploration rates obtained are 100 KHz, which remains much higher than the performance of scanning systems. (of the order of a few hertz.
Dans le cas où les objets à détecter sont au moins de l'ordre de grandeur de la dimension des capteurs élémentaires, le microbalayage n'est bien en- tendu plus nécessaire.
In the case where the objects to be detected are at least of the order of magnitude of the dimension of the elementary sensors, microbaying is clearly no longer necessary.
Claims
REVENDICATIONS
1 - Dispositif de veille omnidirectionnel à couverture optimale de l'espace environnant par jonc¬ tion de champs, comportant des moyens optiques de forma¬ tion d'images sur au moins un détecteur bidimensionnel du type CCD capable de délivrer un signal vidéo de vi¬ sualisation de l'image projetée, caractérisé en ce que les moyens optiques comprenant plusieurs objectifs grand angulaire de type "fisheye" (01 à 06), chaque objectif grand angulaire étant associé à un détecteur bidimensionnel (Dl à D6) pour former un module de détec¬ tion, en ce que le nombre de modules de détection est adapté à la dimension de l'espace environnant à cou¬ vrir, et en ce que chaque objectif grand angulaire pos¬ sède une loi de distorsion quasi-conservative choisie pour rendre jointifs les champs objets limités couverts par deux détecteurs voisins.1 - Omnidirectional watch device with optimal coverage of the surrounding space by field junction, comprising optical means for image formation on at least one two-dimensional detector of the CCD type capable of delivering a video signal of vi sualisation of the projected image, characterized in that the optical means comprising several wide angle lenses of the "fisheye" type (01 to 06), each wide angle lens being associated with a two-dimensional detector (Dl to D6) to form a module for detection, in that the number of detection modules is adapted to the size of the surrounding space to be covered, and in that each wide angle lens has a quasi-conservative distortion law chosen to make it contiguous limited object fields covered by two neighboring detectors.
2 - Dispositif selon la revendication 1, caractérisé en ce que les modules de détection sont au nombre de (EF1 à EF6), chaque objectif de chaque module étant disposé au centre d'une face (FI à F6) d'un cube (K) afin de couvrir un champ de 4H stéradians.2 - Device according to claim 1, characterized in that the detection modules are the number of (EF1 to EF6), each objective of each module being arranged in the center of a face (FI to F6) of a cube (K ) to cover a field of 4H steradians.
3 - Dispositif selon l'une des revendica¬ tions précédentes, caractérisé en ce que la loi de dis¬ torsion des objectifs grands angulaires est de la forme c = k.f.Odans laquelle3 - Device according to one of the preceding claims, characterized in that the law of distortion of the wide angle objectives is of the form c = k.f.In which
Oest le demi-angle d'ouverture de champs, k est un coefficient d'adaptation fonction de la position (y, z)) d'un capteur élémentaire dans un détecteur, donné de demi côté égal à a, définissant le demi angle d'ouverture Opour ce capteur, avec k = -J"y2+z2 / Arc cos (a/*4"y2+z2+a f est la focale paraaxiale
c est la distance à l'axe optique du cap¬ teur élémentaire.Is the half-angle of field opening, k is an adaptation coefficient depending on the position (y, z)) of an elementary sensor in a detector, given with half side equal to a, defining the half angle d for this sensor, with k = -J " y 2 + z 2 / Arc cos (a / * 4 " y 2 + z 2 + af is the paraaxial focal c is the distance to the optical axis of the elementary sensor.
4 - Dispositif selon l'une des revendica¬ tions précédentes, caractérisé en ce qu'il est adjoint dans chaque module de détection une lame à faces paral¬ lèles (L) inclinée sur l'axe optique (XX') du module d'un angle α de faible valeur et entraînée en rotation autour de l'axe optique (XX') de sorte que chaque cap¬ teur élémentaire de chaque détecteur balaye virtuelle- ment une zone aveugle entourant le capteur.4 - Device according to one of the preceding claims, characterized in that there is added in each detection module a blade with parallel faces (L) inclined on the optical axis (XX ') of the module an angle α of small value and driven in rotation about the optical axis (XX ') so that each elementary sensor of each detector virtually scans a blind zone surrounding the sensor.
5 - Dispositif selon la revendication 4, caractérisé en ce que la cadence d'intégration des char¬ ges de chaque capteur est quatre fois plus élevée que la cadence de rafraîchissement d'image, l'intégration des charges s'effectuant quatre fois par tour de lame.
5 - Device according to claim 4, characterized in that the rate of integration of the char¬ ges of each sensor is four times higher than the image refresh rate, the integration of the charges being carried out four times per revolution of soul.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9207112 | 1992-06-12 | ||
FR9207112A FR2692369A1 (en) | 1992-06-12 | 1992-06-12 | Omnidirectional monitoring device with optimal coverage of the surrounding space by joining fields. |
PCT/FR1993/000560 WO1993025926A1 (en) | 1992-06-12 | 1993-06-11 | Omnidirectional surveillance device with optimal coverage of surrounding space by means of contiguous fields |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0645020A1 true EP0645020A1 (en) | 1995-03-29 |
Family
ID=9430672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93913116A Ceased EP0645020A1 (en) | 1992-06-12 | 1993-06-11 | Omnidirectional surveillance device with optimal coverage of surrounding space by means of contiguous fields |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0645020A1 (en) |
FR (1) | FR2692369A1 (en) |
WO (1) | WO1993025926A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2766931B1 (en) * | 1997-08-01 | 1999-10-15 | Sextant Avionique | OPTICAL DEVICE FOR A HELMET SIGHT COMPRISING AN ASPHERIC MIRROR |
GB2370371B (en) | 2000-12-22 | 2002-11-27 | Infrared Integrated Syst Ltd | Use of distorting optics in imaging systems |
FR2833086B1 (en) * | 2001-11-30 | 2004-02-27 | Thales Sa | HIGH-SPEED SECTORAL OR PANORAMIC OPTRONIC WATCH DEVICE WITHOUT APPARENT MOVEMENT |
EP1552335A4 (en) * | 2002-10-18 | 2006-12-20 | Bae Systems Information | Method and apparatus of using optical distortion in a directed countermeasure system to provide a variable field of view |
FR2921149B1 (en) | 2007-09-14 | 2009-11-06 | Thales Sa | STABILIZED IMAGE TELEMETRY METHOD |
FR2962827B1 (en) * | 2010-07-13 | 2013-05-10 | Thales Sa | METHOD AND DEVICE FOR BI-SPECTRAL MULTIFUNCTION IMAGING |
US9964633B1 (en) * | 2014-05-09 | 2018-05-08 | Raytheon Bbn Technologies Corp. | Airborne infrared countermeasures systems and method for establishing an infrared communications link between airborne infrared countermeasures systems |
DE102015004104B4 (en) * | 2015-03-27 | 2020-09-03 | Laser-Laboratorium Göttingen e.V. | Method for localizing at least one emitter by means of a localization microscope |
FR3083305B1 (en) * | 2018-07-02 | 2020-07-10 | Thales | OPTRONIC SIGHT AND ASSOCIATED PLATFORM |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2929971C2 (en) * | 1979-07-24 | 1984-04-26 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Optical imaging system |
JPS6053920A (en) * | 1983-09-05 | 1985-03-28 | Olympus Optical Co Ltd | Tilt and shift device for endoscope |
JPS62218823A (en) * | 1986-03-20 | 1987-09-26 | Fujitsu Ltd | Infrared image pickup device |
DE3806158A1 (en) * | 1988-02-26 | 1988-12-22 | Peter Dipl Phys Thebock | Image-guiding (image-carrying, image transmission) optical system having a viewing angle of more than 270 degrees having an image evaluation system connected downstream |
-
1992
- 1992-06-12 FR FR9207112A patent/FR2692369A1/en active Granted
-
1993
- 1993-06-11 EP EP93913116A patent/EP0645020A1/en not_active Ceased
- 1993-06-11 WO PCT/FR1993/000560 patent/WO1993025926A1/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO9325926A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR2692369A1 (en) | 1993-12-17 |
WO1993025926A1 (en) | 1993-12-23 |
FR2692369B1 (en) | 1997-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3087275A1 (en) | VEHICLE ENVIRONMENT INPUT SYSTEM AND IMPLEMENTATION METHOD | |
FR2656182A1 (en) | INFRARED MONITORING DEVICE. | |
WO1993025926A1 (en) | Omnidirectional surveillance device with optimal coverage of surrounding space by means of contiguous fields | |
EP0645021B1 (en) | Long-range infrared panoramic surveillance device | |
EP0702246B1 (en) | Portable device for measuring the backscattering of light | |
EP0353138B1 (en) | Multispectral mirror device | |
WO1993025927A9 (en) | Long-range infrared panoramic surveillance device | |
FR2712993A1 (en) | Vision system. | |
EP0189217B1 (en) | Optical-mechanical analyser with a fixed telemetric field | |
FR3015696A1 (en) | OPTICAL FIELD IMAGING MODULE WITH HEMISPHERIC FIELD AND CONTROLLED DISTORTION COMPATIBLE WITH AN OUTER ENVIRONMENT | |
FR2535859A1 (en) | INFRARED RADIATION DETECTION SYSTEM | |
WO1993009463A1 (en) | Device for microscanning and infrared camera provided with such device | |
EP1449020B1 (en) | High-speed sectorial or panoramic surveillance device without apparent motion | |
FR2551890A1 (en) | SPATIAL FIELD ANALYSIS DEVICE FOR THE ANGULAR LOCATION OF RADIANT OBJECTS | |
EP0187687B1 (en) | Optical-mechanical scanner with a fixed distance-measuring field | |
EP1220003B1 (en) | Optical architecture for observation telescope | |
EP1973340A1 (en) | Imaging device with several detectors | |
EP0614103B1 (en) | Infrared telescope with oscillating mirrors | |
FR2709840A1 (en) | Fish-eye type optical device for detecting and locating a radiating source. | |
EP0574325A1 (en) | Sensory apparatus with a wide-angle lens for total space view | |
EP0713119A1 (en) | Static infrared panoramic surveillance device with multiple detector arrays | |
FR2477349A1 (en) | Opto-mechanical IR scanning system - uses rotating wheel carrying mirror pairs to scan IR to form video image | |
FR2676154A1 (en) | MICRO-SCALING DEVICE, INFRARED CAMERA EQUIPPED WITH SUCH A DEVICE, AND METHOD OF MANUFACTURING THE DEVICE | |
EP3818391A1 (en) | Optronic sight and associated platform | |
WO2007045638A1 (en) | Dual-laser-scanning optical device having multiple adjustable parameters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19941022 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19960806 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19970131 |