EP0639451B1 - Ferroelectric printing process - Google Patents

Ferroelectric printing process Download PDF

Info

Publication number
EP0639451B1
EP0639451B1 EP94112675A EP94112675A EP0639451B1 EP 0639451 B1 EP0639451 B1 EP 0639451B1 EP 94112675 A EP94112675 A EP 94112675A EP 94112675 A EP94112675 A EP 94112675A EP 0639451 B1 EP0639451 B1 EP 0639451B1
Authority
EP
European Patent Office
Prior art keywords
layer
temperature
process according
toner
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94112675A
Other languages
German (de)
French (fr)
Other versions
EP0639451A1 (en
Inventor
Alfred Dr. Hirt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manroland AG
Original Assignee
MAN Roland Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Roland Druckmaschinen AG filed Critical MAN Roland Druckmaschinen AG
Publication of EP0639451A1 publication Critical patent/EP0639451A1/en
Application granted granted Critical
Publication of EP0639451B1 publication Critical patent/EP0639451B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1058Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by providing a magnetic pattern, a ferroelectric pattern or a semiconductive pattern, e.g. by electrophotography

Definitions

  • the invention relates to methods for the reproduction of an image by means of a printing form which has a layer of a ferroelectric material on the surface.
  • DE 38 35 091 C2 already discloses a method for reproducing a ferroelectric image template, in which electrically charged toner particles are used.
  • the ferroelectric material can be polarized differently in very narrow areas, so that prints with very high resolution are possible with single-color toners and that when using two colors with differently charged particles, i. that is, one color contains positive and the other color contains negatively charged toner particles, two colors can be applied at the same time with one print, so that low numbers of passes are necessary for colored prints.
  • the printing form is suitable for the use of dry toners as well as toners dissolved in fountain solutions as carriers. At which temperatures the printing form is polarized is not disclosed.
  • new charge carriers are continuously applied to the printing form to increase the contrast, so that more can be stored at the polarized points, which toner is released to the print carrier when the toner image is released.
  • Ferroelectric material is characterized in that its micro building blocks, i. H. its unit cells have a stable electrical dipole moment that can be aligned in an electrical field.
  • Ferroelectrics are, for example, inorganic ceramic materials with an asymmetrical perovskite structure, such as. B. barium titanate, lead zirconate and mixed structures thereof or organic substances, such as. B. polyvinylidene fluoride with C-F chains as elementary dipoles.
  • the inorganic ferroelectrics have structures in which the unit cells are so asymmetrically arranged that two energetically equivalent and structurally identical modifications, i. H. enantiomorphic modifications exist which can only be transferred from one state to the other by the supply of energy, e.g. B. by the action of external forces, for example an electrical field, or by thermal energy.
  • ferroelectric If the ferroelectric is polarized below its Curie temperature, the electrical field generated by the alignment of its dipoles cannot continue on the material surface; Since there are no self-contained electric field lines, but always end at charges, a layer of surface charges forms on both surfaces of the ferroelectric layer, which stabilize the field inside the ferroelectric.
  • a polarized ferroelectric plate is therefore, even after removal of electrodes that may be used for polarization, similar to an electrical capacitor, on the electrodes of which there are surface charges that are bound in a fixed manner by the internal electrical field.
  • FIG. 1 shows a hysteresis curve of a ferroelectric.
  • the surface charge density of the electrical charge flowing onto the surface of the ferroelectric is as Function of the electric field E present in the interior of the ferroelectric is shown.
  • the polarity of a ferroelectric the randomly distributed in a macroscopically neutral state, in the positively polarized state that is called.
  • Virgin curve 1 from a point 0 through to a point A 1.
  • the material remains in a stable, polarized state P 1 .
  • the curve is traversed from the point P 1 via a point A 2 to a point P 2 . This process is reversible and can be repeated any number of times.
  • the pixels of the ferroelectric are, for example, in a state P 1 , while the background areas, ie the non-image areas, are in the state P 2 .
  • Reverse polarization is also possible. It is also possible that only the image areas are polarized positively or negatively and the non-image areas are neutral.
  • the printing form 30 receives toner from a toner application roller 4, which the toner application roller 4 in turn receives from a toner reservoir 5.
  • the toner reservoir 5 contains a toner supply 50, which is kept at a certain, fixed level via a toner feed 51.
  • Via a toner discharge 52 toner not taken up by the toner application roller 4 is fed to a filter arrangement, not shown here, and returns to the toner reservoir 5 via the toner feed 51.
  • Toner particles, which are imaged on the form cylinder 3 on the surface of the printing form 30, are transferred via a transfer cylinder 6 to the printing material web 2, the transfer cylinder 6 pressing the printing material web 2 against a printing cylinder 7.
  • charge sources 11, 12 are arranged next to the forme cylinder 3 and charge the surface of the printing form 3 either positively or negatively.
  • charge sources such. B. corona discharges, contacting dielectric or weakly electrically conductive layers or pixel-separated individual electrodes possible.
  • the charge sources 11, 12 are either the same with which the printing form 30 was previously polarized imagewise, or, as shown in FIG. 4, other charge sources 11, 12.
  • the printing form 30 is charged with negative charge carriers, then the ferroelectric traverses a polarization curve 15 from the point P 2 'to the point A 2. Once the point A 2 has been reached again, this can be done Ferroelectric can be charged positively again until point B 2 is reached. The same applies to a lesser extent for the point B1.
  • the contrast increase is effected in connection with the image generation.
  • the printing form 30 is negatively polarized on its entire surface by a first electrode and additionally negatively charged with negative charge carriers (electrons) by an amount ⁇ P and brought to a potential E 3 (point B 3 ).
  • the number of free charges on the surface of the printing form can be increased by heat.
  • the printing form is imaged at a temperature T 1 , for example at 20 ° C.
  • the entire printing device is preferably thermostatted at this temperature. For this purpose, it is arranged, for example, in a closed room.
  • the printing form 30 (FIG. 3) is brought from its outer surface to a higher temperature T 2 , for example 25 ° C., by a heater 9 and is kept at this temperature. It should be noted that this temperature T 2 is below the Curie temperature of the respective ferroelectric.
  • the increased temperature increases the number of surface charges on the surface of printing form 30.
  • the charge required to compensate for the internal electric field according to FIG. 1 is temperature-dependent, ie less compensation charge is required at higher temperatures. If polarization was carried out at low temperature, the compensation charge that is not required is released when the temperature rises. So there are free positive charges in the positively polarized area, free negative charges in the negatively polarized area.
  • the contrast ie the potential difference between the positively and negatively polarized areas
  • the particles are positively charged, for example, more toner particles are deposited on negatively charged image areas and background tones are avoided.
  • the increased contrast voltage between the image and background areas thus produces a better optical contrast between the image and background areas, ie a denser toner layer in the print areas with a toner-free background.
  • This effect can be used for a large number of printing processes, for example 1000 prints. However, it can not be completely prevented that parts of the Surface charge on the printing form 30 are entrained by toner particles on the transfer cylinder 6 and from this onto the printing material web 2.
  • a cooling device 10 is preferably arranged on the side of the forme cylinder 3. This cools the printing form 30 either before or after the toner is released onto the transfer cylinder 6.
  • the free surface charge is bound again as a compensation charge due to the reversible pyroelectric effect.
  • the required compensation charge is transferred from the surrounding medium to the surface and bound in place.
  • the compensation charge required for this pyroelectric effect is transferred from the surrounding medium, for example the air, to the surface and bound there in a stationary manner.
  • the printing form 30 assumes a temperature T 3 which is below the temperature T 2 .
  • the printing form 30 is heated up again by the heater 9 to the temperature T 2 , and there is again an excess charge on the surface, which causes the above-described effect of contrast enhancement.
  • the cooling process can either take place continuously or at certain time intervals after a predetermined number of prints if the number of free surface charges has decreased accordingly. With continuous cooling it is also achieved that the amount of heat supplied by the heater can be removed again.
  • any other supply device for applying the toner 50 e.g. a tape, find use.
  • the cooling of the printing form 30 caused by the evaporation of the heat of evaporation may also be sufficient.
  • the heater 9 it is also possible to heat the surface of the printing form 30 by immersing it in a toner bath of a liquid toner, this toner liquid being heated to a temperature T 2 .
  • the number of available charges on the surface of the printing form 30 can also be increased by exerting a mechanical force thereon. This takes place, for example, in that the toner application roller 4 is pressed against the forme cylinder 3 with a specific, predetermined pressure p (FIG. 3).
  • the free surface charge is created here by the piezoelectric effect effective in ferroelectric materials.
  • the devices according to FIGS. 2 to 3 can advantageously be used if toner and removal electrodes 13, 14 as shown in FIG. 4 are also present.
  • These electrodes 13, 14 are located at a certain distance from the surface of the printing form 30 and influence the toner acceptance on the surface of the printing form 30.
  • a negatively charged electrode 13 repels negatively charged toner particles from the electrode 13 and makes them stronger and faster accepted positively charged image areas on the printing form 30.
  • the electrode 14 which, if it is positively charged, the better prevents the accumulation of the negatively charged toner particles in non-image areas which are also negatively charged. This also increases the contrast between image and non-image areas and avoids background toner.
  • methods are created by means of which the number of charges available on the surface of a printing form 30 with a ferroelectric layer can be increased, ie the potential difference between image and non-image areas is increased.
  • the temperature on the surface of the Printing form 30 is increased compared to the temperature at which it was polarized, or a mechanical load is exerted on the form cylinder 3 for toner transfer, or charge carriers are applied over the entire area to the printing form 30, as a result of which a potential difference between positively and negatively polarized regions arises, leads to an increase in contrast between image and non-image areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Description

Die Erfindung bezieht sich auf Verfahren zum Vervielfältigen einer Bildvorlage mittels einer Druckform, die an der Oberfläche eine Schicht aus einem ferroelektrischen Material aufweist.The invention relates to methods for the reproduction of an image by means of a printing form which has a layer of a ferroelectric material on the surface.

Aus der DE 38 35 091 C2 ist bereits ein Verfahren zum Vervielfältigen einer ferroelektrischen Bildvorlage bekannt, bei dem elektrisch geladene Tonerpartikel verwendet werden. Das ferroelektrische Material läßt sich in sehr engen Bereichen unterschiedlich polarisieren, so daß bei einfarbigen Tonern Drucke mit sehr hoher Auflösung möglich sind und daß bei Anwendung von zwei Farben mit unterschiedlich geladenen Partikeln, d. h., daß die eine Farbe positiv und die andere Farbe negativ geladene Tonerpartikel enthält, mit einem Druck gleichzeitig zwei Farben aufgebracht werden können, so daß bei farbigen Drucken geringe Durchlaufzahlen notwendig sind. Die Druckform eignet sich sowohl zur Anwendung von Trockentonern als auch von in Feuchtmitteln als Trägern gelösten Tonern. Es wird nicht mitgeteilt, bei welchen Temperaturen die Druckform polarisiert wird.DE 38 35 091 C2 already discloses a method for reproducing a ferroelectric image template, in which electrically charged toner particles are used. The ferroelectric material can be polarized differently in very narrow areas, so that prints with very high resolution are possible with single-color toners and that when using two colors with differently charged particles, i. that is, one color contains positive and the other color contains negatively charged toner particles, two colors can be applied at the same time with one print, so that low numbers of passes are necessary for colored prints. The printing form is suitable for the use of dry toners as well as toners dissolved in fountain solutions as carriers. At which temperatures the printing form is polarized is not disclosed.

Andererseits ist es bereits aus der US 3 899 969 bekannt, pyroelektrische Materialien, also insbesondere Ferroelektrika, bei sehr hohen Temperaturen, beispielsweise bei 150°C, unter Anwendung eines elektrischen Feldes zu polarisieren. Dazu muß das zu polarisierende Material beispielsweise in ein Bad von heißem Öl eingebracht werden.On the other hand, it is already known from US Pat. No. 3,899,969 to polarize pyroelectric materials, in particular ferroelectrics, at very high temperatures, for example at 150 ° C., using an electric field. For this purpose, the material to be polarized must be placed in a bath of hot oil, for example.

Aus der DT 25 30 290 A1 geht zwar das einmalige Auslegen eines äußeren elektrischen Feldes an ein Ferroelektrikum nach einem Polarisationsvorgang zur Erzeugung eines latenten Bildes auf der Oberfläche des Ferroelektrikums hervor, aber durch das Feld wird nur wie in einem Kondensator eine zur Feldstärke des angelegten Feldes proportionale und daher begrenzte Menge an Ladungen auf die Oberfläche des Ferroelektrikums aufgebracht. Da die Ladungen mit der Abgabe des Tonerbildes an einen Bedruckstoff ebenfalls abgegeben werden, kann von dem latenten Bild auf dem Ferroelektrikum nur eine begrenzte Anzahl von Kopien erzeugt werden, bis alle durch das äußere Feld erzeugten freien Ladungen verbraucht sind. Entsprechendes gilt für die Anwendung des pyroelektrischen oder des piezoelektrischen Effekts durch Erwärmen des Ferroelektrikums bzw. Aufbringen von Druck auf das Ferroelektrikum. Daher ist das aus der DT 25 30 290 A1 bekannte Verfahren kein kontinuierliches Druckverfahren, sondern ein Kopierverfahren zur Herstellung einer beschränkten Anzahl von Kopien.From DT 25 30 290 A1, the one-time design of an external electric field on a ferroelectric material after a polarization process to produce a latent image on the Surface of the ferroelectric, but only as in a capacitor, a proportional to the field strength of the applied field and therefore limited amount of charges is applied to the surface of the ferroelectric through the field. Since the charges are also released when the toner image is delivered to a printing material, only a limited number of copies can be made of the latent image on the ferroelectric until all the free charges generated by the external field have been used up. The same applies to the application of the pyroelectric or the piezoelectric effect by heating the ferroelectric or applying pressure to the ferroelectric. Therefore, the process known from DT 25 30 290 A1 is not a continuous printing process, but rather a copying process for producing a limited number of copies.

Es ist die Aufgabe der vorliegenden Erfindung, Druckverfahren zu schaffen, bei denen die Druckqualität, d.h. der Kontrast, gegenüber den bekannten Druckverfahren verbessert ist. Diese Aufgabe wird, wie in Patentanspruch 1 angegeben, gelöst.It is the object of the present invention to provide printing processes in which the print quality, i.e. the contrast is improved compared to the known printing processes. This object is, as stated in claim 1, solved.

Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen. Gemäß Patentanspruch 15 wird ein Verfahren zum Bebildern einer Druckform geschaffen, durch das ebenfalls der Kontrast beim Drucken mit der so bebilderten Druckform verbessert wird.Advantageous further developments result from the subclaims. According to claim 15, a method for imaging a printing form is created, which also improves the contrast when printing with the printing form thus imaged.

Im Unterschied zum Stand der Technik werden bei dem erfindungsgemäßen Verfahren fortlaufend neue Ladungsträger zur Kontrasterhöhung auf die Druckform aufgebracht, so daß an den polarisierten Stellen verstärkt Toner eingelagert werden kann, der bei Abgabe des Tonerbildes an den Druckträger abgegeben wird.In contrast to the prior art, in the method according to the invention, new charge carriers are continuously applied to the printing form to increase the contrast, so that more can be stored at the polarized points, which toner is released to the print carrier when the toner image is released.

Nachstehend wird die Erfindung in Ausführungsbeispielen anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1
eine Hystereseschleife,
Fig. 2
eine Vorrichtung zum Drucken mit einem Ferroelektrikum, wobei der Formzylinder auf seiner Mantelfläche mit einer Schicht aus einem ferroelektrischen Material beschichtet ist und wobei seitlich des Formzylinders Ladungsquellen angeordnet sind,
Fig. 3
die Druckvorrichtung gemäß Fig. 2, wobei die Schicht durch eine Heizung beheizt wird, und
Fig. 4
die Druckvorrichtung gemäß Fig. 2, wobei eine Tonerauftragwalze zum Auftragen des Toners auf den Formzylinder gegen diesen gedrückt wird.
The invention is explained in more detail in exemplary embodiments with reference to the drawings. Show it:
Fig. 1
a hysteresis loop,
Fig. 2
a device for printing with a ferroelectric, the forme cylinder being coated on its outer surface with a layer of a ferroelectric material and wherein charge sources are arranged on the side of the forme cylinder,
Fig. 3
2, wherein the layer is heated by a heater, and
Fig. 4
the printing device of FIG. 2, wherein a toner application roller for applying the toner to the forme cylinder is pressed against it.

Ferroelektrisches Material ist dadurch ausgezeichnet, daß seine Mikrobausteine, d. h. seine Elementarzellen, ein stabiles elektrisches Dipolmoment besitzen, das in einem elektrischen Feld ausgerichtet werden kann. Ferroelektrika sind beispielsweise anorganische Keramikmaterialien mit asymmetrischer Perowskitstruktur, wie z. B. Bariumtitanat, Bleizirkonat und Mischstrukturen davon oder organische Substanzen, wie z. B. Polyvinylidenfluorid mit C-F-Ketten als elementaren Dipolen. Die anorganischen Ferroelektrika weisen Strukturen auf, bei denen die Elementarzellen so asymmetrisch angeordnet sind, daß zwei energetisch gleichwertige und strukturell identische Modifikationen, d. h. enantiomorphe Modifikationen, existieren, die nur durch Energiezufuhr von einem Zustand in den anderen übergeführt werden können, z. B. durch das Wirken von äußeren Kräften, beispielsweise eines elektrischen Feldes, oder durch thermische Energie.Ferroelectric material is characterized in that its micro building blocks, i. H. its unit cells have a stable electrical dipole moment that can be aligned in an electrical field. Ferroelectrics are, for example, inorganic ceramic materials with an asymmetrical perovskite structure, such as. B. barium titanate, lead zirconate and mixed structures thereof or organic substances, such as. B. polyvinylidene fluoride with C-F chains as elementary dipoles. The inorganic ferroelectrics have structures in which the unit cells are so asymmetrically arranged that two energetically equivalent and structurally identical modifications, i. H. enantiomorphic modifications exist which can only be transferred from one state to the other by the supply of energy, e.g. B. by the action of external forces, for example an electrical field, or by thermal energy.

Erfolgt diese Energiezufuhr durch ein elektrisches Feld, so klappen oberhalb einer gewissen materialabhängigen Feldstärke, der sog. Koerzitivfeldstärke, die nicht in Feldrichtung stehenden Zustände in Feldrichtung um und verbleiben in diesem Zustand auch nach Abschalten des elektrischen Feldes. Dieser Vorgang wird als Polung des Ferroelektrikums bezeichnet.If this energy is supplied by an electric field, above a certain material-dependent field strength, the so-called coercive field strength, the states that are not in the field direction change in the field direction and remain in this state even after the electrical field has been switched off. This process is called polarization of the ferroelectric.

Geschieht diese Energiezufuhr durch Wärme, so werden in Folge der thermischen Gitterschwingungen ab einer gewissen Temperatur, der Curie-Temperatur, beide Modifikationen gleich wahrscheinlich und verlieren die in einem externen elektrischen Feld erzeugte Ausrichtung nach Abschalten des elektrischen Feldes wieder vollkommen. Oberhalb der Curie-Temperatur geht daher das Ferroelektrikum in den paraelektrischen Zustand über. Bei Abkühlung aus diesem Zustand in den ferroelektrischen Zustand ohne äußeres Feld bilden sich statistisch verteilt ausgerichtete Bereiche, die Domänen, deren Feldwirkungen sich gegenseitig aufheben, so daß ein makroskopisch neutraler unpolarer Zustand entsteht.If this supply of energy takes place through heat, as a result of the thermal lattice vibrations from a certain temperature, the Curie temperature, both modifications are equally probable and lose the alignment generated in an external electric field completely after switching off the electric field. The ferroelectric therefore changes into the paraelectric state above the Curie temperature. When cooling from this state to the ferroelectric state without an external field, statistically distributed regions are formed, the domains, whose field effects cancel each other out, so that a macroscopically neutral non-polar state is created.

Wenn das Ferroelektrikum unterhalb seiner Curie-Temperatur polarisiert wird, kann sich das durch die Ausrichtung seiner Dipole erzeugte elektrische Feld an der Materialoberfläche nicht fortsetzen; da keine in sich geschlossenen elektrischen Feldlinien existieren, sondern immer an Ladungen enden, bildet sich an beiden Oberflächen der ferroelektrischen Schicht eine Schicht aus Oberflächenladungen, die das Feld im Inneren des Ferroelektrikums stabilisieren. Eine gepolte ferroelektrische Platte ist daher auch nach Entfernen von eventuell zur Polung verwendeten Elektroden einem elektrischen Kondensator ähnlich, auf dessen Elektroden Oberflächenladungen sind, die durch das innere elektrische Feld ortsfest gebunden sind.If the ferroelectric is polarized below its Curie temperature, the electrical field generated by the alignment of its dipoles cannot continue on the material surface; Since there are no self-contained electric field lines, but always end at charges, a layer of surface charges forms on both surfaces of the ferroelectric layer, which stabilize the field inside the ferroelectric. A polarized ferroelectric plate is therefore, even after removal of electrodes that may be used for polarization, similar to an electrical capacitor, on the electrodes of which there are surface charges that are bound in a fixed manner by the internal electrical field.

Durch diese Oberflächenladungen wird der größte Teil des inneren Feldes nach außen abgeschirmt. Diese Abschirmung ist aber nicht vollständig, vielmehr wirkt ein für den Druckprozeß ausreichendes Restfeld nach außen und ist in der Lage, elektrisch geladene Partikel, z.B. einen elektrostatischen Toner, anzuziehen. Die bildmäßige Polung geschieht durch unterschiedliche Ausrichtung von Bild- und Hintergrundbereichen (DE 38 35 091 C2).These surface charges shield most of the inner field from the outside. However, this shielding is not complete, rather a residual field sufficient for the printing process acts on the outside and is able to remove electrically charged particles, e.g. an electrostatic toner. The polarity of the image is achieved by different alignment of the image and background areas (DE 38 35 091 C2).

In Fig. 1 ist eine Hysteresekurve eines Ferroelektrikums dargestellt. Dabei ist die Flächenladungsdichte der auf die Oberfläche des Ferroelektrikums geflossenen elektrischen Ladung als Funktion des im Inneren des Ferroelektrikums anliegenden elektrischen Feldes E dargestellt. Bei der Polung eines Ferroelektrikums, das sich in einem statistisch verteilten, makroskopisch neutralen Zustand befindet, in den positiv polarisierten Zustand wird die sog. jungfräuliche Kurve 1 von einem Punkt 0 zu einem Punkt A1 durchlaufen. Nach Abschalten des elektrischen Feldes bleibt das Material in einem stabilen gepolten Zustand P1. Durch Anlegen eines Gegenfeldes wird die Kurve von dem Punkt P1 über einen Punkt A2 zu einem Punkt P2 durchlaufen. Dieser Vorgang ist reversibel und beliebig oft wiederholbar. Nach der Polung sind damit die Bildpunkte des Ferroelektrikums beispielsweise in einem Zustand P1, während die Hintergrundbereiche, d.h. die Nicht - Bildbereiche in dem Zustand P2 sind. Auch die umgekehrte Polarisation ist möglich. Es ist ebenfalls möglich, daß lediglich die Bildbereiche positiv oder negativ polarisiert sind und die Nicht-Bildbereiche neutral sind.1 shows a hysteresis curve of a ferroelectric. The surface charge density of the electrical charge flowing onto the surface of the ferroelectric is as Function of the electric field E present in the interior of the ferroelectric is shown. When the polarity of a ferroelectric, the randomly distributed in a macroscopically neutral state, in the positively polarized state that is called. Virgin curve 1 from a point 0 through to a point A 1. After the electrical field has been switched off, the material remains in a stable, polarized state P 1 . By applying an opposing field, the curve is traversed from the point P 1 via a point A 2 to a point P 2 . This process is reversible and can be repeated any number of times. After polarity, the pixels of the ferroelectric are, for example, in a state P 1 , while the background areas, ie the non-image areas, are in the state P 2 . Reverse polarization is also possible. It is also possible that only the image areas are polarized positively or negatively and the non-image areas are neutral.

Fig. 2 zeigt eine Vorrichtung zum Bedrucken einer Bedruckstoffbahn 2 mit einem Formzylinder 3, dessen Mantelfläche von einer Druckform 30 umgeben ist, die entweder ganz oder wenigstens in ihrer äußeren Schicht aus einem ferroelektrischen Material besteht. Die Druckform 30 nimmt von einer Tonerauftragwalze 4 Toner auf, den die Tonerauftragwalze 4 ihrerseits aus einem Tonerbecken 5 erhält. Das Tonerbecken 5 enthält einen Tonervorrat 50, der über eine Tonerzuführung 51 auf einem bestimmten, festgelegten Niveau gehalten wird. Über eine Tonerabführung 52 wird von der Tonerauftragwalze 4 nicht aufgenommener Toner einer hier nicht dargestellten Filteranordnung zugeführt und gelangt über die Tonerzuführung 51 wieder in das Tonerbecken 5 zurück. Tonerpartikel, die auf dem Formzylinder 3 bildmäßig auf der Oberfläche der Druckform 30 aufgetragen sind, werden über einen Übertragungszylinder 6 auf die Bedruckstoffbahn 2 übertragen, wobei der Übertragungszylinder 6 die Bedruckstoffbahn 2 gegen einen Druckzylinder 7 drückt.2 shows a device for printing on a printing material web 2 with a form cylinder 3, the outer surface of which is surrounded by a printing form 30, which consists either entirely or at least in its outer layer of a ferroelectric material. The printing form 30 receives toner from a toner application roller 4, which the toner application roller 4 in turn receives from a toner reservoir 5. The toner reservoir 5 contains a toner supply 50, which is kept at a certain, fixed level via a toner feed 51. Via a toner discharge 52, toner not taken up by the toner application roller 4 is fed to a filter arrangement, not shown here, and returns to the toner reservoir 5 via the toner feed 51. Toner particles, which are imaged on the form cylinder 3 on the surface of the printing form 30, are transferred via a transfer cylinder 6 to the printing material web 2, the transfer cylinder 6 pressing the printing material web 2 against a printing cylinder 7.

Bevor jedoch die Druckform 30 für das Drucken mittels des Toners einsetzbar ist, muß sie durch eine Bebilderungseinheit 8 durch Polarisieren, wie oben beschrieben, bebildert werden. Anschließend wird zum Drucken mit dem Toner die Anzahl der oberflächlich verfügbaren freien Ladungen elektrisch erhöht. Dazu sind neben dem Formzylinder 3 Ladungsquellen 11, 12 angeordnet, die die Oberfläche der Druckform 3 entweder positiv oder negativ aufladen. Als Ladungsquellen sind z. B. Corona-Entladungen, kontaktierende dielektrische oder schwach elektrisch leitfähige Schichten oder bildpunktmäßig getrennte Einzelelektroden möglich. Dabei sind die Ladungsquellen 11, 12 entweder dieselben, mit denen die Druckform 30 vorher bildmäßig polarisiert wurde, oder, wie in Fig. 4 dargestellt, andere Ladungsquellen 11, 12.However, before the printing form 30 can be used for printing by means of the toner, it must pass through an imaging unit 8 Polarize as described above. Then the number of superficially available free charges is electrically increased for printing with the toner. For this purpose, charge sources 11, 12 are arranged next to the forme cylinder 3 and charge the surface of the printing form 3 either positively or negatively. As charge sources such. B. corona discharges, contacting dielectric or weakly electrically conductive layers or pixel-separated individual electrodes possible. In this case, the charge sources 11, 12 are either the same with which the printing form 30 was previously polarized imagewise, or, as shown in FIG. 4, other charge sources 11, 12.

Nach Beendigung des Bebilderungsprozesses, d. h. nachdem die Elektroden der Bebilderungseinheit 8 wieder auf Masse-Potential sind, befinden sich beispielsweise die Bildpunkte in dem Polarisationszustand P1 (vgl. Fig. 1) und die Nicht-Bildpunkte in dem Polarisationszustand P2. Durch erneutes, aber in diesem Falle ganzflächiges Aufladen der Druckform 30 mit einer definierten Ladungsmenge, z.B. ΔP, werden die Punkte, die vorher den Polarisationszustand P1 hatten, auf ein elektrisches Potential E1 angehoben. Die Punkte, die vorher in dem Polarisationszustand P2 waren, werden auf ein Potential E2 angehoben. Ohne die jetzt auf die Druckform 30 aufgebrachte Ladungsmenge ΔP bestand zwischen den positiv und negativ polarisierten Bereichen P1 und P2 nurder durch das Restfeld erzeugte relativ geringe Potentialunterschied. Jetzt weisen sie einen Potentialunterschied ΔE=E 1 -E 2

Figure imgb0001
auf. Durch diesen Potentialunterschied ergibt sich ein Kontrast zwischen den beiden Bereichen, der beispielsweise um einen Faktor 100 größer ist als der ursprüngliche Kontrast bei dem polarisierten, aber ungeladenen Ferroelektrikum. Entsprechend der Aufladung mit positiven Ladungsträgern, wie hier dargestellt, läßt sich die Druckform 30 als ganze auch mit negativen Ladungsträgern aufladen. Diese bildmäßig einmal gepolte und aufgeladene ferroelektrische Druckform 30 übersteht eine Vielzahl von Druckvorgängen. Es zeigt sich allerdings, daß die ortfeste Bindung der in dem Punkt B1 befindlichen Ladungsträger größer ist als die der im Punkt B2 befindlichen Ladungsträger, da Ladungen im Punkt B1 eine Verstärkung, im Punkt B2 eine Schwächung des Feldes in der ferroelektrischen Schicht bewirken. Diese werden abgegeben, und die Druckform wird im Bereich der negativen Polarisation von dem früheren Polarisationszustand P2 auf einen Polarisationszustand P2 teilweise depolarisiert. Um diese Depolarisierung wieder rückgängig zu machen, wird die Druckform 30 mit negativen Ladungsträgern beaufschlagt, dann durchläuft das Ferroelektrikum von dem Punkt P2' zu dem Punkt A2 eine Polarisierungs-Kurve 15. Nachdem einmal wieder der Punkt A2 erreicht ist, kann das Ferroelektrikum wieder positiv bis zum Erreichen des Punktes B2 aufgeladen werden. Entsprechendes gilt in schwächerem Umfang für den Punkt B1. Die unipolare Aufladung der Druckform 30, z. B. nur mit positiven Ladungsträgern, bewirkt einen Kontrast ΔE=E 1 -E 2
Figure imgb0002
mit positivem Potential auf Bild- und Nichtbildstellen. Durch Einstellen des Potentials der Tonerauftragwalze 5 auf ein Niveau zwischen E1 und E2 wird eine für die Tonerpartikel an- bzw. abstoßende Wirkung erzeugt.After the imaging process has ended, ie after the electrodes of the imaging unit 8 are again at ground potential, for example the pixels are in the polarization state P 1 (cf. FIG. 1) and the non-pixels are in the polarization state P 2 . By renewed, but the entire surface in this case, charging of the printing plate 30 with a defined amount of charge, for example, .DELTA.P, the points which previously had the polarization state P 1, raised to an electrical potential E. 1 The points that were previously in the polarization state P 2 are raised to a potential E 2 . Without the amount of charge ΔP now applied to the printing form 30, there was only the relatively small potential difference generated by the residual field between the positively and negatively polarized regions P 1 and P 2 . Now they have a potential difference ΔE = E 1 -E 2nd
Figure imgb0001
on. This difference in potential results in a contrast between the two areas, which is, for example, a factor 100 greater than the original contrast in the polarized but uncharged ferroelectric. Corresponding to the charging with positive charge carriers, as shown here, the printing form 30 as a whole can also be charged with negative charge carriers. This ferroelectric printing form 30, which is once polarized and charged imagewise, survives a large number of printing processes. It turns out, however, that the fixed binding of the charge carriers located in point B 1 is greater than that the charge carriers located in point B 2 , since charges in point B 1 cause an amplification and in point B 2 a weakening of the field in the ferroelectric layer. These are released and the printing form is partially depolarized in the region of the negative polarization from the previous polarization state P 2 to a polarization state P 2 . In order to reverse this depolarization, the printing form 30 is charged with negative charge carriers, then the ferroelectric traverses a polarization curve 15 from the point P 2 'to the point A 2. Once the point A 2 has been reached again, this can be done Ferroelectric can be charged positively again until point B 2 is reached. The same applies to a lesser extent for the point B1. The unipolar charging of the printing form 30, for. B. only with positive charge carriers, causes a contrast ΔE = E 1 -E 2nd
Figure imgb0002
with positive potential on image and non-image areas. By setting the potential of the toner application roller 5 to a level between E 1 and E 2 , an effect which is repulsive or repulsive for the toner particles is produced.

Deswegen ist es bei einem langandauernden, kontinuierlichen Druckprozeß notwendig, in bestimmten Zeitabständen ein beispielsweise positiv aufgeladenes Ferroelektrikum mit negativen Ladungsträgern aufzuladen. Dadurch werden beide Polarisationszustände wieder vollständig regeneriert.For this reason, in the case of a long-term, continuous printing process, it is necessary to charge, for example, a positively charged ferroelectric with negative charge carriers at certain time intervals. As a result, both polarization states are completely regenerated again.

Bei einer anderen Ausführungsweise dieses Verfahrens wird die Kontrasterhöhung in Verbindung mit der Bilderzeugung bewirkt. Dabei wird zunächst die Druckform 30 auf ihrer gesamten Oberfläche durch eine erste Elektrode negativ polarisiert und zusätzlich mit negativen Ladungsträgern (Elektronen) um einen Betrag ΔP negativ aufgeladen und dabei auf ein Potential E3 (Punkt B3) gebracht. Anschließend werden die Bildbereiche auf der Oberfläche der Druckform 30 durch eine zweite Elektrode positiv polarisiert und durch Entfernen von Elektronen um den Betrag P auf das Potential E1 (Punkt B1) positiv aufgeladen, so daß die Bildpunkte B1 zu den Nicht-Bildpunkten B3 eine Potentialdifferenz ΔE'=E 1 -E 3

Figure imgb0003
haben.In another embodiment of this method, the contrast increase is effected in connection with the image generation. First, the printing form 30 is negatively polarized on its entire surface by a first electrode and additionally negatively charged with negative charge carriers (electrons) by an amount ΔP and brought to a potential E 3 (point B 3 ). The image areas on the surface of the printing form 30 are then positively polarized by a second electrode and charged positively by removing electrons by the amount P to the potential E 1 (point B 1 ), so that the pixels B 1 become the non-pixels B 3 a potential difference ΔE '= E 1 -E 3rd
Figure imgb0003
to have.

Zusätzlich zu diesem Verfahren läßt sich die Anzahl der freien Ladungen auf der Oberfläche der Druckform durch Wärme vergrößern. Zunächst wird hierzu die Druckform bei einer Temperatur T1, beispielsweise bei 20°C, bebildert. Um diese Temperatur einzuhalten, wird die gesamte Druckvorrichtung vorzugsweise bei dieser Temperatur thermostatisiert. Hierzu ist sie beispielsweise in einem abgeschlossenen Raum angeordnet.In addition to this method, the number of free charges on the surface of the printing form can be increased by heat. First, the printing form is imaged at a temperature T 1 , for example at 20 ° C. In order to maintain this temperature, the entire printing device is preferably thermostatted at this temperature. For this purpose, it is arranged, for example, in a closed room.

Nach Beendigung des Polarisierens und bevor der Druckvorgang beginnt, wird die Druckform 30 (Fig. 3) von ihrer äußeren Oberfläche her durch eine Heizung 9 neu auf eine höhere Temperatur T2, z.B. 25°C, gebracht und auf dieser Temperatur gehalten. Dabei ist zu beachten, daß sich diese Temperatur T2 unterhalb der Curie-Temperatur des jeweiligen Ferroelektrikums befindet. Durch die erhöhte Temperatur steigt die Anzahl der Oberflächenladungen auf der Oberfläche der Druckform 30. Die gemäß Fig. 1 benötigte Ladung zur Kompensation des inneren elektrischen Feldes ist temperaturabhängig, d. h., es wird bei höherer Temperatur weniger Kompensationsladung benötigt. Wurde bei niedriger Temperatur polarisiert, so wird bei einer Temperaturerhöhung die nicht benötigte Kompensationsladung frei. Es entstehen also im positiv polarisierten Bereich freie positive Ladungen, im negativ polarisierten Bereich freie negative Ladungen. Da durch die erhöhte Temperatur die Anzahl der freien Oberflächenladungen auf der Oberfläche der Druckform steigt, nimmt der Kontrast, d. h. die Potentialdifferenz zwischen den positiv und negativ gepolten Bereichen, zu. Dadurch werden, wenn beispielsweise die Partikel positiv geladen sind, auf negativ geladenen Bildflächenanteilen mehr Tonerpartikel abgeschieden und Hintergrundtonen vermieden. Die erhöhte Kontrastspannung zwischen den Bild- und Hintergrundbereichen erzeugt also einen besseren optischen Kontrast zwischen Bild- und Hintergrundbereichen, d. h. eine dichtere Tonerschicht in den Druckbereichen bei tonerfreiem Hintergrund. Dieser Effekt läßt sich für eine hohe Anzahl von Druckvorgängen, z.B. 1000 Drucke, ausnutzen. Es läßt sich jedoch nicht ganz verhindern, daß Teile der Oberflächenladung auf der Druckform 30 durch Tonerpartikel auf den Übertragungszylinder 6 und von diesem auf die Bedruckstoffbahn 2 mitgerissen werden. Deshalb wird vorzugsweise eine Kühlvorrichtung 10 seitlich des Formzylinders 3 angeordnet. Diese kühlt die Druckform 30 entweder vor oder nach Abgabe des Toners auf den Übertragungszylinder 6 ab. Bei Kühlung vor der Tonerabgabe wird infolge des reversiblen pyroelektrischen Effekts die freie Oberflächenladung wieder als Kompensationsladung gebunden. Bei Kühlung nach erfolgter Tonerabgabe wird die benötigte Kompensationsladung von dem umgebenden Medium auf die Oberfläche übertragen und ortsfest gebunden.After the polarization has ended and before the printing process begins, the printing form 30 (FIG. 3) is brought from its outer surface to a higher temperature T 2 , for example 25 ° C., by a heater 9 and is kept at this temperature. It should be noted that this temperature T 2 is below the Curie temperature of the respective ferroelectric. The increased temperature increases the number of surface charges on the surface of printing form 30. The charge required to compensate for the internal electric field according to FIG. 1 is temperature-dependent, ie less compensation charge is required at higher temperatures. If polarization was carried out at low temperature, the compensation charge that is not required is released when the temperature rises. So there are free positive charges in the positively polarized area, free negative charges in the negatively polarized area. Since the increased temperature increases the number of free surface charges on the surface of the printing form, the contrast, ie the potential difference between the positively and negatively polarized areas, increases. As a result, if the particles are positively charged, for example, more toner particles are deposited on negatively charged image areas and background tones are avoided. The increased contrast voltage between the image and background areas thus produces a better optical contrast between the image and background areas, ie a denser toner layer in the print areas with a toner-free background. This effect can be used for a large number of printing processes, for example 1000 prints. However, it can not be completely prevented that parts of the Surface charge on the printing form 30 are entrained by toner particles on the transfer cylinder 6 and from this onto the printing material web 2. Therefore, a cooling device 10 is preferably arranged on the side of the forme cylinder 3. This cools the printing form 30 either before or after the toner is released onto the transfer cylinder 6. When cooling before the toner is released, the free surface charge is bound again as a compensation charge due to the reversible pyroelectric effect. When cooling after the toner has been released, the required compensation charge is transferred from the surrounding medium to the surface and bound in place.

Die für diesen pyroelektrischen Effekt benötigte Kompensationsladung wird von dem umgebenden Medium, z.B. der Luft, auf die Oberfläche übertragen und dort ortsfest gebunden. Durch die Kühlvorrichtung 10 nimmt die Druckform 30 eine Temperatur T3 an, die unterhalb der Temperatur T2 liegt. Anschließend wird die Druckform 30 wieder durch die Heizung 9 auf die Temperatur T2 aufgewärmt, und es entsteht erneut ein Ladungsüberschuß auf der Oberfläche, der den oben beschriebenen Effekt der Kontrastverstärkung hervorruft. Der Kühlvorgang kann entweder kontinuierlich erfolgen oder aber in bestimmten Zeitabständen nach einer vorher festgelegten Anzahl von Drucken, wenn sich die Zahl der freien Oberflächenladungen entsprechend vermindert hat. Bei kontinuierlicher Kühlung wird auch erreicht, daß die durch die Heizung zugeführte Wärmemenge wieder abgeführt werden kann.The compensation charge required for this pyroelectric effect is transferred from the surrounding medium, for example the air, to the surface and bound there in a stationary manner. Due to the cooling device 10, the printing form 30 assumes a temperature T 3 which is below the temperature T 2 . Subsequently, the printing form 30 is heated up again by the heater 9 to the temperature T 2 , and there is again an excess charge on the surface, which causes the above-described effect of contrast enhancement. The cooling process can either take place continuously or at certain time intervals after a predetermined number of prints if the number of free surface charges has decreased accordingly. With continuous cooling it is also achieved that the amount of heat supplied by the heater can be removed again.

Statt den Toner 50 mit der Druckwalze 4 auf die Druckform 30 aufzutragen, kann auch jede andere Zuführvorrichtung zum Aufbringen des Toners 50, z.B. ein Band, Verwendung finden.Instead of applying the toner 50 to the printing form 30 with the printing roller 4, any other supply device for applying the toner 50, e.g. a tape, find use.

Wenn anstelle des trockenen Toners 50 ein flüssiger Toner verwendet wird, reicht unter Umständen auch die beim Verdunsten der Tonerflüssigkeit durch Entzug der Verdampfungswärme hervorgerufene Abkühlung der Druckform 30 aus.If a liquid toner is used instead of the dry toner 50, the cooling of the printing form 30 caused by the evaporation of the heat of evaporation may also be sufficient.

Anstelle der Heizung 9 ist es auch möglich, die Oberfläche der Druckform 30 durch Eintauchen in ein Tonerbad eines flüssigen Toners zu erwärmen, wobei diese Tonerflüssigkeit auf einer Temperatur T2 temperiert wird.Instead of the heater 9, it is also possible to heat the surface of the printing form 30 by immersing it in a toner bath of a liquid toner, this toner liquid being heated to a temperature T 2 .

In Verbindung mit dem Verfahren der Kontrastverstärkung durch Anlegen einer Ladungsträgerquelle oder auch in Verbindung mit dem Verfahren der Temperaturerhöhung läßt sich die Anzahl der verfügbaren Ladungen auf der Oberfläche der Druckform 30 auch dadurch erhöhen, daß auf diese eine mechanische Kraft ausgeübt wird. Dies geschieht beispielsweise dadurch, daß die Tonerauftragwalze 4 mit einem bestimmten, vorgegebenen Druck p (Fig. 3) gegen den Formzylinder 3 gedrückt wird. Die freie Oberflächenladung entsteht hier durch den bei ferroelektrischen Materialien wirksamen piezoelektrischen Effekt.In connection with the method of contrast enhancement by applying a charge carrier source or also in connection with the method of increasing the temperature, the number of available charges on the surface of the printing form 30 can also be increased by exerting a mechanical force thereon. This takes place, for example, in that the toner application roller 4 is pressed against the forme cylinder 3 with a specific, predetermined pressure p (FIG. 3). The free surface charge is created here by the piezoelectric effect effective in ferroelectric materials.

Die Vorrichtungen gemäß Fig. 2 bis 3 lassen sich vorteilhaft dann nutzen, wenn zusätzlich noch Toneran- und Abtragelektroden 13, 14 wie in Fig. 4, dargestellt, vorhanden sind. Diese Elektroden 13, 14 befinden sich in einem gewissen Abstand von der Oberfläche der Druckform 30 und beeinflussen die Tonerannahme auf der Oberfläche der Druckform 30. Durch eine beispielsweise negativ geladene Elektrode 13 werden negativ geladene Tonerpartikel von der Elektrode 13 abgestoßen und umso stärker und schneller von positiv geladenen Bildbereichen auf der Druckform 30 angenommen. Entsprechendes gilt umgekehrt für die Elektrode 14, die, wenn sie positiv geladen ist, die Anlagerung der negativ geladenen Tonerpartikel in Nicht-Bildbereichen, die ebenfalls negativ geladen sind, umso besser verhindert. Auch hierdurch wird der Kontrast zwischen Bild- und Nicht-Bildbereichen verstärkt und Hintergrundtoner vermieden.The devices according to FIGS. 2 to 3 can advantageously be used if toner and removal electrodes 13, 14 as shown in FIG. 4 are also present. These electrodes 13, 14 are located at a certain distance from the surface of the printing form 30 and influence the toner acceptance on the surface of the printing form 30. For example, a negatively charged electrode 13 repels negatively charged toner particles from the electrode 13 and makes them stronger and faster accepted positively charged image areas on the printing form 30. The same applies vice versa for the electrode 14 which, if it is positively charged, the better prevents the accumulation of the negatively charged toner particles in non-image areas which are also negatively charged. This also increases the contrast between image and non-image areas and avoids background toner.

Gemäß der Erfindung werden Verfahren geschaffen, mit denen die Zahl der auf der Oberfläche einer Druckform 30 mit einer ferroelektrischen Schicht verfügbaren Ladungen erhöht werden kann, d.h. die Potentialdifferenz zwischen Bild- und Nicht-Bildbereichen gesteigert wird. Hierzu wird entweder die Temperatur auf der Oberfläche der Druckform 30 gegenüber der Temperatur, bei sie polarisiert wurde, erhöht, oder es wird zum Tonerübertragen eine mechanische Belastung auf den Formzylinder 3 ausgeübt, oder es werden ganzflächig Ladungsträger auf die Druckform 30 aufgebracht, wodurch ein Potentialunterschied zwischen positiv und negativ polarisierten Bereichen entsteht, der zu einer Kontrasterhöhung zwischen Bild- und Nicht-Bildbereichen führt.According to the invention, methods are created by means of which the number of charges available on the surface of a printing form 30 with a ferroelectric layer can be increased, ie the potential difference between image and non-image areas is increased. To do this, either the temperature on the surface of the Printing form 30 is increased compared to the temperature at which it was polarized, or a mechanical load is exerted on the form cylinder 3 for toner transfer, or charge carriers are applied over the entire area to the printing form 30, as a result of which a potential difference between positively and negatively polarized regions arises, leads to an increase in contrast between image and non-image areas.

Claims (15)

  1. Process for reproducing an image original by means of a printing forme (30) which has a layer of a ferro-electric material, in which the layer is polarised at a first temperature (T1) according to an image to be printed, and in which electrically charged particles are deposited on the surface of the ferro-electric material, characterised in that after it has been polarised the printing forme (30) is additionally charged with electrical charges from a charge carrier source for the image-wise increase in the number of surface charges on the layer.
  2. Process according to claim 1, characterised in that at least one positive (11) or one negative electrode (12) is arranged near the layer so as to transfer charges onto its surface.
  3. Process according to claim 1, characterised in that the charge is transmitted from an electrically non-conductive dielectric layer.
  4. Process according to claim 1, characterised in that charges are applied to the layer by corona-discharge or by an electrode (11, 12) contacting the surface of the layer.
  5. Process according to one of claims 1 to 4, characterised in that to compensate for charge carrier densities of different strengths in free surface charges in the image and non-image areas, the image and non-image areas are oppositely charged and then charged again with the electrical charges provided.
  6. Process according to claim 5, characterised in that the charge is generated on the dielectric layer by friction, contact with the electrodes (11, 12) or corona-charging.
  7. Process according to one of claims 1 to 6, characterised in that after it has been polarised the printing forme (30) is heated to a second, higher temperature (T2) below the Curie temperature, and in that the particles are deposited on the surface of the layer at this temperature and then transferred to a material (2) to be printed.
  8. Process according to claim 7, characterised in that the printing forme (30) together with the layer is tempered at the second temperature (T2).
  9. Process according to claim 7, characterised in that after deposition of the particles on the layer surface the layer is cooled to a third temperature (T3) which is lower than the second temperature (T2) at which the particles were deposited on the layer, and in that the layer is heated again to the second temperature (T2) to receive the particles again.
  10. Process according to claim 7, characterised in that the charged particles are contained in a liquid, in that after deposition of the particles the layer is cooled, by evaporation of the liquid drawn by its surface, to a temperature (T3) which is lower than the second temperature (T2) at which the particles were deposited, and in that the layer is heated again to the second temperature (T2) to receive the particles again.
  11. Process according to claim 10, characterised in that the layer is heated by immersion into a toner bath tempered at the second temperature (T2).
  12. Process according to one of claims 1 to 9, charcterised in that for the image-wise increase in the number of surface charges on the layer, a mechanical force is exerted on the surface of the layer during deposition of the particles.
  13. Process according to claim 12, characterised in that the printing forme (30) is applied to the casing surface of a forme cylinder (3), in that the toner is applied to the forme cylinder (3) by means of a feeding device, in particular by means of a toner application roller (4), and in that the toner application roller (4) is pressed against the forme cylinder (3) and hence against the layer.
  14. Process according to one of claims 1 to 13, characterised in that a toner application and/or toner removal electrode (13, 14) for increasing toner application in the image areas and reducing toner application in the non-image areas are arranged near the surface of the layer and according to its charge remove the toner from the surface of the printing forme (30) or press it firmly on the surface.
  15. Process for the imaging of a printing forme (30) which has a layer of a ferro-electric material, characterised in that the entire surface of the printing forme is polarised by a first electrode (11) in a first polarisation direction (ΔP, E3) and is additionally electrically charged, and in that the image areas are then polarised by a second electrode (12) in the opposite polarisation direction and additionally electrically (ΔP, E1) charged in the same direction.
EP94112675A 1993-08-20 1994-08-13 Ferroelectric printing process Expired - Lifetime EP0639451B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4328037A DE4328037A1 (en) 1993-08-20 1993-08-20 Printing process with ferroelectrics
DE4328037 1993-08-20

Publications (2)

Publication Number Publication Date
EP0639451A1 EP0639451A1 (en) 1995-02-22
EP0639451B1 true EP0639451B1 (en) 1997-06-04

Family

ID=6495635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94112675A Expired - Lifetime EP0639451B1 (en) 1993-08-20 1994-08-13 Ferroelectric printing process

Country Status (5)

Country Link
US (1) US5580688A (en)
EP (1) EP0639451B1 (en)
JP (1) JP2728367B2 (en)
CA (1) CA2130631C (en)
DE (2) DE4328037A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10125257A1 (en) * 2001-05-23 2002-12-12 Roland Man Druckmasch Short inking unit for a rotary printing press and method for improving the color splitting in such a short inking unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254442A (en) * 1996-03-19 1997-09-30 Sharp Corp Image forming apparatus
AUPO875197A0 (en) * 1997-08-22 1997-09-18 Research Laboratories Of Australia Pty Ltd Method of and means for self-fixed printing from ferro- electric recording member
JP2002006649A (en) * 2000-06-19 2002-01-11 Sharp Corp Image forming device
DE102019108765A1 (en) * 2019-04-03 2020-10-08 Koenig & Bauer Ag Printing machine and process for producing printed products

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2914403A (en) * 1955-05-17 1959-11-24 Rca Corp Electrostatic printing
US3899969A (en) * 1973-08-06 1975-08-19 Minnesota Mining & Mfg Printing using pyroelectric film
DE2530290A1 (en) * 1974-07-08 1976-01-22 Hitachi Ltd Xerographic copying - producing multiple copies from a single latent charge image
JPS6318368A (en) * 1986-07-11 1988-01-26 Toshiba Corp Image recorder
JPS6318369A (en) * 1986-07-11 1988-01-26 Toshiba Corp Image recorder
US4850680A (en) * 1986-09-19 1989-07-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device with a ferroelectric film
DE3633758A1 (en) * 1986-10-03 1988-04-07 Man Technologie Gmbh PRINTING MACHINE
DE3835091A1 (en) * 1988-10-14 1990-04-19 Roland Man Druckmasch PRINTING FORM
DE4106353A1 (en) * 1991-02-28 1992-09-03 Basf Ag REVERSIBLE OR IRREVERSIBLE GENERATION OF AN IMAGE
JPH05224491A (en) * 1991-09-25 1993-09-03 Ricoh Co Ltd Method for recording image

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10125257A1 (en) * 2001-05-23 2002-12-12 Roland Man Druckmasch Short inking unit for a rotary printing press and method for improving the color splitting in such a short inking unit
DE10125257B4 (en) * 2001-05-23 2005-08-11 Man Roland Druckmaschinen Ag Short inking unit for a rotary printing press and method for improving the ink splitting in such a short inking unit

Also Published As

Publication number Publication date
JP2728367B2 (en) 1998-03-18
JPH0777861A (en) 1995-03-20
CA2130631C (en) 1998-07-14
DE59402990D1 (en) 1997-07-10
CA2130631A1 (en) 1995-02-21
US5580688A (en) 1996-12-03
DE4328037A1 (en) 1995-03-02
EP0639451A1 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
EP0594097B1 (en) Erasable printing forms
DE2419595C2 (en) Electrographic recording process
DE1804475B2 (en) Imaging process using a softenable material
DE1797549B2 (en) METHOD FOR CREATING A CHARGE IMAGE ON AN INSULATING SURFACE USING AN ELECTROPHOTOGRAPHIC RECORDING MATERIAL AND ELECTROPHOTOGRAPHIC DEVICE FOR PERFORMING THE METHOD
EP0363932B1 (en) Printing forme
DE2438025A1 (en) METHOD AND MEANS FOR GENERATING ELECTROSTATIC CHARGE IMAGES
EP0639451B1 (en) Ferroelectric printing process
EP1837175B1 (en) Printing plate and printing unit of a printing press
DE1497060C3 (en) Electrophotographic process and image receiving material for the production of halftone images
DE1546738A1 (en) Electrostatic process for printing articles made of highly insulating material
DE3231980C2 (en)
DE2200421A1 (en) Electrostatic printing method
DE3010981C2 (en)
EP0052789A2 (en) Process for transferring a pigment pattern
DE2809017C3 (en) Procedure for making multiple copies of an original
DE1671527A1 (en) Pre-charging the substrate in electrostatic copying
DE19525786C2 (en) Process and device for image generation
DE2061333A1 (en) Color electrophotography process
WO2001063553A2 (en) Method for producing a marking device and apparatus for carrying out said method
DE2929986A1 (en) METHOD AND DEVICE FOR ELECTROSTATIC RECORDING
DE1963581C3 (en) Method of making a Xerox printing plate
DE2029505B2 (en) Process for generating a charge image on an insulating image-receiving material
DE2611246C2 (en) Process for the production of offset printing forms
DE3505113A1 (en) APPARATUS FOR PRODUCING MULTIPLE COPIES, ESPECIALLY MULTI-COLORED COPIES, BY MEANS OF ELECTROSTATIC REPLACEMENT
AT293874B (en) Imaging process with a photoelectrophoretic image substance suspension and device for carrying out the process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19950420

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960812

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59402990

Country of ref document: DE

Date of ref document: 19970710

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970905

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030728

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030808

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040730

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040805

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040806

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040809

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050813

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060428