EP0641191A4 - Compositions d'hygiene buccale contenant des materiaux a base de silice presentant une compatibilite amelioree. - Google Patents

Compositions d'hygiene buccale contenant des materiaux a base de silice presentant une compatibilite amelioree.

Info

Publication number
EP0641191A4
EP0641191A4 EP93911349A EP93911349A EP0641191A4 EP 0641191 A4 EP0641191 A4 EP 0641191A4 EP 93911349 A EP93911349 A EP 93911349A EP 93911349 A EP93911349 A EP 93911349A EP 0641191 A4 EP0641191 A4 EP 0641191A4
Authority
EP
European Patent Office
Prior art keywords
composition
silica
therapeutic agent
fluoride
compatibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93911349A
Other languages
German (de)
English (en)
Other versions
EP0641191A1 (fr
Inventor
James Neil Pryor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WR Grace and Co
Original Assignee
WR Grace and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WR Grace and Co filed Critical WR Grace and Co
Publication of EP0641191A1 publication Critical patent/EP0641191A1/fr
Publication of EP0641191A4 publication Critical patent/EP0641191A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses

Definitions

  • compositions such as dentifrices, lozenges, chewing gums, etc.
  • constituents such as therapeutic agents, carrier fluids, humectants, abrasives, thickeners, flavorings, fragrances, etc.
  • these constituents are typically selected based on various criteria such as cost, efficacy and compatibility.
  • Compatibility refers to the interaction between the various constituents when they are put together into a single composition. Compatibility is concerned with how any interaction between the various constituents may affect the efficacy of the individual constituents. While there may be situations where the efficacy of constituents is enhanced by combination in' a single composition, the goal often is to find combinations of constituents which have a minimum adverse interaction. Since the performance of the therapeutic agent(s) is generally most important for the overall performance of the dentifrice composition, the other constituents are often chosen based on their compatibility with the therapeutic agent(s) to be used.
  • Fluoride-based agents are most widely known and used for their proven anti-caries effects, however there are numerous other therapeutic agents which have been developed to address other oral care objectives such as fighting calculus, plaque, bacteria, etc.
  • U.S. Patent 5,015,467 (Smitherman) gives a good review and discussion of therapeutic agents for oral care.
  • non- fluoride agents include pyridinium salts such as cetyl pyridinium chloride (CPC) , guanidines such as chlorhexadine, triclosan, sanguinaria, zinc salts, copper salts, etc.
  • Silica particles have been widely used in oral care compositions as abrasives and/or thickeners, silica particles are generally porous, amorphous silicas having fine particle size. Typical silica particles have surface areas of about 50-800 m 2 /g. Silica particles used as abrasives generally have pore volumes of about 0.3-1.0 cc/g whereas silica particles used as thickeners may have pore higher pore volumes up to or greater than 1.5 cc/g. Conventional silicas generally have surface hydroxyl groups which are bonded to silicon atoms on the silica surface as SiOH (silanol) groups. Silicas used in dentifrice compositions generally have about 4-8 SiOH groups per nanometer squared.
  • Silica particles are known to exhibit good compatibility fluoride-based therapeutic agents. Although the silica particles have relatively large surface area, only a small amount of the fluoride species is adsorbed on the silica. Thus, most of the fluoride species in the composition remains available in the oral care composition to perform its therapeutic function in the oral cavity.
  • Non-fluoride therapeutic agents often contain nonionic or cationic species which tend to be adsorbed onto the silica surface. Thus, less of the therapeutic agent is available to perform its therapeutic function in the oral cavity. The problem is especially acute for high surface area/pore volume silicas which are used as thickeners.
  • the present invention solves the compatibility problem between silica and therapeutic agents, especially non-fluoride therapeutic agents.
  • the invention involves the modification of conventional silica and use of the modified silica in oral care compositions containing therapeutic agents.
  • the invention encompasses oral care compositions containing silica particles and at least one therapeutic agent wherein the improvement comprises using silica particles which have been at least partially
  • the thermal treatment embodiment involves heating the silica particles to cause dehydroxylation.
  • the heating is preferably performed at about 350°-850°C for a time sufficient to produce some increase in compatibility.
  • the invention encompasses oral care compositions containing silica particles and at least one therapeutic agent wherein the improvement comprises using silica particles which have been at least partially dehydroxylated by reacting the silica with a dehydroxylating agent selected from the group consisting of alcohols, silanes, and organosilanes.
  • the silica may be subjected to a combination of the thermal and chemical dehydroxylation treatments. While the two treatments may be carried out in any order, preferably the thermal treatment is performed prior to the chemical treatment.
  • modified silicas of the invention provide significantly improved compatibility with therapeutic agents, especially non-fluoride therapeutic agents.
  • the improved compatibility of the invention does not require highly acidic pH.
  • the invention involves the modification of conventional silicas used in oral care compositions by thermal and/or chemical treatment to improve the compatibility between the silica and therapeutic agents.
  • the thermal treatment may be performed by simply heating the silica to cause dehydroxylation.
  • the heating is performed at about 300°-850°C for about 1 - 3 hours.
  • the heating may be performed in air or any other suitable atmosphere.
  • the heating may be performed at reduced pressure to facilitate removal of gases evolving from the dehydroxylation (i.e. H0) .
  • the extent of thermal dehydroxylation can be measured by determining the loss on ignition (LOI) for the silica.
  • the LOI is determined by first predrying the sample at 130°C for about four hours. The predried sample is then calcined for two hours at about 960°C. The LOI is the % weight loss of the calcined sample compared to the weight of the predried sample.
  • the thermal dehydroxylation is performed to achieve silica having a loss on ignition of about 2% or less, more preferably about 1% or less.
  • Thermal dehydroxylation may be accompanied by reduction in porosity and surface area.
  • the thermal treatment is not performed to such an extent as to result in a loss of all porosity.
  • the thermally treated particles have a pore volume of at least about 0.3-1.5 cc/g.
  • the extent of thermal treatment which the silica particles can withstand may be partly a function of the porosity in the untreated particles.
  • Chemical treatment to dehydroxylate the silica may be used instead of or in addition to thermal dehy ⁇ droxylation.
  • Chemical dehydroxylation involves reacting surface hydroxyl groups on the silica with a dehydroxy ⁇ lation agent selected from the group consisting of alcohols, silanes, and organosilanes.
  • Preferred alcohols are methanol, ethanol, propanol, butanol and glycerol. Glycerol is most preferred since it is non-toxic and is widely used in commercial dentifrice formulae.
  • Chemical dehydroxylation may be performed by combining the silica with an excess amount of the dehydroxylation agent, preferably in the absence of water. The mixture is then reacted whereby some or all of the surface hydroxyl groups on the silica are replaced with a radical from the dehydroxylation agent. In the case of alcohols, an ester of the alcohol would be formed at the site where a hydroxyl group was located. The mixture may be heated to promote the reaction. Once the dehydroxylation reaction has occurred, the dehydroxylated silica may be recovered by filtration. The silica is then preferably dried or otherwise treated to remove unreacted dehydroxylation agent. If glycerol is used as the dehydroxylation agent, excess glycerol need not be removed from the silica surface assuming glycerol is to be used in the oral care composition.
  • the chemical dehydroxylation is preferably carried out enough to achieve at least some improvement in silica-therapeutic agent compatibility, more preferably at least some improvement in silica-non-fluoride thera ⁇ Commissionic agent compatibility.
  • the dehydroxy ⁇ lation reaction may be carried out to virtual completion.
  • chemical dehydroxylation generally does not result in loss of porosity. It may be advantageous to use a combination of the dehydroxylation treatments. For example, if substantially complete dehydroxylation is desired with some decrease in porosity, then a combination of thermal dehydroxylation followed by chemical dehydroxylation would be appropriate. Combinations of thermal treatments or combinations of chemical treatments can also be employed if desired. In general, chemical treatment is believed to provide better dehydroxylation of isolated surface hydroxyl groups whereas thermal dehydroxylation may provide more permanent dehydroxylation of adjacent hydroxyl pairs.
  • the measurement of extent of chemical dehydroxy- lation by measurement of LOI values may not be accurate because the radicals left at the former hydroxyl sites may also be volatilized during heating to determine LOI.
  • the compatibility of the silica with a particular therapeutic agent can be measured by comparing the availability or concentration of the therapeutic agent in a mixture at a reference pH before and after contact with the silica.
  • the compatibility of the silica may be expressed as the percentage ratio of concentration of the agent in the mixture after contact with the silica to the concentration of the agent in the mixture before silica addition.
  • the pH of the silica-containing mixture is preferably adjusted to the reference pH on addition of the silica.
  • the concentration after contact with silica is preferably measured after separation of the silica from the mixture.
  • the method of determining the concentration of the therapeutic agent may be any conventional method suitable for the particular agent (e.g. ultraviolet light absorption) .
  • the improvement in compatibility would simply in- volve comparison of the compatibility values for the untreated and treated silicas.
  • the compatibility test may be applied to all dehydroxylated silicas regardless of method of dehydroxylation. While any degree of im ⁇ provement in compatibility would be encompassed by the invention, preferably the thermal and/or chemical treat ⁇ ment of the invention results in at least about 5% improvement in compatibility in comparison with the untreated silica.
  • the silica treated in accordance with the invention may be any silica conventionally used in dentifrices or other oral care compositions.
  • the silica is an amorphous silica gel (e.g. a xerogel) or an amorphous precipitated silica.
  • Amorphous silica gels and precipitated silicas are typically used in dentifrices or other oral care compositions as abrasives and/or thickeners.
  • the treatments of the invention provide improved compatibility of the silica with therapeutic agents in general at pH values commonly used in dentifrice and other oral care compositions (e.g. about 6-7) .
  • the treatments also result in improved compatibility at more acidic or basic pH levels.
  • the invention is further illustrated by the following examples. The invention is not limited to the details of the examples.
  • Example 1 A 200g sample of silica xerogel (620 m 2 /g surface area, 0.35 cc/g pore volume, 8 ⁇ median particle size) was thermally treated for two hours in a muffle furnace at 760°C.
  • Loss on ignition (LOI) defined as the % weight loss during a two hour, 960°C calcination of a predried sample (130°C) , was used to estimate the extent of dehydroxylation of the silica gel.
  • the LOI value dropped from approximately 7% for the untreated silica to less than 2% for the 760°C treated sample indicating substantial dehydroxylation.
  • the thermally treated sample was then compared to the silica xerogel starting material for CPC compatibility (availability) using the following procedure: o
  • a stock solution of 1.2 wt.% CPC in deionized water was prepared.
  • Two 1.75 gram samples of the thermally treated and of untreated silica gel were slurried (i.e. four slurries total) into 42 ml aliquots of the stock solution.
  • the pH of one thermally treated silica gel slurry and one untreated silica gel slurry was adjusted to 6 pH using a small amount of 10% NaOH solution.
  • the pH of the remaining two slurries was adjusted to 7 pH using the same NaOH solution.
  • Example 2 A thermally treated xerogel similar to that described in Example 1 except calcined at 800°C was evaluated for chlorhexidine (ChlX) availability.
  • the testing procedure was analogous to that used for determination of CPC availability except that the stock solution consisted of a 1.0 wt.% chlorhexidine digluconate in deionized water, and the UV absorbance measurement used for to determine % ChlX remaining was performed using 254 nm wavelength radiation.
  • Example 3 A glycerol-reacted silica xerogel was prepared by slurrying 100 grams of the same xerogel starting material as Example 1 into 350 mis of glycerol and boiling the slurry under vacuum for 2 hours during which time the temperature of the slurry rose to approximately 200°C. 600 mis of anhydrous roethanol were then added to the viscous slurry, and the reacted silica was removed by centrifugation and decantation. The reacted silica was then reslurried in another 600 is of anhydrous methanol, to further wash the product free of unreacted glycerol, and then filtered.
  • the reacted silica product was then dried in a vacuum oven for 16 hours at 165°C in order to remove any remaining methanol solvent.
  • An LOI value of 24.5% confirmed the substantial reaction of glycerol with the silica xerogel surface.
  • Example 4 A sample of the glycerol-reacted silica xerogel prepared according to Example 3 was also evaluated for ChlX availability using the method given in Example 2. Results given in the table below again show a superior availability with the glycerol-reacted silica gel compared to the untreated silica gel from which it was prepared.
  • Example 2 A sample of the same silica xerogel starting material of Example 1 was treated by thermal dehydroxylation followed by glycerol reaction. The thermal treatment was identical to that described in Example 1 except that the temperature of the treatment was 705°C. It was followed by a glycerol reaction step identical to that described in Example 3. The resulting sample was tested for ChlX availability using the method described in Example 2.
EP93911349A 1992-05-19 1993-05-17 Compositions d'hygiene buccale contenant des materiaux a base de silice presentant une compatibilite amelioree. Withdrawn EP0641191A4 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US88541292A 1992-05-19 1992-05-19
US885412 1992-05-19
PCT/US1993/004716 WO1993023007A1 (fr) 1992-05-19 1993-05-17 Compositions d'hygiene buccale contenant des materiaux a base de silice presentant une compatibilite amelioree

Publications (2)

Publication Number Publication Date
EP0641191A1 EP0641191A1 (fr) 1995-03-08
EP0641191A4 true EP0641191A4 (fr) 1996-08-21

Family

ID=25386847

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93911349A Withdrawn EP0641191A4 (fr) 1992-05-19 1993-05-17 Compositions d'hygiene buccale contenant des materiaux a base de silice presentant une compatibilite amelioree.

Country Status (4)

Country Link
EP (1) EP0641191A4 (fr)
JP (1) JPH08502034A (fr)
AU (1) AU4251693A (fr)
WO (1) WO1993023007A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751635B1 (fr) * 1996-07-23 1998-10-02 Rhone Poulenc Chimie Silice compatible avec les aromes, son procede de preparation et compositions dentifrices la contenant
US6946119B2 (en) * 2003-02-14 2005-09-20 J.M. Huber Corporation Precipitated silica product with low surface area, dentifrices containing same, and processes
US8551457B2 (en) 2008-11-25 2013-10-08 The Procter & Gamble Company Oral care compositions comprising spherical fused silica
JP5717644B2 (ja) 2008-11-25 2015-05-13 ザ プロクター アンド ギャンブルカンパニー 改善された審美性及び溶融シリカを有する、口腔ケア組成物
TW201103566A (en) * 2009-06-16 2011-02-01 Grace W R & Co Cation compatible metal oxides and oral care compositions containing the metal oxides
US11052029B2 (en) 2009-06-16 2021-07-06 W. R. Grace & Co.-Conn. Cation compatible metal oxides and oral care compositions containing the metal oxides
US20110293541A1 (en) 2010-05-25 2011-12-01 John Christian Haught Oral Care Compositions And Methods Of Making Oral Care Compositions Comprising Silica From Plant Materials
AU2013337356B2 (en) 2012-11-05 2016-12-08 The Procter & Gamble Company Heat treated precipitated silica
US9186307B2 (en) * 2012-11-19 2015-11-17 J.M. Huber Corporation Treated silicas and metal silicates for improved cleaning in dentifrice
US20140271900A1 (en) * 2013-03-15 2014-09-18 J.M. Huber Corporation High Cleaning Silica with Low Abrasion and Method for Making Same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1442395A (en) * 1973-04-11 1976-07-14 Unilever Ltd Dentifrice
FR2622439B1 (fr) * 1987-11-04 1991-07-12 Rhone Poulenc Chimie Silice pour compositions dentifrices compatible notamment avec la chlorhexidine
FR2622565B1 (fr) * 1987-11-04 1990-11-09 Rhone Poulenc Chimie Silice pour compositions dentifrices compatible notamment avec le zinc

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
No further relevant documents disclosed *
See also references of WO9323007A1 *

Also Published As

Publication number Publication date
AU4251693A (en) 1993-12-13
EP0641191A1 (fr) 1995-03-08
WO1993023007A1 (fr) 1993-11-25
JPH08502034A (ja) 1996-03-05

Similar Documents

Publication Publication Date Title
RU2678664C1 (ru) Частицы диоксида кремния типа "ядро-оболочка" и их использование для уменьшения неприятного запаха
KR950003418B1 (ko) 특히 아연과 상용성이 있는 치약 조성물용 실리카
US3862307A (en) Dentifrices containing a cationic therapeutic agent and improved silica abrasive
RU2394763C2 (ru) Высокоэффективно чистящие кремнеземные материалы, получаемые с помощью регулирования морфологии продукта, и содержащее их средство ухода за зубами
US4187288A (en) Modified abrasive system for dentifrices
JP3607299B2 (ja) フレーバーと相容性のシリカ、その製造方法及びそれを含有する歯磨き組成物
CA2192315A1 (fr) Soulagement de l'hypersensibilite dentinaire au moyen de particules submicroniques
WO1993023007A1 (fr) Compositions d'hygiene buccale contenant des materiaux a base de silice presentant une compatibilite amelioree
WO1999043291A1 (fr) Abrasif dentaire ameliore
JPS6256126B2 (fr)
WO1999051196A1 (fr) Compositions de silice abrasive et preparations dentifrices elaborees a partir des compositions de silice abrasive
KR20070086588A (ko) 생성물 형태 조절을 통해 제조된 고 세정 실리카 물질 및이러한 물질을 함유하는 치약
US5744114A (en) Method of preparing dentifrice-compatible silica particulates
US3954961A (en) Dental polishing creams
IE901605L (en) Silica for dentifrice compositions
GB2142536A (en) Dentifrices containing maltitol as humectant
BG62998B1 (bg) Утаечни силициеви киселини, съдържащи активно вещество
CA1244354A (fr) Compose oral
JPS6234721B2 (fr)
JPH02129118A (ja) 歯磨組成物
US6896876B1 (en) High cleaning silica gel dental abrasive, dentifrices prepared therefrom, and a method for preparing the dental abrasive
AU670961B2 (en) Process for improving the compatibility of precipitated silicas with flavours
GB2082454A (en) Dentifrice composition containing zeolite
US4346071A (en) Rehydrated silica gel dentifrice abrasive
EP2442872B1 (fr) Oxydes métalliques compatibles avec les cations, et compositions pour les soins de la bouche contenant les oxydes métalliques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 19960708

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19981201