EP0643006B1 - Method and system for controlling a hydraulic lift - Google Patents

Method and system for controlling a hydraulic lift Download PDF

Info

Publication number
EP0643006B1
EP0643006B1 EP93114800A EP93114800A EP0643006B1 EP 0643006 B1 EP0643006 B1 EP 0643006B1 EP 93114800 A EP93114800 A EP 93114800A EP 93114800 A EP93114800 A EP 93114800A EP 0643006 B1 EP0643006 B1 EP 0643006B1
Authority
EP
European Patent Office
Prior art keywords
control signal
travel
control
value
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93114800A
Other languages
German (de)
French (fr)
Other versions
EP0643006A1 (en
Inventor
Kjell Johansson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HYDROWARE ELEVATION TECHNOLOGY AB
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to DE59309724T priority Critical patent/DE59309724D1/en
Priority to AT93114800T priority patent/ATE182857T1/en
Priority to ES93114800T priority patent/ES2137213T3/en
Priority to DK93114800T priority patent/DK0643006T3/en
Priority to EP93114800A priority patent/EP0643006B1/en
Priority to CA002128946A priority patent/CA2128946C/en
Priority to US08/290,284 priority patent/US5612517A/en
Priority to JP6205717A priority patent/JPH0797150A/en
Priority to TR00856/94A priority patent/TR27819A/en
Priority to CN94115298A priority patent/CN1050579C/en
Priority to AU72944/94A priority patent/AU675157B2/en
Priority to BR9403556A priority patent/BR9403556A/en
Priority to NO943413A priority patent/NO308106B1/en
Priority to RU94033156/28A priority patent/RU2148548C1/en
Priority to FI944269A priority patent/FI944269A/en
Publication of EP0643006A1 publication Critical patent/EP0643006A1/en
Priority to HK98113560A priority patent/HK1012322A1/en
Application granted granted Critical
Publication of EP0643006B1 publication Critical patent/EP0643006B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration

Definitions

  • the invention relates to a method and a device for Control of a hydraulic elevator, one Control device generates control signals that one Control valve assembly are supplied, which the flow regulates a hydraulic fluid in such a way that a cabin of the Elevators accelerated, moved at constant speed and when one arrives the braking point signaling shaft information is delayed.
  • German patent 36 38 247 is one Device for a hydraulic elevator, with the disadvantages mentioned above are to be remedied.
  • a control device is provided which Determining the speed behavior of the cabin Output signals generated that fed to a control valve become.
  • the control valve leads from one Hydraulic fluid source in According to the output signals the cabin driving hydraulic cylinder to or vice versa.
  • Reference speed values are stored in the memory correspond to certain operating states, which on different load and / or temperature conditions related are.
  • a sensor located on the cabin detects the Actual speed and passes it through a converter unit the computing unit.
  • the during the Acceleration phase measured actual speed and one predetermined reference speed formed a difference due to which the computing unit a Control speed curve calculated.
  • This Control speed curve is saved and during the Deceleration phase used to the actual speed towards the value of the specified reference speed correct. This is said to be accurate and quick Control of the destinations and thus the Operating time of the elevator can be shortened.
  • the invention has for its object a method and a device for performing the method according to Propose the preamble of claim 1, the one Direct entry on one floor without travel Allows creep speed.
  • Fig. 1 denotes a cabin, which means one having a piston 3 and a cylinder 4 hydraulic lifting device 2 can be set in motion can.
  • the movement is transmitted by means of a rope 5 the two attached to the piston 3 rollers 6, two on the Cabin 1 fixed rollers 7 and a fixed attached Roll 8 runs, the cabin 1 being guided in a shaft 9 becomes.
  • shaft switch 10 one with the cabin 1 connected sensor 11 and one Command control 12 are preferably digital Control device 20 connected.
  • the sensor 11 has a Wheel on that on a rope stretched along the shaft 9 rolls, and emits path signals in the form of pulse signals.
  • Of the Sensor 11 can be as described or otherwise work mechanically, but also electrically or optically.
  • a with reference to Fig. 2 control valve arrangement described in more detail below 13 is with the output of the control device 20 electrically connected and via hydraulic fluid lines on the hydraulic lifting device 2 and one Hydraulic fluid source 14 connected.
  • the command control 12 directs the control device 20 Driving commands too.
  • Brake application signals are from her Control unit 21, which is part of the Control device 20 is.
  • the brake application signals come from the shaft switches 10, which at certain intervals in front of the Floor floors are attached.
  • Brake application signals can can also be derived from the sensor 11 by for example summed up for a certain number Path signals generated corresponding shaft information becomes.
  • the control device 20 generates a signal S, which the control valve assembly 13 is supplied.
  • the control unit 21 is equipped with a tachometer signal converter 22 connected, which is supplied by the sensor 11 Travel signals into actual speed values vi or actual travel values si implements.
  • a speed controller 23 is on the input side an output of the Tacho signal converter 22 and with one Speed setpoints vs output of a Speed setpoint sensor 24 connected is connected on the input side to the control unit 21. Via another one connected to the control unit 21 Input, the speed controller 23 can be reset or be started.
  • the Speed controller 23 can be a conventional PID controller be used.
  • 25 is a below with reference to FIG. 5 designated path controller, the on the input side with the control unit 21 and with a Output of the speedometer signal converter 22 outputting actual values si connected is.
  • a path 26 belongs to path controller 25, in which assignments of actual path values si to percentages % S values of one described later with reference to FIG. 4 Control area CS are stored.
  • a Switching device 27 is with an output of the control unit 21, the output of the speed controller 23, the output of the path controller 25 and the input of a DA converter 28 connected. The output can be switched by means of the switching device 27 of the travel controller 25 upon arrival of the brake application point signaling shaft information to the input of the DA converter 28 are switched.
  • the output of the DA converter is connected to an amplifier 29, the output of which Output of the control device 20 forms.
  • the control valve arrangement 13 shown in FIG. 2 has two similar electro-hydraulic throttle valves 30, 30 '.
  • the following description for the throttle valve 30 for Control of the lowering process applies in the same way for the Throttle valve 30 'shown in mirror image for lifting the Cabin, in the same, but with a tick Reference numbers are used.
  • a main piston 32 is guided in a valve chamber 31 protrudes from the rear a piston rod 33.
  • a pilot valve 34 with a without a functional connection
  • Electromagnet 35 arranged with the output of the Control device 20 (Fig. 1) is electrically connected.
  • the piston rod 33 protrudes out of the pilot valve 34 at the rear and carries at its end a stop 36, between which Stop 36 and the pilot valve 34, a compression spring 37 is arranged is.
  • the compression spring 37 acts on the force of the electromagnet 35 against.
  • the pilot valve is in one Connection line 38 arranged and controls its flow.
  • the connecting line 38 connects a front chamber 39 and a rear chamber 40 of the valve chamber 31 with each other.
  • the front chamber 39 has an inlet C which over a variable passage 39.1 with an outlet T is connected, which opens into a tank 42.
  • Inlet C is connected to the cylinder 4 of the lifting device 2.
  • the rear chamber 40 is also via a drain line 41 connected to the tank 42. Located in the drain line 41 an electromagnetic closing valve 44.
  • the control valve arrangement works with a lifting force feedback, i.e. the force of the compression spring 37, the Represented position of the main piston 32 is measured and serves as a feedback signal. This ensures that the force of the electromagnet 35 or the strength of the control signal S proportional to the position of the Main piston 32 is.
  • This solution has a good dynamic Behavior on and is inexpensive and easy to set up.
  • other, e.g. hydraulic, electrical or mechanical returns are used.
  • the outlet T' is the front one Chamber 39 'also connected to tank 42.
  • One with P designated inlet is with a motor-driven pump 45 of the pressure fluid source 14 in connection.
  • the pump 45 sucks from the tank 42.
  • the inlets C and P are connected via a connecting line 47 a check valve 48 connected to each other.
  • the Check valve 48 acts so that the hydraulic fluid from the lifting device 2 not in the direction of the pump 45 can flow back.
  • the signal S is zero and that Throttle valve 30 is closed (hydraulically). This will reached by a slightly open pilot valve 34 so that the valve chambers 39 and 40 are connected to one another and the one in the rear chamber 40 on the large rear Surface of the main piston 32 acting pressure in the direction the chamber 39 moves.
  • the closing valve 44 is at Standstill and upward travel of cabin 1 closed.
  • the Throttle valve 30 ' is open when the cabin 1 is at a standstill.
  • the throttle valve 32 'for lifting the cabin 1 works basically the same as the throttle valve 32, but with the difference that the signal S 'for the electromagnet 35 'is proportional to the signal S. If a call is made to Upward travel, the pump 45 is turned on Hydraulic fluid into chamber 39 'and through the valve gap 39.1 'pumps into the tank 42. Thereafter, the pilot valve 34 ' a signal S ', causing an opening of the connecting line 38 'leads. Then pressure medium flows from the front Chamber 39 'to the rear chamber 40' at a particular one The amount of the signal S is the opening cross section of the Pilot valve 34 'larger than the cross section of the Drain line 41 '.
  • the acceleration process and the drive with nominal or Operating speed can be unregulated. In the Upward travel can thus the full unthrottled performance of the Pump 45 can be used. The maximum speed of the Cabin 1 is then determined by the pump output. The The speed of the descent can be adjusted accordingly dimensioned aperture in the drain line of the Lifting device 2 are limited.
  • pilot valve arrangements In the illustrated embodiment there are two Pilot valve arrangements are provided, depending on the direction of travel only one is active at a time. In another Design variant is only a pilot valve arrangement for both directions of travel provided, alternating both Throttle valves 30, 30 'controls.
  • FIG. 3 which represents the prior art, also includes v denotes the speed and t denotes the time.
  • v denotes the speed
  • t denotes the time.
  • control signal assigned to the actual path values si are formed for the control valve assembly 13 with connected to the input of a multiplier 25.1, each a corresponding to the current travel actual value si ' percentage value% S of the control area with the calculated value of the control area CS multiplied.
  • the outcome is to improve the control result of the multiplier 25.1 with the input of an adder 25.2 connected to the product of the multiplier 25.1 Control deviation CO and the pilot signal S0 added and the output of which forms the output of the displacement controller 25.
  • the control device 20 described above operates as follows.
  • speed controller 23 is reset or activated by control unit 21, and the input of DA converter 28 is switched to the output of speed controller 23 by switching device 27.
  • the cabin 1 is now controlled during the acceleration phase and travel at constant speed by comparing the actual speed values vi with the speed setpoints vs, the control signal S at the output of the control device 20 according to the characteristic curve E (FIG. 4).
  • the cabin 1 After the arrival of a driving command, the cabin 1 starts to move at the start time t1 and at the same time a first value S1 of the control signal S is stored (FIG. 4).
  • the relevant shaft switch 10 or the sensor 11 sends a shaft information to the control unit 21, whereupon the delay phase is initiated.
  • the path controller 25 is activated and its output is switched to the input of the DA converter 28 by means of the switching device 27.
  • the displacement controller 25 now works in such a way that, as already described with reference to FIG.
  • the selected control valve assembly 13 the position of Master piston 32 exactly proportional to the control signal S.
  • the control signal S generated by the speed controller 23 until the time of braking application load and temperature dependent. But since the control area CS for the Delay phase to the current one while driving constant load and temperature conditions based on the values S1, S2, H is redefined, can be accurate Direct entry can be achieved without a level adjustment is required.
  • the hysteresis value H becomes as follows during a learning trip determined: The control signal S is increased until the Speed reaches a predetermined value. At If the specified value is reached, the strength of the Control signal S measured and stored. After that it will Control signal S further increased and after a while again downsized until the given value of speed is reached again. Then the strength of the control signal S measured again and one of the two measured values Difference formed, which represents the hysteresis value H.
  • the pilot control signal S0 causes an immediate Departure of the elevator car after the start command
  • the starting jerk can be significant with the pilot control signal S0 can be reduced.
  • the electromagnet 35 of the control valve arrangement for as long with a gradually increasing control signal S pressurized until the elevator car starts moving. That included determined control signal is around a constant value reduced and stored as pilot signal S0.
  • the control valve arrangement 13 becomes a drive command directly applied to the pilot signal S0.
  • the limit control signal SL is that control signal S, at which the main piston 32 of the control valve assembly 13 its End position reached.
  • the control device 20 works in such a way that the value of the control signal S is the value of the Limit control signal SL can never exceed.
  • a hydraulic elevator is usually explained speed controlled. With that during one Learning drive certain limit control signal SL is a uncontrolled operation during constant driving and one position-controlled operation during the subsequent Delay phase feasible.
  • the control valve arrangement 13 is also used the limit control signal SL, so that the entire Delivery rate of the hydraulic fluid source 14 in the Lifting device 2 is effective, reducing the efficiency of the Lifting device 2 is significantly improved.
  • the transition from uncontrolled constant travel to controlled travel Deceleration runs without default, because the value of the Limit control signal SL even with a previous unregulated Operation is such that the main piston 32 the Limit control signal SL can follow immediately.
  • the limit control signal SL becomes the coil of Control valve arrangement as long as with a gradual increasing control signal S is applied until the The elevator car speed no longer increases.
  • the the control signal determined in the process is generated by the control device 20 stored as a limit control signal SL.
  • the device according to the invention can preferably by means of of a microcomputer system can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Elevator Control (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Types And Forms Of Lifts (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

With this method, accurate direct arrival at a floor can be achieved without travel at creep speed being necessary. Here, the car is controlled as a function of displacement in the deceleration phase, for which purpose a control range (CS) is formed which is divided into percentage values. The percentage values are put into tabular form in relationship to measured actual displacement values. When a certain actual displacement value occurs, the corresponding percentage value is multiplied by the value of the control range (CS) and if need be a control deviation (CO) and a pilot-control signal (SO) are added to the product, the sum forming the actual control signal (S) used in each case during the deceleration phase, which control signal (S) is fed to a control-valve arrangement. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren und eine Einrichtung zur Steuerung eines hydraulischen Aufzuges, wobei eine Regeleinrichtung Steuersignale erzeugt, die einer Regelventilanordnung zugeführt werden, welche den Durchfluss einer Druckflüssigkeit derart regelt, dass eine Kabine des AufZuges beschleunigt, mit konstanter Geschwindigkeit bewegt und beim Eintreffen einer den Bremseinsatzpunkt signalisierenden Schachtinformation verzögert wird.The invention relates to a method and a device for Control of a hydraulic elevator, one Control device generates control signals that one Control valve assembly are supplied, which the flow regulates a hydraulic fluid in such a way that a cabin of the Elevators accelerated, moved at constant speed and when one arrives the braking point signaling shaft information is delayed.

Bei derartigen Aufzügen hängt die Fahrgeschwindigkeit mehr oder weniger stark von Veränderungen der Kabinenlast und der Temperatur der hydraulischen Druckflüssigkeit ab, wodurch sich der durch ein Regelventil gesteuerte Durchfluss entsprechend ändert und eine genaue Einfahrt auf einem Stockwerk nicht möglich ist. Um diesen Mangel zu beheben wird kurz vor Erreichen des Stockwerkes auf eine kleine, konstante Schleichgeschwindigkeit geschaltet, sodass durch Last- und/oder Temperaturänderungen entstehende Höhendifferenzen des Haltepunkts ausgeglichen werden können (Fig. 3). Dies führt zu einer Verlängerung der Fahr- und Wartezeiten für die Benutzer und erfordert einen hohen Energieverbrauch. Bei hydraulischen Aufzügen ist ausserdem die Länge der Schleichfahrt bekanntlich von den Last- und Temperaturbedingungen abhängig.With such elevators, the driving speed depends more or less strongly from changes in cabin load and the temperature of the hydraulic hydraulic fluid, whereby the controlled by a control valve Flow changes accordingly and an exact entry is not possible on one floor. To this lack will fix shortly before reaching the floor on a small, constant creep speed switched, so through changes in load and / or temperature resulting differences in height of the breakpoint compensated can be (Fig. 3). This leads to an extension of driving and waiting times for users and requires high energy consumption. With hydraulic lifts the length of the creep speed is also known to be from depending on the load and temperature conditions.

Mit der deutschen Patentschrift 36 38 247 ist eine Einrichtung für einen hydraulischen Aufzug bekannt geworden, mit der vorstehend erwähnte Nachteile behoben werden sollen. Hierbei ist eine Steuervorrichtung vorgesehen, die das Geschwindigkeitsverhalten der Kabine bestimmende Ausgangssignale erzeugt, die einem Regelventil zugeführt werden. Das Regelventil führt die aus einer Druckflüssigkeitsquelle stammende Druckflüssigkeit in Übereinstimmung mit den Ausgangssignalen einem die Kabine antreibenden Hydraulikzylinder zu oder umgekehrt. In einem über eine Recheneinheit mit der Steuervorrichtung verbundenen Speicher sind Bezugs-Geschwindigkeitswerte gespeichert, die bestimmten Betriebzuständen entsprechen, welche auf verschiedene Last- und/oder Temperaturverhältnisse bezogen sind. Ein an der Kabine angeordneter Messfühler erfasst die Ist-Geschwindigkeit und führt sie über eine Wandlereinheit der Recheneinheit zu. Hierbei wird aus der während der Beschleunigungsphase gemessenen Ist-Geschwindigkeit und einer vorbestimmten Bezugsgeschwindigkeit eine Differenz gebildet, aufgrund welcher die Recheneinheit eine Steuergeschwindigkeitskurve errechnet. Diese Steuergeschwindigkeitskurve wird gespeichert und während der Verzögerungsphase dazu verwendet, um die Ist-Geschwindigkeit auf den Wert der vorgegebenen Bezugsgeschwindigkeit zu korrigieren. Auf diese Weise soll eine genaue und schnelle Ansteuerung der Zielorte ermöglicht werden und damit die Betriebszeit des Aufzuges verkürzt werden. Dabei kommt die keinen Regelkreis und keine Regelung zur Anpassung des Bremseinsatzzeitpunktes aufweisende Steuervorrichtung jedoch nicht ohne Schleichgeschwindigkeit aus.With the German patent 36 38 247 is one Device for a hydraulic elevator, with the disadvantages mentioned above are to be remedied. Here, a control device is provided which Determining the speed behavior of the cabin Output signals generated that fed to a control valve become. The control valve leads from one Hydraulic fluid source in According to the output signals the cabin driving hydraulic cylinder to or vice versa. In one connected to the control device via a computing unit Reference speed values are stored in the memory correspond to certain operating states, which on different load and / or temperature conditions related are. A sensor located on the cabin detects the Actual speed and passes it through a converter unit the computing unit. Here, the during the Acceleration phase measured actual speed and one predetermined reference speed formed a difference due to which the computing unit a Control speed curve calculated. This Control speed curve is saved and during the Deceleration phase used to the actual speed towards the value of the specified reference speed correct. This is said to be accurate and quick Control of the destinations and thus the Operating time of the elevator can be shortened. Here comes the no control loop and no regulation to adapt the However, control device having the brake application time not without crawl speed.

Der Erfindung liegt die Aufgabe zugrunde ein Verfahren und eine Einrichtung zur Durchführung des Verfahrens gemäss Oberbegriff des Anspruchs 1 vorzuschlagen, die eine Direkteinfahrt auf einem Stockwerk ohne Fahrt mit Schleichgeschwindigkeit ermöglicht.The invention has for its object a method and a device for performing the method according to Propose the preamble of claim 1, the one Direct entry on one floor without travel Allows creep speed.

Diese Aufgabe wird durch die in den Patentansprüchen 1 und 8 gekennzeichnete Erfindung gelöst. Hierbei wird die Kabine in der Verzögerungsphase wegabhängig gesteuert, zu welchem Zweck ein fahrtspezifischer Steuerungsbereich gebildet wird, der in prozentuale Werte unterteilt ist. Die prozentualen Werte werden in tabellarischer Form in Beziehung zu gemessenen Wegistwerten gesetzt. Bei Eintreffen eines bestimmten Wegistwertes wird der entsprechende prozentuale Wert mit dem Wert des Steuerungsbereiches multipliziert und daraus das während der Verzögerungsphase jeweils verwendete aktuelle Steuersignal gebildet. Dieses wird einer Regelventilanordnung zugeführt.This object is achieved by the in claims 1 and 8 characterized invention solved. Here the cabin is in the delay phase controlled depending on the route, for what purpose a trip-specific control area is formed, which in percentage values is divided. The percentage values are measured in tabular form in relation to Actual values set. When a certain one arrives The actual percentage value becomes the corresponding percentage value with the Multiplied the value of the control area and from that the current used during the delay phase Control signal formed. This becomes a control valve arrangement fed.

Die mit der Erfindung erzielten Vorteile sind darin zu sehen, dass Fahr- und Wartezeiten reduziert werden, dass sich die Druckflüssigkeit weniger stark erwärmt und der Energieverbrauch zurückgeht. Durch die vorgeschlagene Direkteinfahrt unter Anwendung einer Regelventilanordnung mit einer im Aufbau einfachen Positions-Rückführung wird ein genauer Halt ohne Niveau-Nachregulierung erreicht und in Bezug auf Fahrkomfort und minimale Fahrzeit ein optimales Verzögerungsergebnis erzielt. Dabei bleiben Last- und Temperaturänderungen ohne Einfluss auf die Haltegenauigkeit. Vorteilhaft ist auch, dass die Beschleunigung der Kabine und die Fahrt mit Nenngeschwindigkeit ungeregelt erfolgen kann, was sich auf den Wirkungsgrad des hydraulischen Antriebs günstig auswirkt. Ein weiterer Vorteil ist darin zu sehen, dass die Anwendung der in Wechselwirkung mit einer Regeleinrichtung stehenden Regelventilanordnung die automatische Bestimmung von aufzugspezifischen Parametern mittels Lernfahrt möglich macht. Dadurch werden die manuellen Einstellarbeiten bei der Inbetriebnahme des Aufzuges entbehrlich.The advantages achieved with the invention can be seen in that driving and waiting times are reduced, that the Hydraulic fluid heats up less and energy consumption goes back. Through the proposed direct entry using a control valve arrangement with an in Building simple position feedback becomes an accurate stop achieved without level adjustment and in relation to Driving comfort and minimum driving time an optimal deceleration result achieved. There remain changes in load and temperature without affecting the stopping accuracy. It is advantageous also that the acceleration of the cabin and the ride with Nominal speed can be unregulated, which is based on has a favorable effect on the efficiency of the hydraulic drive. Another advantage is that the application that interact with a control device Control valve arrangement the automatic determination of elevator-specific parameters possible by means of a learning trip makes. This eliminates the manual adjustment work at There is no need to commission the elevator.

Durch die in den abhängigen Ansprüchen aufgeführten Massnahmen sind vorteilhafte Weiterbildungen und Verbesserungen möglich. Im folgenden wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispieles näher erläutert.
Es Zeigen:

Fig. 1
eine schematische Darstellung der erfindungsgemässen Einrichtung,
Fig. 2
eine schematische Darstellung einer Regelventilanordnung der Einrichtung gemäss Fig. 1,
Fig. 3
ein Geschwindigkeits/Zeit-Diagramm eines hydraulischen Aufzuges gemäss Stand der Technik,
Fig. 4
ein Geschwindigkeits/Zeit-Diagramm und ein Steuersignal/Zeit-Diagramm eines mit der erfindungsgemässen Einrichtung gesteuerten hydraulischen Aufzuges, und
Fig. 5
ein Blockschaltbild eines Wegreglers der Einrichtung gemäss Fig. 1.
Advantageous further developments and improvements are possible through the measures listed in the dependent claims. The invention is explained in more detail below with reference to an embodiment shown in the drawing.
Show it:
Fig. 1
2 shows a schematic representation of the device according to the invention,
Fig. 2
1 shows a schematic illustration of a control valve arrangement of the device according to FIG. 1,
Fig. 3
a speed / time diagram of a hydraulic elevator according to the prior art,
Fig. 4
a speed / time diagram and a control signal / time diagram of a hydraulic elevator controlled by the device according to the invention, and
Fig. 5
2 shows a block diagram of a position controller of the device according to FIG. 1.

In der Fig. 1 ist mit 1 eine Kabine bezeichnet, die mittels einer einen Kolben 3 und einen Zylinder 4 aufweisenden hydraulischen Hebevorrichtung 2 in Bewegung gesetzt werden kann. Die Bewegung wird mittels eines Seiles 5 übertragen, das über zwei am Kolben 3 befestigte Rollen 6, zwei an der Kabine 1 befestigte Rollen 7 und einer ortsfest angebrachten Rolle 8 läuft, wobei die Kabine 1 in einem Schacht 9 geführt wird. Im Schacht 9 angeordnete Schachtschalter 10, ein mit der Kabine 1 verbundener Messfühler 11 und eine Kommandosteuerung 12 sind mit einer vorzugsweise digitalen Regeleinrichtung 20 verbunden. Der Messfühler 11 weist ein Rad auf, das an einem längs des Schachtes 9 gespannten Seil abrollt, und gibt Wegsignale in Form von Pulssignalen ab. Der Messfühler 11 kann wie beschrieben oder auf andere Weise mechanisch, aber auch elektrisch oder optisch arbeiten. Eine anhand der Fig. 2 nachstehend näher beschriebene Regelventilanordnung 13 ist mit dem Ausgang der Regeleinrichtung 20 elektrisch verbunden und über Druckflüssigkeitsleitungen an der hydraulischen Hebevorrichtung 2 und einer Druckflüssigkeitsquelle 14 angeschlossen. In Fig. 1, 1 denotes a cabin, which means one having a piston 3 and a cylinder 4 hydraulic lifting device 2 can be set in motion can. The movement is transmitted by means of a rope 5 the two attached to the piston 3 rollers 6, two on the Cabin 1 fixed rollers 7 and a fixed attached Roll 8 runs, the cabin 1 being guided in a shaft 9 becomes. In the shaft 9 arranged shaft switch 10, one with the cabin 1 connected sensor 11 and one Command control 12 are preferably digital Control device 20 connected. The sensor 11 has a Wheel on that on a rope stretched along the shaft 9 rolls, and emits path signals in the form of pulse signals. Of the Sensor 11 can be as described or otherwise work mechanically, but also electrically or optically. A with reference to Fig. 2 control valve arrangement described in more detail below 13 is with the output of the control device 20 electrically connected and via hydraulic fluid lines on the hydraulic lifting device 2 and one Hydraulic fluid source 14 connected.

Die Kommandosteuerung 12 leitet der Regeleinrichtung 20 Fahrbefehle zu. Bremseinsatzsignale werden ihr von einer Steuereinheit 21 Zugeleitet, die Bestandteil der Regeleinrichtung 20 ist. Die Bremseinsatzsignale kommen von den Schachtschaltern 10, die in bestimmten Abständen vor den Stockwerksböden angebracht sind. Bremseinsatzsignale können auch von dem Messfühler 11 abgeleitet werden, indem beispielsweise bei einer bestimmten Anzahl aufsummierter Wegsignale eine entsprechende Schachtinformation erzeugt wird. Die Regeleinrichtung 20 erzeugt ein Signal S, welches der Regelventilanordnung 13 zugeführt wird.The command control 12 directs the control device 20 Driving commands too. Brake application signals are from her Control unit 21, which is part of the Control device 20 is. The brake application signals come from the shaft switches 10, which at certain intervals in front of the Floor floors are attached. Brake application signals can can also be derived from the sensor 11 by for example summed up for a certain number Path signals generated corresponding shaft information becomes. The control device 20 generates a signal S, which the control valve assembly 13 is supplied.

Die Steuereinheit 21 ist mit einem Tachosignalwandler 22 verbunden, welcher die vom Messfühler 11 zugeführten Wegsignale in Geschwindigkeitsistwerte vi oder Wegistwerte si umsetzt. Ein Geschwindigkeitsregler 23 ist eingangsseitig mit einem die Geschwindigkeitsistwerte vi abgebenden Ausgang des Tachosignalwandlers 22 und mit einem Geschwindigkeitssollwerte vs abgebenden Ausgang eines Geschwindigkeitssollwertgebers 24 verbunden, der eingangsseitig mit der Steuereinheit 21 in Verbindung steht. Über einen weiteren, mit der Steuereinheit 21 verbundenen Eingang kann der Geschwindigkeitsregler 23 neu gesetzt beziehungsweise gestartet werden. Für den Geschwindigkeitsregler 23 kann ein konventioneller PID-Regler verwendet werden. Mit 25 ist ein nachstehend anhand der Fig. 5 näher beschriebener Wegregler bezeichnet, der eingangsseitig mit der Steuereinheit 21 und mit einem die Wegistwerte si abgebenden Ausgang des Tachosignalwandlers 22 verbunden ist. Zum Wegregler 25 gehört eine Tabelle 26, in welcher Zuordnungen von Wegistwerten si zu prozentualen Werten %S eines anhand der Fig. 4 später beschriebenen Steuerungsbereiches CS gespeichert sind. Eine Schalteinrichtung 27 ist mit einem Ausgang der Steuereinheit 21, dem Ausgang des Geschwindigkeitsreglers 23, dem Ausgang des Wegreglers 25 und dem Eingang eines DA-Wandlers 28 verbunden. Mittels der Schalteinrichtung 27 kann der Ausgang des Wegreglers 25 bei Eintreffen einer den Bremseinsatzpunkt signalisierenden Schachtinformation an den Eingang des DA-Wandlers 28 geschaltet werden. Der Ausgang des DA-Wandlers ist an einen Verstärker 29 angeschlossen, dessen Ausgang den Ausgang der Regeleinrichtung 20 bildet.The control unit 21 is equipped with a tachometer signal converter 22 connected, which is supplied by the sensor 11 Travel signals into actual speed values vi or actual travel values si implements. A speed controller 23 is on the input side an output of the Tacho signal converter 22 and with one Speed setpoints vs output of a Speed setpoint sensor 24 connected is connected on the input side to the control unit 21. Via another one connected to the control unit 21 Input, the speed controller 23 can be reset or be started. For the Speed controller 23 can be a conventional PID controller be used. 25 is a below with reference to FIG. 5 designated path controller, the on the input side with the control unit 21 and with a Output of the speedometer signal converter 22 outputting actual values si connected is. A path 26 belongs to path controller 25, in which assignments of actual path values si to percentages % S values of one described later with reference to FIG. 4 Control area CS are stored. A Switching device 27 is with an output of the control unit 21, the output of the speed controller 23, the output of the path controller 25 and the input of a DA converter 28 connected. The output can be switched by means of the switching device 27 of the travel controller 25 upon arrival of the brake application point signaling shaft information to the input of the DA converter 28 are switched. The output of the DA converter is connected to an amplifier 29, the output of which Output of the control device 20 forms.

Die in Fig. 2 gezeigte Regelventilanordnung 13 weist zwei gleichartige elektro-hydraulische Drosselventile 30, 30' auf. Die nachfolgende Beschreibung für das Drosselventil 30 zur Steuerung des Absenkvorgangs gilt in gleicher Weise für das spiegelbildlich dargestellte Drosselventil 30' zum Heben der Kabine, bei dem gleiche, jedoch mit einem Häkchen versehene Bezugszahlen verwendet werden.The control valve arrangement 13 shown in FIG. 2 has two similar electro-hydraulic throttle valves 30, 30 '. The following description for the throttle valve 30 for Control of the lowering process applies in the same way for the Throttle valve 30 'shown in mirror image for lifting the Cabin, in the same, but with a tick Reference numbers are used.

In einer Ventilkammer 31 ist ein Hauptkolben 32 geführt, aus dem hinten eine Kolbenstange 33 herausragt. Um diese herum ist ohne funktionelle Verbindung ein Pilotventil 34 mit einem Elektromagneten 35 angeordnet, der mit dem Ausgang der Regeleinrichtung 20 (Fig. 1) elektrisch in Verbindung steht. Die Kolbenstange 33 ragt hinten aus dem Pilotventil 34 heraus und trägt an ihrem Ende einen Anschlag 36, wobei zwischen dem Anschlag 36 und dem Pilotventil 34 eine Druckfeder 37 angeordnet ist. Die Druckfeder 37 wirkt der Kraft des Elektromagneten 35 entgegen. Mittels der Druckfeder 37 wird ein geschlossener Regelkreis mit interner Rückführung in dem Pilotventil 34 hergestellt. Das Pilotventil ist in einer Verbindungsleitung 38 angeordnet und regelt deren Durchfluss. Die Verbindungsleitung 38 verbindet eine vordere Kammer 39 und eine hintere Kammer 40 der Ventilkammer 31 miteinander.A main piston 32 is guided in a valve chamber 31 protrudes from the rear a piston rod 33. Around this is a pilot valve 34 with a without a functional connection Electromagnet 35 arranged with the output of the Control device 20 (Fig. 1) is electrically connected. The piston rod 33 protrudes out of the pilot valve 34 at the rear and carries at its end a stop 36, between which Stop 36 and the pilot valve 34, a compression spring 37 is arranged is. The compression spring 37 acts on the force of the electromagnet 35 against. By means of the compression spring 37 is a closed loop with internal feedback in the Pilot valve 34 made. The pilot valve is in one Connection line 38 arranged and controls its flow. The connecting line 38 connects a front chamber 39 and a rear chamber 40 of the valve chamber 31 with each other.

Die vordere Kammer 39 weist einen Einlass C auf, der über einen veränderbaren Durchlass 39.1 mit einem Auslass T verbunden ist, der in einen Tank 42 mündet. Der Einlass C ist mit dem Zylinder 4 der Hebevorrichtung 2 verbunden. Die hintere Kammer 40 ist ebenso über eine Abflussleitung 41 mit dem Tank 42 verbunden. In der Abflussleitung 41 befindet sich ein elektomagnetisches Schliessventil 44. The front chamber 39 has an inlet C which over a variable passage 39.1 with an outlet T is connected, which opens into a tank 42. Inlet C is connected to the cylinder 4 of the lifting device 2. The rear chamber 40 is also via a drain line 41 connected to the tank 42. Located in the drain line 41 an electromagnetic closing valve 44.

Die Regelventilanordnung arbeitet mit einer Hubkraft-Rückführung, d.h. die Kraft der Druckfeder 37, die die Stellung des Hauptkolbens 32 repräsentiert, wird gemessen und dient als Rückkopplungssignal. Dadurch wird erreicht, dass die Kraft des Elektromagneten 35 beziehungsweise die Stärke des Steuersignales S proportional zur Position des Hauptkolbens 32 ist. Diese Lösung weist ein gutes dynamisches Verhalten auf und ist kostengünstig sowie einfach im Aufbau. Es können jedoch auch andere, beispielsweise hydraulische, elektrische oder mechanische Rückführungen Verwendung finden.The control valve arrangement works with a lifting force feedback, i.e. the force of the compression spring 37, the Represented position of the main piston 32 is measured and serves as a feedback signal. This ensures that the force of the electromagnet 35 or the strength of the control signal S proportional to the position of the Main piston 32 is. This solution has a good dynamic Behavior on and is inexpensive and easy to set up. However, other, e.g. hydraulic, electrical or mechanical returns are used.

Bei dem Drosselventil 30' ist der Auslass T' der vorderen Kammer 39' ebenfalls mit dem Tank 42 verbunden. Ein mit P bezeichneter Einlass steht mit einer motorbetriebenen Pumpe 45 der Druckflüssigkeitsquelle 14 in Verbindung. Die Pumpe 45 saugt aus dem Tank 42 an. Das Drosselventil 30' benötigt in seiner Abflussleitung 41' kein Schliessventil.In the throttle valve 30 ', the outlet T' is the front one Chamber 39 'also connected to tank 42. One with P designated inlet is with a motor-driven pump 45 of the pressure fluid source 14 in connection. The pump 45 sucks from the tank 42. The throttle valve 30 'needs in its drain line 41 'no closing valve.

Die Einlässe C und P sind über eine Verbindungsleitung 47 mit einem Rückschlagventil 48 miteinander verbunden. Das Rückschlagventil 48 wirkt so, dass die Druckflüssigkeit von der Hebevorrichtung 2 nicht in Richtung zur Pumpe 45 zurückfliessen kann.The inlets C and P are connected via a connecting line 47 a check valve 48 connected to each other. The Check valve 48 acts so that the hydraulic fluid from the lifting device 2 not in the direction of the pump 45 can flow back.

Bei Stillstand der Kabine 1 ist das Signal S Null und das Drosselventil 30 ist (hydraulisch) geschlossen. Dies wird durch eine etwas geöffnetes Pilotventil 34 erreicht, sodass die Ventilkammern 39 und 40 miteinander verbunden sind und der in der hinteren Kammer 40 auf die grosse rückseitige Fläche des Hauptkolbens 32 wirkende Druck diesen in Richtung der Kammer 39 verschiebt. Das Schliessventil 44 ist bei Stillstand und Aufwärtsfahrt der Kabine 1 geschlossen. Das Drosselventil 30' ist bei Stillstand der Kabine 1 geöffnet.When the cabin 1 is at a standstill, the signal S is zero and that Throttle valve 30 is closed (hydraulically). this will reached by a slightly open pilot valve 34 so that the valve chambers 39 and 40 are connected to one another and the one in the rear chamber 40 on the large rear Surface of the main piston 32 acting pressure in the direction the chamber 39 moves. The closing valve 44 is at Standstill and upward travel of cabin 1 closed. The Throttle valve 30 'is open when the cabin 1 is at a standstill.

Erfolgt ein Ruf zur Abwärtsfahrt, so erzeugt die Regeleinrichtung 20 ein Signal S, das einer geschlossenen Stellung des Drosselventils 30 entspricht, d.h. das Pilotventil 34 wird soweit geöffnet, dass sein Öffnungsquerschnitt grösser ist als der der Abflussleitung 41. Bei der anschliessenden Öffnung des Schliessventils 44 verbleibt der Hauptkolben 32 trotz Druckmittelabfluss durch die Leitung 41 in seiner geschlossenen Stellung. Danach erhält der Elektromagnet 35 ein dem Signal S umgekehrt proportionales Signal S', welches prinzipiell folgendes bewirkt: Die Kraft des Elektromagneten 35 arbeitet entgegen der Kraft der Druckfeder 37. Wenn der Hauptkolben 32 durch Druckunterschiede in den Kammern 39, 40 so weit verschoben wird, dass der Durchfluss durch die Verbindungsleitung 38 gleich gross ist wie der in der Abflussleitung 41, so stoppt der Hauptkolben 32 und verbleibt in dieser Stellung bis das Steuersignal S geändert wird.If there is a call to go down, it generates Control device 20 a signal S that a closed Position of the throttle valve 30 corresponds, i.e. the Pilot valve 34 is opened to the extent that Opening cross-section is larger than that of the drain pipe 41. When the closing valve 44 subsequently opens the main piston 32 remains in spite of pressure medium outflow line 41 in its closed position. After that the electromagnet 35 receives a signal S reversed proportional signal S ', which in principle follows causes: The force of the electromagnet 35 works counter the force of the compression spring 37. When the main piston 32 through Differences in pressure in the chambers 39, 40 shifted so far the flow through the connecting line 38 is the same size as that in the drain line 41, so stops the main piston 32 and remains in this position until that Control signal S is changed.

Bei sich vergrösserndem Signal S, also sich verringerndem Signal S', verringert sich auch der Öffnungsquerschnitt des Pilotventils 34 und der Hauptkolben 32 wird aufgrund des geringeren Drucks in der hinteren Kammer 40 zurückgezogen. Der Durchlass 39.1 ist nun freigegeben und das Druckmittel strömt aus der Hebevorrichtung 2 in den Tank 42, wodurch sich die Kabine 1 senkt sich. Das Signal S wird solange vergrössert, bis die Kabine 1 die gewünschte Maximalgeschwindigkeit erreicht. Auf dieser Höhe verbleibt das Signal S bis das Bremseinsatzsignal erfolgt. Von da ab wird das Signal S von der Regeleinrichtung 20 wegabhängig wieder reduziert, wodurch sich der Hauptkolben 32 in Richtung auf den Durchlass 39 bewegt, bis er ihn völlig verschliesst, um die Kabine zum Stillstand zu bringen. In diesem Moment wird auch das Schliessventil 44 geschlossen. Das Drosselventil 30' verbleibt während der Abwärtsfahrt unverändert offen.When the signal S increases, that is, it decreases Signal S ', the opening cross section of the Pilot valve 34 and the main piston 32 is due to the retracted lower pressure in the rear chamber 40. The passage 39.1 is now released and the pressure medium flows from the lifting device 2 into the tank 42, whereby the cabin 1 lowers. The signal S is as long enlarged until the cabin 1 the desired Maximum speed reached. Remains at this level the signal S until the brake application signal occurs. From there on the signal S becomes dependent on the control device 20 reduced again, causing the main piston 32 in the direction on the passage 39 until it closes it completely, to bring the cabin to a standstill. At this moment the closing valve 44 is also closed. The Throttle valve 30 'remains during the descent unchanged open.

Das Drosselventil 32' zum Heben der Kabine 1 funktioniert prinzipiell gleich wie das Drosselventil 32, allerdings mit dem Unterschied, dass das Signal S' für den Elektromagneten 35' proportional zum Signal S ist. Erfolgt ein Ruf zur Aufwärtsfahrt, so wird die Pumpe 45 eingeschaltet, die Druckflüssigkeit in die Kammer 39' und durch den Ventilspalt 39.1' in den Tank 42 pumpt. Danach erhält das Pilotventil 34' ein Signal S', was zu einer Öffnung der Verbindungsleitung 38' führt. Daraufhin fliesst Druckmittel von der vorderen Kammer 39' zu der hinteren Kammer 40' Bei einem bestimmten Betrag des Signals S wird der Öffnungsquerschnitt des Pilotventils 34' grösser als der Querschnitt der Abflussleitung 41'. Damit steigt der Druck in der hinteren Kammer 40' an und der Hauptkolben 32' bewegt sich nach vorn und verengt den Ventilspalt 39.1'. Sobald der Druck in der Kammer 39' den Druck in der Hebevorrichtung 2 überschreitet, öffnet sich das Rückschlagventil 48 und die Kabine 1 setzt sich in Bewegung. Bei vollständigem geschlossenem Ventilspalt 39.1' fährt der Aufzug mit Maximalgeschwindigkeit aufwärts.The throttle valve 32 'for lifting the cabin 1 works basically the same as the throttle valve 32, but with the difference that the signal S 'for the electromagnet 35 'is proportional to the signal S. If a call is made to Upward travel, the pump 45 is turned on Hydraulic fluid into chamber 39 'and through the valve gap 39.1 'pumps into the tank 42. Thereafter, the pilot valve 34 ' a signal S ', causing an opening of the connecting line 38 'leads. Then pressure medium flows from the front Chamber 39 'to the rear chamber 40' at a particular one The amount of the signal S is the opening cross section of the Pilot valve 34 'larger than the cross section of the Drain line 41 '. This increases the pressure in the rear Chamber 40 'on and main piston 32' moves forward and narrows the valve gap 39.1 '. As soon as the pressure in the Chamber 39 'exceeds the pressure in the lifting device 2, the check valve 48 opens and the cabin 1 sets moving. When the valve gap is completely closed 39.1 'the elevator moves upwards at maximum speed.

Der Beschleunigungsvorgang sowie die Fahrt mit Nominal- bzw. Betriebsgeschwindigkeit kann ungeregelt erfolgen. Bei der Aufwärtsfahrt kann damit die volle ungedrosselte Leistung der Pumpe 45 ausgenutzt werden. Die Maximalgeschwindigkeit der Kabine 1 wird dann von der Pumpenleistung bestimmt. Die Geschwindigkeit der Abwärtsfahrt kann durch eine entsprechend bemessene Blendenöffnung in der Abflussleitung der Hebevorrichtung 2 begrenzt werden.The acceleration process and the drive with nominal or Operating speed can be unregulated. In the Upward travel can thus the full unthrottled performance of the Pump 45 can be used. The maximum speed of the Cabin 1 is then determined by the pump output. The The speed of the descent can be adjusted accordingly dimensioned aperture in the drain line of the Lifting device 2 are limited.

Im dargestellten Ausführungsbeispiel sind zwei Pilotventilanordnungen vorgesehen, wobei je Fahrtrichtung jeweils nur eine aktiv ist. In einer weiteren Ausführungsvariante ist nur eine Pilotventilanordnung für beide Fahrtrichtungen vorgesehen, die abwechselnd beide Drosselventile 30, 30' steuert.In the illustrated embodiment there are two Pilot valve arrangements are provided, depending on the direction of travel only one is active at a time. In another Design variant is only a pilot valve arrangement for both directions of travel provided, alternating both Throttle valves 30, 30 'controls.

In der den Stand der Technik repräsentierenden Fig. 3 ist mit v die Geschwindigkeit und mit t die Zeit bezeichnet. Je nach Last und Temperatur der Druckflüssigkeit ergeben sich während der Verzögerungsphase verschiedene Geschwindigkeits/Zeit-Kennlinien A, B, so dass für eine genaue Einfahrt eine Schleichgeschwindigkeit C benötigt wird.FIG. 3, which represents the prior art, also includes v denotes the speed and t denotes the time. Depending on The load and temperature of the hydraulic fluid result during different speed / time characteristics during the deceleration phase A, B, so that for an accurate entry a Creep speed C is required.

Gemäss Fig. 4 sind wiederum mit v und t Geschwindigkeit und Zeit bezeichnet, wobei die v-Achse ausserdem dem von der Regeleinrichtung 20 erzeugten Steuersignal S zugeordnet ist. Eine Kennlinie D stellt den Ist-Geschwindigkeitsverlauf dar, während eine Kennlinie E den Verlauf des Steuersignals S am Ausgang der Regeleinrichtung 20 während einer Fahrt der Kabine 1 darstellt. Ausserdem bedeuten:

S0, S1, S2
bestimmte Werte des Steuersignales S,
CS
einen Steuerungsbereich,
H
einen Hysteresewert und
CO
eine Steuerabweichung.
According to FIG. 4, speed and time are again designated by v and t, the v-axis also being associated with the control signal S generated by the control device 20. A characteristic curve D represents the actual speed curve, while a characteristic curve E represents the curve of the control signal S at the output of the control device 20 while the cabin 1 is traveling. Also mean:
S0, S1, S2
certain values of the control signal S,
CS
a control area,
H
a hysteresis value and
CO
a tax variance.

Nach Fig. 5 ist die Tabelle 26 , mittels welcher während der Verzögerungsphase den Wegistwerten si zugeordnete Steuersignale für die Regelventilanordnung 13 gebildet werden, mit dem Eingang eines Multiplizierers 25.1 verbunden, der jeweils einen, dem aktuellen Wegistwert si' entsprechenden prozentualen Wert %S des Steuerungsbereiches mit dem errechneten Wert des Steuerungsbereiches CS multipliziert. Zur Verbesserung des Regelungsergebnisses steht der Ausgang des Multiplizierers 25.1 mit dem Eingang eines Addierers 25.2 in Verbindung, der zum Produkt des Multiplizierers 25.1 die Steuerabweichung CO und das Vorsteuersignal S0 addiert und dessen Ausgang den Ausgang des Wegreglers 25 bildet.5 is the table 26, by means of which during the Delay phase control signals assigned to the actual path values si are formed for the control valve assembly 13 with connected to the input of a multiplier 25.1, each a corresponding to the current travel actual value si ' percentage value% S of the control area with the calculated value of the control area CS multiplied. The outcome is to improve the control result of the multiplier 25.1 with the input of an adder 25.2 connected to the product of the multiplier 25.1 Control deviation CO and the pilot signal S0 added and the output of which forms the output of the displacement controller 25.

Die vorstehend beschriebene Regeleinrichtung 20 arbeitet wie folgt. Bei Eintreffen eines Fahrbefehls von der Kommandosteuerung 12 wird der Geschwindigkeitsregler 23 von der Steuereinheit 21 neu gesetzt bzw. aktiviert, und der Eingang des DA-Wandlers 28 mittels der Schalteinrichtung 27 an den Ausgang des Geschwindigkeitsreglers 23 geschaltet. Die Kabine 1 wird nun während der Beschleunigungsphase und Fahrt mit konstanter Geschwindigkeit durch Vergleich der Geschwindigkeitsistwerte vi mit den Geschwindigkeitssollwerten vs gesteuert, wobei das Steuersignal S am Ausgang der Regeleinrichtung 20 gemäss Kennlinie E (Fig. 4) verläuft. Nach dem Eintreffen eines Fahrbefehles setzt sich die Kabine 1 im Startzeitpunkt t1 in Bewegung und gleichzeitig wird ein erster Wert S1 des Steuersignals S gespeichert (Fig. 4). Erreicht die Kabine 1 einen Bremseinsatzpunkt, so sendet der betreffende Schachtschalter 10 Bzw. der Messfühler 11 eine Schachtinformation an die Steuereinheit 21, worauf die Verzögerungsphase eingeleitet wird. Hierbei wird der Wegregler 25 aktiviert und dessen Ausgang mittels der Schalteinrichtung 27 an den Eingang des DA-Wandlers 28 geschaltet. Im gleichen Zeitpunkt wird ein zweiter Wert S2 des Steuersignals S gespeichert und ein Steuerungsbereich CS nach der Beziehung CS = S2 - S1 + H(Fig. 4) errechnet, wobei S1 und S2 der erste und zweite Wert des Steuersignales S sind und H ein Hysteresewert ist, der wie nachstehend näher beschrieben ermittelt wird. Der Wegregler 25 arbeitet nun in der Weise, dass wie bereits anhand der Fig. 5 beschrieben, die den Wegistwerten si entsprechenden prozentualen Werte %S mit dem errechneten Wert des Steuerbereiches CS multipliziert werden und die Steuerabweichung CO und das Vorsteuersignal S0 dazu addiert wird, wobei CO = S2 - S0 - CSist (Fig. 4). Die so ermittelte Summe wird über die Schalteinrichtung 27 und den DA-Wandler 28 dem Verstärker 29 zugeführt (Fig. 1), an dessen Ausgang sie als das jeweils aktuelle Steuersignal S auftritt.The control device 20 described above operates as follows. When a drive command from command control 12 arrives, speed controller 23 is reset or activated by control unit 21, and the input of DA converter 28 is switched to the output of speed controller 23 by switching device 27. The cabin 1 is now controlled during the acceleration phase and travel at constant speed by comparing the actual speed values vi with the speed setpoints vs, the control signal S at the output of the control device 20 according to the characteristic curve E (FIG. 4). After the arrival of a driving command, the cabin 1 starts to move at the start time t1 and at the same time a first value S1 of the control signal S is stored (FIG. 4). If the cabin 1 reaches a braking point of application, the relevant shaft switch 10 or the sensor 11 sends a shaft information to the control unit 21, whereupon the delay phase is initiated. Here, the path controller 25 is activated and its output is switched to the input of the DA converter 28 by means of the switching device 27. At the same time, a second value S2 of the control signal S is stored and a control area CS according to the relationship CS = S2 - S1 + H (FIG. 4), where S1 and S2 are the first and second values of the control signal S and H is a hysteresis value which is determined as described in more detail below. The displacement controller 25 now works in such a way that, as already described with reference to FIG. 5, the percentage values% S corresponding to the displacement actual values si are multiplied by the calculated value of the control range CS and the control deviation CO and the pilot control signal S0 are added, whereby CO = S2 - S0 - CS is (Fig. 4). The sum determined in this way is fed via the switching device 27 and the DA converter 28 to the amplifier 29 (FIG. 1), at the output of which it appears as the respectively current control signal S.

Wie schon in der Beschreibung zu Fig. 2 erwähnt, ist bei der gewählten Regelventilanordnung 13 die Stellung des Hauptkolbens 32 dem Steuersignal S genau proportional. Das von dem Geschwindigkeitsregler 23 erzeugte Steuersignal S ist zwar bis zum Zeitpunkt des Bremseinsatzes last- und temperaturabhängig. Da aber der Steuerungsbereich CS für die Verzögerungsphase zu den aktuellen, während einer Fahrt konstanten Last- und Temperaturbedingungen anhand der Werte S1, S2, H neu festgelegt wird, kann eine genaue Direkteinfahrt erzielt werden, ohne dass eine Niveau-Nachregulierung erforderlich ist.As already mentioned in the description of FIG. 2, the selected control valve assembly 13, the position of Master piston 32 exactly proportional to the control signal S. The control signal S generated by the speed controller 23 until the time of braking application load and temperature dependent. But since the control area CS for the Delay phase to the current one while driving constant load and temperature conditions based on the values S1, S2, H is redefined, can be accurate Direct entry can be achieved without a level adjustment is required.

Der Hysteresewert H wird während einer Lernfahrt wie folgt ermittelt: Das Steuersignal S wird vergrössert, bis die Geschwindigkeit einen vorgegebenen Wert erreicht. Bei Erreichen des vorgegebenen Wertes wird die Stärke des Steuersignales S gemessen und gespeichert. Danach wird das Steuersignal S weiter erhöht und nach einer Weile wieder verkleinert, bis der vorgegebene Wert der Geschwindigkeit wieder erreicht wird. Dann wird die Stärke des Steuersignales S nochmals gemessen und aus den beiden gemessenen Werten eine Differenz gebildet, welche den Hysteresewert H darstellt.The hysteresis value H becomes as follows during a learning trip determined: The control signal S is increased until the Speed reaches a predetermined value. At If the specified value is reached, the strength of the Control signal S measured and stored. After that it will Control signal S further increased and after a while again downsized until the given value of speed is reached again. Then the strength of the control signal S measured again and one of the two measured values Difference formed, which represents the hysteresis value H.

Weitere aufzugsspezifische mit der Direkteinfahrt in Verbindung stehende Parameter wie beispielsweise ein Vorsteuersignal S0 oder ein Grenzsteuersignal SL werden ebenfalls während einer Lernfahrt ermittelt:More elevator specific with direct entry in Related parameters such as a Pilot control signal S0 or a limit control signal SL also determined during a learning trip:

Vorsteuersignal S0:Pilot control signal S0:

Das Vorsteuersignal S0 bewirkt einerseits eine unverzügliche Abfahrt der Aufzugskabine nach dem Startbefehl, andererseits kann mit dem Vorsteuersignal S0 der Anfahrruck wesentlich vermindert werden. Zur Bestimmung des Vorsteuersignales S0 wird der Elektromagnet 35 der Regelventilanordnung solange mit einem schrittweise ansteigenden Steuersignal S beaufschlagt, bis die Aufzugskabine losfährt. Das dabei ermittelte Steuersignal wird um einen konstanten Wert vermindert und als Vorsteuersignal S0 gespeichert. Beim Eintreffen eines Fahrbefehls wird die Regelventilanordnung 13 direkt mit dem Vorsteuersignal S0 beaufschlagt.On the one hand, the pilot control signal S0 causes an immediate Departure of the elevator car after the start command, on the other hand the starting jerk can be significant with the pilot control signal S0 can be reduced. To determine the pilot control signal S0 the electromagnet 35 of the control valve arrangement for as long with a gradually increasing control signal S pressurized until the elevator car starts moving. That included determined control signal is around a constant value reduced and stored as pilot signal S0. At the The control valve arrangement 13 becomes a drive command directly applied to the pilot signal S0.

Grenzsteuersignal SL:Limit control signal SL:

Das Grenzsteuersignal SL ist dasjenige Steuersignal S, bei dem der Hauptkolben 32 der Regelventilanordnung 13 seine Endlage erreicht. Die Regeleinrichtung 20 arbeitet derart, dass der Wert des Steuersignals S den Wert des Grenzsteuersignals SL nie überschreiten kann. Wie obenstehend erläutert wird ein hydraulischer Aufzug üblicherweise geschwindigkeitsgeregelt gefahren. Mit dem während einer Lernfahrt bestimmten Grenzsteuersignal SL ist ein ungeregelter Betrieb während der konstanten Fahrt und ein weggeregelter Betrieb während der anschliessenden Verzögerungsphase machbar.The limit control signal SL is that control signal S, at which the main piston 32 of the control valve assembly 13 its End position reached. The control device 20 works in such a way that the value of the control signal S is the value of the Limit control signal SL can never exceed. As above A hydraulic elevator is usually explained speed controlled. With that during one Learning drive certain limit control signal SL is a uncontrolled operation during constant driving and one position-controlled operation during the subsequent Delay phase feasible.

Bei geschwindigkeitsgeregeltem Betrieb wird ein Teil der von der Druckflüssigkeitsquelle 14 geförderten Druckflüssigkeit mittels einer Überströmleitung in den Tank 42 zurückgeführt. Bei ungeregeltem Betrieb wird die Regelventilanordnung 13 mit dem Grenzsteuersignal SL beaufschlagt, so dass die gesamte Förderleistung der Druckflüssigkeitsquelle 14 in der Hebevorrichtung 2 wirksam ist, wodurch der Wirkungsgrad der Hebevorrichtung 2 wesentlich verbessert wird. Der Übergang von ungeregelter konstanter Fahrt auf weggeregelte Verzögerungfahrt erfolgt ohne Regelverzug, weil der Wert des Grenzsteuersignals SL auch bei vorhergehendem ungeregeltem Betrieb derart ist, dass der Hauptkolben 32 dem Grenzsteuersignal SL unverzüglich folgen kann. Zur Bestimmung des Grenzsteuersignals SL wird die Spule der Regelventilanordnung solange mit einem schrittweise ansteigenden Steuersignal S beaufschlagt, bis die Geschwindigkeit der Aufzugskabine nicht mehr ansteigt. Das dabei ermittelte Steuersignal wird von der Regeleinrichtung 20 als Grenzsteuersignal SL gespeichert.In the case of speed-controlled operation, part of the of the hydraulic fluid source 14 conveyed hydraulic fluid returned to the tank 42 by means of an overflow line. In the case of uncontrolled operation, the control valve arrangement 13 is also used the limit control signal SL, so that the entire Delivery rate of the hydraulic fluid source 14 in the Lifting device 2 is effective, reducing the efficiency of the Lifting device 2 is significantly improved. The transition from uncontrolled constant travel to controlled travel Deceleration runs without default, because the value of the Limit control signal SL even with a previous unregulated Operation is such that the main piston 32 the Limit control signal SL can follow immediately. For determination of the limit control signal SL becomes the coil of Control valve arrangement as long as with a gradual increasing control signal S is applied until the The elevator car speed no longer increases. The the control signal determined in the process is generated by the control device 20 stored as a limit control signal SL.

Die erfindungsgemässe Einrichtung kann vorzugsweise mittels eines Mikrocomputersystems verwirklicht werden.The device according to the invention can preferably by means of of a microcomputer system can be realized.

Claims (10)

  1. Method for the control of an hydraulic lift, wherein a regulating equipment (20) with the aid of a measuring sensor (11), which stands in connection with a cage (1) of the lift, produces control signals (S), which are fed to a regulating valve arrangement (13), which regulates the throughflow of a pressure fluid in such a manner that the cage (1) is accelerated in upward or downward direction, moved at operating speed and retarded on the arrival of a shaft information signalling the brake application point, wherein the measuring sensor (11) receives travel signals and the cage (1) is regulated in dependence on travel in the retardation phase, wherein a first value of the control signal (S) is ascertained and stored in the starting instant of the cage (1) after the input of a travel command, a second value (S2) of the control signal (S) of the regulating equipment (20) is stored on the arrival of the brake application signal, and a control range is formed by the difference of the second and first value of the control signal, characterised in that actual travel values (si) are produced from the travel signals during the retardation phase, each actual travel (si) is associated with a percentage value (%S) of the control range, the percentage values (%S) are multiplied by the value of the control range and the thus ascertained product determines the magnitude of the control signal (S) used during the retardation phase.
  2. Method according to claim 1, characterised thereby, that a signal, which represents the setting of the main piston (32 or 32') and is preferably derived at a spring (37 or 37') coupled to the piston rod (33 or 33'), serves as restoring signal.
  3. Method according to claim 1, characterised thereby, that a control deviation (CO) and a preliminary control signal (SO) are added to the product determining the control signal, wherein CO is found according to the relationship CO = S2 - SO - CS and wherein S2 is the second value of the control signal, SO is the preliminary control signal and CS is the control range and the sum thus ascertained represents the control signal (S) used during the retardation phase.
  4. Method according to one of the preceding claims, characterised thereby, that the hysteresis value (H) is ascertained during a learning travel, during which the control signal (S) is increased until the speed reaches a preset value, the intensity of the control signal (S) is measured and stored on reaching the preset value, the control signal (S) is thereafter increased further and after a while decreased again until the preset value of the speed is reached again, the intensity of the control signal (S) is measured once again and a difference, which represents the hysteresis value (H), is formed from the two measured values.
  5. Method according to claim 3, characterised thereby, that the preliminary control signal (SO) is ascertained during a learning travel, during which the coil of the regulating valve arrangement (13) is acted on by a control signal (S) rising in steps until the cage (1) starts off and wherein the control signal ascertained in that case is reduced by a constant value and stored as preliminary control signal (SO).
  6. Method according to one of the preceding claims, characterised thereby, that a limit control signal (SL) is ascertained during a learning travel, during which the coil of the regulating valve arrangement (13) is acted on by a control signal (S) rising in steps until the speed of the cage (1) no longer rises.
  7. Method according to one of the claims 1 to 5, characterised thereby, that the cage (1) is driven unregulated during the travel preceding the retardation phase, for which the speed is limited upwardly by the design of hydraulic components, such as for example a pump (45).
  8. Equipment for the performance of the method according to the claims 1 to 7, with a regulating equipment (20), which controls a regulating valve arrangement (13), and with a measuring sensor (11) which stands in connection with the cage (1), wherein the regulating equipment (20) comprises at least one tacho-signal converter (22), wherein the measuring sensor (11) is connected to the input of the tacho-signal converter (22), and the regulating equipment (20) furthermore comprises a travel regulator (25), characterised thereby that the travel regulator at its input is connected with an output of the tacho-signal converter (22) delivering actual travel values (si) and at its output stands in connection with the regulating valve arrangement (13) during the retardation phase, that the travel regulator (25) comprises a table (26), in which associations of actual travel values (si) with percentage values (%S) of a control range are stored, that a multiplier (25.1) is provided, the one input of which is connected with the table (26), whilst the other input is acted on by the value of the control range , and the output of which forms the output of the travel regulator (25).
  9. Equipment according to claim 8, characterised thereby, that a regulating valve arrangement (13) comprises a stroke force restoration preferably produced by means of a compression spring (37, 37').
  10. Equipment according to claim 8, characterised by a regulating equipment (20) with a digital travel regulator (25).
EP93114800A 1993-09-15 1993-09-15 Method and system for controlling a hydraulic lift Expired - Lifetime EP0643006B1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
DE59309724T DE59309724D1 (en) 1993-09-15 1993-09-15 Method and device for controlling a hydraulic elevator
AT93114800T ATE182857T1 (en) 1993-09-15 1993-09-15 METHOD AND DEVICE FOR CONTROLLING A HYDRAULIC ELEVATOR
ES93114800T ES2137213T3 (en) 1993-09-15 1993-09-15 PROCEDURE AND DEVICE FOR THE CONTROL OF A HYDRAULIC ELEVATOR.
DK93114800T DK0643006T3 (en) 1993-09-15 1993-09-15 Method and device for controlling a hydraulic elevator
EP93114800A EP0643006B1 (en) 1993-09-15 1993-09-15 Method and system for controlling a hydraulic lift
CA002128946A CA2128946C (en) 1993-09-15 1994-07-27 Process and apparatus for controlling a hydraulic lift
US08/290,284 US5612517A (en) 1993-09-15 1994-08-15 Process and apparatus for controlling a hydraulic lift
JP6205717A JPH0797150A (en) 1993-09-15 1994-08-30 Method and equipment to control hydraulic elevator
TR00856/94A TR27819A (en) 1993-09-15 1994-09-02 Method and equipment for controlling a hydraulic lift.
CN94115298A CN1050579C (en) 1993-09-15 1994-09-13 Method and equipment for the control of an hydraulic lift
AU72944/94A AU675157B2 (en) 1993-09-15 1994-09-13 Method and equipment for the control of an hydraulic lift
BR9403556A BR9403556A (en) 1993-09-15 1994-09-14 Process and device for operating a hydraulic lift
NO943413A NO308106B1 (en) 1993-09-15 1994-09-14 Method and apparatus for controlling a hydraulic lift
RU94033156/28A RU2148548C1 (en) 1993-09-15 1994-09-14 Method and device for control over operation of hydraulic lift
FI944269A FI944269A (en) 1993-09-15 1994-09-15 Method and apparatus for controlling hydraulic lifts
HK98113560A HK1012322A1 (en) 1993-09-15 1998-12-16 Method and system for controlling a hydraulic lift

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP93114800A EP0643006B1 (en) 1993-09-15 1993-09-15 Method and system for controlling a hydraulic lift

Publications (2)

Publication Number Publication Date
EP0643006A1 EP0643006A1 (en) 1995-03-15
EP0643006B1 true EP0643006B1 (en) 1999-08-04

Family

ID=8213263

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93114800A Expired - Lifetime EP0643006B1 (en) 1993-09-15 1993-09-15 Method and system for controlling a hydraulic lift

Country Status (16)

Country Link
US (1) US5612517A (en)
EP (1) EP0643006B1 (en)
JP (1) JPH0797150A (en)
CN (1) CN1050579C (en)
AT (1) ATE182857T1 (en)
AU (1) AU675157B2 (en)
BR (1) BR9403556A (en)
CA (1) CA2128946C (en)
DE (1) DE59309724D1 (en)
DK (1) DK0643006T3 (en)
ES (1) ES2137213T3 (en)
FI (1) FI944269A (en)
HK (1) HK1012322A1 (en)
NO (1) NO308106B1 (en)
RU (1) RU2148548C1 (en)
TR (1) TR27819A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG87910A1 (en) * 1999-10-29 2002-04-16 Toshiba Kk Double-deck elevator car
DE10150463A1 (en) * 2001-10-16 2003-04-17 Hcs Hydraulic Control Systems Electronic device for regulating functions of hydraulic and electric elevators
FI113365B (en) * 2003-02-27 2004-04-15 Kone Corp Procedure for controlling an elevator and apparatus performing the procedure
KR100610288B1 (en) * 2003-12-26 2006-08-09 오티스 엘리베이터 컴파니 Apparatus and method for detecting speed of elevator car
JP2006298645A (en) 2005-04-21 2006-11-02 Inventio Ag Method for monitoring speed of elevator cage and detection system
FI121879B (en) * 2010-04-16 2011-05-31 Kone Corp Lift system
ES2763933T3 (en) * 2016-08-02 2020-06-01 Kone Corp Procedure, elevator control unit, and elevator system for dynamically adjusting a leveling speed limit of an elevator car
CN110501161A (en) * 2019-09-10 2019-11-26 哈尔滨工程大学 A kind of rotor bearing load automatic measurement method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351415A (en) * 1978-10-06 1982-09-28 Shimadzu Corporation Hydraulic elevator installation
US4527662A (en) * 1983-04-01 1985-07-09 Otis Elevator Company Elevator speed control
JPS62126087A (en) * 1985-11-25 1987-06-08 株式会社日立製作所 Hydraulic elevator
US4976338A (en) * 1989-04-27 1990-12-11 Delaware Capital Formation, Inc. Leveling control system for hydraulic elevator
US5040639A (en) * 1990-01-31 1991-08-20 Kawasaki Jukogyo Kabushiki Kaisha Elevator valve apparatus
JP2680459B2 (en) * 1990-03-07 1997-11-19 株式会社東芝 Hydraulic elevator control device
FI88012C (en) * 1990-06-04 1993-03-25 Kone Oy OVER ANCHORING FOER STYRNING AV EN HYDRAULICS VID INKOERNING TILL PLAN
JP2605455B2 (en) * 1990-07-18 1997-04-30 三菱電機株式会社 Hydraulic elevator controller
JPH04106082A (en) * 1990-08-24 1992-04-08 Toshiba Corp Control device for hydraulic elevator
EP0511488A1 (en) * 1991-03-26 1992-11-04 Mathias Bäuerle GmbH Paper folder with adjustable folding rollers

Also Published As

Publication number Publication date
CN1050579C (en) 2000-03-22
FI944269A (en) 1995-03-16
CN1109018A (en) 1995-09-27
AU7294494A (en) 1995-03-30
ES2137213T3 (en) 1999-12-16
TR27819A (en) 1995-08-29
AU675157B2 (en) 1997-01-23
NO943413D0 (en) 1994-09-14
US5612517A (en) 1997-03-18
JPH0797150A (en) 1995-04-11
FI944269A0 (en) 1994-09-15
DE59309724D1 (en) 1999-09-09
HK1012322A1 (en) 1999-07-30
CA2128946A1 (en) 1995-03-16
RU2148548C1 (en) 2000-05-10
DK0643006T3 (en) 2000-02-28
NO308106B1 (en) 2000-07-24
RU94033156A (en) 1996-08-27
NO943413L (en) 1995-03-16
ATE182857T1 (en) 1999-08-15
BR9403556A (en) 1995-05-16
CA2128946C (en) 2003-06-17
EP0643006A1 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
EP0915804B1 (en) Method and device for controlling a hydraulic lift
EP0073268B1 (en) Electro-hydraulic control of an actuator piston
DE2609434C2 (en) Device for controlling a hydraulic motor
DE3218077A1 (en) ELECTROMECHANICAL CONTROL FOR HYDRAULIC ELEVATORS
EP2991924B1 (en) Hydraulic brake system
EP0179249B1 (en) Hydraulic control
EP0643006B1 (en) Method and system for controlling a hydraulic lift
EP1208057B1 (en) Hydraulic elevator, comprising a pressure accumulator which acts as a counterweight and a method for controlling and regulating an elevator of this type
DE3685810T2 (en) HYDRAULIC LIFT WITH DYNAMICALLY PROGRAMMED MOTORIZED VALVE.
DE69120254T2 (en) SYSTEM FOR CHANGING THE SPEED OF A HYDRAULIC EXCAVATOR
EP3336051A1 (en) An industrial truck and lifting device for an industrialtruck
DE2808082A1 (en) PRINT OR FLOW-COMPENSATED TAX CONTROL SYSTEM WITH A CONSTANT TORQUE AND VISCOSITY DETERMINATION
DE69014583T2 (en) Hydraulic elevator control valve.
EP1156977B1 (en) Method and device for controlling a hydraulic elevator
DE60301974T2 (en) Power steering system
DE2509228C3 (en) Electro-hydraulic drive for hoists
WO2004111466A1 (en) Hydraulic circuit
DE2018512C3 (en) Control valve for hydraulically operated elevators
DE69606860T2 (en) ELEVATOR CONTROL SYSTEM
DE2461086A1 (en) SYSTEM FOR CONTROLLING THE LEVEL OF THE MELT METAL LEVEL IN A CONTINUOUSLY CASTING GLASS
DE4219787C1 (en) Vehicle with a battery-electric drive, especially a rear loader
DE2247836C3 (en) Pressure regulating device for friction clutches and / or brakes in automatic motor vehicle transmissions
EP2955059B1 (en) Hydraulic tilting system comprising a pump that supports sinking
DE3123257A1 (en) Hydraulic control device
DE19601724A1 (en) Hydraulic hoist

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

17P Request for examination filed

Effective date: 19950818

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980422

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

REF Corresponds to:

Ref document number: 182857

Country of ref document: AT

Date of ref document: 19990815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59309724

Country of ref document: DE

Date of ref document: 19990909

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990914

ET Fr: translation filed
ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2137213

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19990928

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: INVENTIO AG TRANSFER- HYDROWARE ELEVATION TECHNOLO

NLS Nl: assignments of ep-patents

Owner name: HYDROWARE ELEVATION TECHNOLOGY AB

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: INVENTIO AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Free format text: HYDROWARE ELEVATION TECHNOLOGY AB SE

Effective date: 20020911

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110926

Year of fee payment: 19

Ref country code: CH

Payment date: 20110927

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120919

Year of fee payment: 20

Ref country code: GB

Payment date: 20120920

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120921

Year of fee payment: 20

Ref country code: ES

Payment date: 20120926

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121010

Year of fee payment: 20

Ref country code: BE

Payment date: 20120920

Year of fee payment: 20

Ref country code: PT

Payment date: 20120315

Year of fee payment: 20

Ref country code: NL

Payment date: 20120920

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120926

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120912

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59309724

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59309724

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20130915

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20130915

BE20 Be: patent expired

Owner name: *HYDROWARE ELEVATION TECHNOLOGY AB

Effective date: 20130915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130914

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130924

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130917

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 182857

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130914

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130916