EP0638723B1 - Mechanical compression plant - Google Patents

Mechanical compression plant Download PDF

Info

Publication number
EP0638723B1
EP0638723B1 EP94110281A EP94110281A EP0638723B1 EP 0638723 B1 EP0638723 B1 EP 0638723B1 EP 94110281 A EP94110281 A EP 94110281A EP 94110281 A EP94110281 A EP 94110281A EP 0638723 B1 EP0638723 B1 EP 0638723B1
Authority
EP
European Patent Office
Prior art keywords
line
liquid
chamber
compressor
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94110281A
Other languages
German (de)
French (fr)
Other versions
EP0638723A1 (en
Inventor
Günter Dipl.-Ing. Holzheimer (FH)
Manfred Dipl.-Ing. Stretz (Fh)
Hans René Dipl.-Ing. Neubauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19934327003 external-priority patent/DE4327003C1/en
Priority claimed from DE9404463U external-priority patent/DE9404463U1/en
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0638723A1 publication Critical patent/EP0638723A1/en
Application granted granted Critical
Publication of EP0638723B1 publication Critical patent/EP0638723B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • F04C19/001General arrangements, plants, flowsheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • F04C19/004Details concerning the operating liquid, e.g. nature, separation, cooling, cleaning, control of the supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid

Definitions

  • Such a compressor system is known from WO-A-86/07416.
  • an evaporable liquid is introduced into the suction line upstream of the compressor.
  • an after-cooling unit is provided in the pressure line connected to the compressor.
  • This post-cooling unit consists of a heat exchanger equipped with a fan. Such a post-cooling unit requires not only a considerable installation effort but also a not inconsiderable energy requirement for the fan of the heat exchanger.
  • a cooling system is known from US-A-2,385,667, in which a cooling unit consisting of a first and a second chamber is used.
  • a cooling unit consisting of a first and a second chamber is used.
  • one chamber is connected in series with the suction line leading to the compressor and the other chamber with the pressure line leading away from the compressor. In this way, a certain cooling of the gas heated by the compression process is achieved by the still uncompressed gas.
  • the object of the present invention is to provide a compressor system with a mechanical compressor, in which the compressed gaseous medium can be intensively cooled with a low energy requirement and only with a small additional installation effort.
  • the exhaust air in the pressure line is warmer than the suction air in the suction line.
  • a heat exchange takes place between the exhaust air and the suction air in the post-cooling unit.
  • liquid preferably water
  • the liquid evaporating during the injection process leads to partial or complete saturation of the suction air in the suction line.
  • the heat of vaporization required to evaporate the injected liquid is extracted from the suction air, as a result of which the suction air flowing in the suction line cools down. This increases the temperature gradient between the suction air and the exhaust air, which means that the exhaust air is cooled more due to the improved heat exchange.
  • the principle of exhaust air cooling according to the invention is not only limited to rotary vane and Roots pumps, but is also suitable for other mechanical compressors, such as liquid ring machines.
  • this principle offers the advantage that an additional proportion of vaporous operating fluid is condensed out of the exhaust air due to the stronger cooling of the exhaust air. After their condensation, the operating liquid can be returned to the liquid circuit or the gas flow.
  • the principle of exhaust air cooling according to the invention therefore not only leads to the desired cooling of the exhaust air, but also enables the operating fluid to be recovered. As a result, the operating fluid circuit does not have to be supplemented or only with a reduced amount of operating fluid. A constantly increasing concentration of chemical components, solids and lime in the operating fluid as well as the resulting corrosion, contamination and calcification are thus reliably prevented or delayed.
  • a liquid ring machine as a mechanical compressor offers a number of advantages over a rotary vane pump.
  • a liquid ring machine is less sensitive to contamination from solids caused by the pumped medium than a rotary vane pump.
  • a liquid ring machine functions as a gas scrubber, since it binds the solids of the medium (e.g. dust) in the operating liquid circuit and separates it in the separator (location with the lowest flow rate).
  • the impeller of a liquid ring machine works without contact (sealing medium is the operating fluid) and, in contrast to the rotary vane pump, is largely wear-free.
  • the liquid ring machine 1 also has an after-cooling unit 7, which is connected with its first chamber 71 into the suction line 2 and with its second chamber 72 into the exhaust air line 5.
  • a condensate line 8 branches off from the end 51 of the exhaust air line 5 which is led out of the after-cooling unit 7, through which the condensed operating liquid enters the liquid separator 4 and thus into the operating liquid circuit (solid line) and / or in the gas flow (dashed line) is returned.
  • the arrangement of the after-cooling unit 7 is not limited to the exemplary embodiment shown in the drawing.
  • the aftercooling unit 7 can also sit directly on the exhaust port of the separator 4. This has the advantage that the condensate runs back directly into the separator 4 due to gravity. This saves the condensate line.
  • Operating fluid is injected into the suction line 2 in front of the after-cooling unit 7 via an injection line 9, which branches off from the return line 6 in the exemplary embodiment shown.
  • the principle of exhaust air cooling according to the invention is not only limited to liquid ring machines, but is suitable for all mechanical compressors.
  • This is shown in FIG. 2 using the example of a dry-running positive displacement pump, which is also designated by 1.
  • a suction line 2 is connected to a first connection opening 11 of the displacement pump 1.
  • a pressure line 3 is connected to a second, oppositely acting connection opening 12 of the positive displacement pump 1, which in the embodiment shown in FIG. 2 opens directly into an aftercooling unit 7.
  • the after-cooling unit 7 consists of two separate chambers 71 and 72. The after-cooling unit 7 is switched with its first chamber 71 into the suction line 2 and with its second chamber 72 into the pressure line 3.

Abstract

Mechanical compressor (1) in which a suction line (2) is connected to a first connection port (11), and a discharge line (3, 5) is connected to a second connection port (12), an aftercooling (secondary cooling) unit (7) being provided which consists of two separate chambers (71, 72) with at least one partition and which, with its first chamber (71), is connected into the suction line (2) and, with its second chamber (72), is connected into the discharge line (3, 5), at least one injection line (9) for the purpose of injecting liquid debouching into the suction line (2) upstream of the aftercooling unit (7) and/or in the aftercooling unit (7). With a mechanical compressor of such a design it is possible to cool the gaseous flow medium to process-compatible temperatures without major additional fitting costs and with low energy demand. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Verdichteranlage gemäß dem Oberbegriff des Anspruches 1.The invention relates to a compressor system according to the preamble of claim 1.

Eine solche Verdichteranlage ist durch WO-A-86/07416 bekannt. Bei dieser Anlage wird zum Kühlen des zu verdichtenden Gases strömungsmäßig vor dem Verdichter eine verdampfbare Flüssigkeit in die Saugleitung eingebracht. Um zumindest wieder einen Teil der in Dampfform im verdichteten Gas enthaltenen Flüssigkeit zurückzugewinnen, ist in der mit dem Verdichter verbundenen Druckleitung eine Nachkühleinheit vorgesehen. Diese Nachkühleinheit besteht aus einem mit einem Gebläse versehenen Wärmetauscher. Eine solche Nachkühleinheit erfordert neben einem erheblichen Installationsaufwand auch noch einen nicht unerheblichen Energiebedarf für das Gebläse des Wärmetauschers.Such a compressor system is known from WO-A-86/07416. In this system, in order to cool the gas to be compressed, an evaporable liquid is introduced into the suction line upstream of the compressor. In order to recover at least part of the liquid contained in vapor form in the compressed gas, an after-cooling unit is provided in the pressure line connected to the compressor. This post-cooling unit consists of a heat exchanger equipped with a fan. Such a post-cooling unit requires not only a considerable installation effort but also a not inconsiderable energy requirement for the fan of the heat exchanger.

Durch die US-A-2,385,667 ist ein Kühlsystem bekannt, bei dem ein aus einer ersten und zweiten Kammer bestehende Kühleinheit verwendet wird. Bei dieser Kühleinheit ist die eine Kammer mit der zum Verdichter führenden Saugleitung und die andere Kammer mit der vom Verdichter wegführenden Druckleitung in Reihe geschaltet. Hierdurch wird eine gewisse Kühlung des durch den Verdichtungsvorgang erwärmten Gases durch das noch unverdichtete Gas erreicht.A cooling system is known from US-A-2,385,667, in which a cooling unit consisting of a first and a second chamber is used. In this cooling unit, one chamber is connected in series with the suction line leading to the compressor and the other chamber with the pressure line leading away from the compressor. In this way, a certain cooling of the gas heated by the compression process is achieved by the still uncompressed gas.

Aufgabe der vorliegenden Erfindung ist es, eine Verdichteranlage mit einem mechanischen Verdichter zu schaffen, bei der das verdichtete gasförmige Fördermedium mit einem geringen Energiebedarf und nur mit einem geringen zusätzlichen Installationsaufwand intensiv gekühlt werden kann.The object of the present invention is to provide a compressor system with a mechanical compressor, in which the compressed gaseous medium can be intensively cooled with a low energy requirement and only with a small additional installation effort.

Die Aufgabe wird erfindungsgemäß gelöst durch die kennzeichnenden Merkmale des Anspruches 1. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen beschrieben.The object is achieved according to the invention by the characterizing features of claim 1. Advantageous refinements are described in the subclaims.

Die Verdichteranlage gemäß Anspruch 1 weist eine Nachkühleinheit auf, die aus zwei getrennten Kammern mit wenigstens einer gemeinsamen Trennwand besteht. Die erste Kammer der Nachkühleinheit ist in die Saugleitung, die vom Fördermedium durchströmt wird, geschaltet. Das die Saugleitung durchströmende Fördermedium wird nachfolgend als Saugluft bezeichnet. Die zweite Kammer der Nachkühleinheit ist in die Druckleitung geschaltet, die von dem aus dem Verdichter ausgeschobenen gasförmigen Fördermedium durchströmt wird. Das die Druckleitung durchströmende Fördermedium wird nachfolgend als Abluft bezeichnet.The compressor system according to claim 1 has an after-cooling unit which consists of two separate chambers with at least one common partition. The first chamber of the aftercooling unit is connected to the suction line through which the fluid is flowing. The conveying medium flowing through the suction line is referred to below as suction air. The second chamber of the aftercooling unit is connected to the pressure line through which the gaseous delivery medium pushed out of the compressor flows. The The medium flowing through the pressure line is referred to below as exhaust air.

Die Abluft in der Druckleitung ist wärmer als die Saugluft in der Saugleitung. In der Nachkühleinheit findet damit zwischen der Abluft und der Saugluft ein Wärmeaustausch statt. Um die Abkühlung der Abluft zu verstärken, wird über eine Einspritzleitung Flüssigkeit, vorzugsweise Wasser, in die Saugleitung eingespritzt. Die beim Einspritzvorgang verdampfende Flüssigkeit führt in der Saugleitung zur teilweisen oder vollständigen Sättigung der Saugluft. Die zur Verdampfung der eingespritzten Flüssigkeit notwendige Verdampfungswärme wird der Saugluft entzogen, wodurch sich die in der Saugleitung strömende Saugluft abkühlt. Damit wird das Temperaturgefälle zwischen der Saugluft und der Abluft vergrößert, wodurch die Abluft aufgrund des verbesserten Wärmeaustausches stärker gekühlt wird.The exhaust air in the pressure line is warmer than the suction air in the suction line. A heat exchange takes place between the exhaust air and the suction air in the post-cooling unit. In order to intensify the cooling of the exhaust air, liquid, preferably water, is injected into the suction line via an injection line. The liquid evaporating during the injection process leads to partial or complete saturation of the suction air in the suction line. The heat of vaporization required to evaporate the injected liquid is extracted from the suction air, as a result of which the suction air flowing in the suction line cools down. This increases the temperature gradient between the suction air and the exhaust air, which means that the exhaust air is cooled more due to the improved heat exchange.

Das erfindungsgemäße Prinzip der Abluftkühlung ist nicht nur auf Drehschieber- und Wälzkolbenpumpen beschränkt, sondern eignet sich auch für andere mechanische Verdichter, wie z.B. Flüssigkeitsringmaschinen. Bei Flüssigkeitsringmaschinen bietet dieses Prinzip den Vorteil, daß durch die stärkere Abkühlung der Abluft ein zusätzlicher Anteil an dampfförmiger Betriebsflüssigkeit aus der Abluft herauskondensiert wird. Nach ihrer Kondensation kann die Betriebsflüssigkeit wieder in den Flüssigkeitskreislauf bzw. in den Gasdurchlauf zurückgeführt werden. Das erfindungsgemäße Prinzip der Abluftkühlung führt also nicht nur zu der gewünschten Abkühlung der Abluft, sondern ermöglicht auch eine Rückgewinnung der Betriebsflüssigkeit. Dadurch muß der Betriebsflüssigkeitskreislauf nicht bzw. nur mit einer reduzierten Menge an Betriebsflüssigkeit ergänzt werden. Eine ständig steigende Konzentration von chemischen Bestandteilen, Feststoffen und Kalk in der Betriebsflüssigkeit sowie die daraus resultierende Korrosion, Verschmutzung und Verkalkung werden somit zuverlässig verhindert bzw. verzögert.The principle of exhaust air cooling according to the invention is not only limited to rotary vane and Roots pumps, but is also suitable for other mechanical compressors, such as liquid ring machines. In the case of liquid ring machines, this principle offers the advantage that an additional proportion of vaporous operating fluid is condensed out of the exhaust air due to the stronger cooling of the exhaust air. After their condensation, the operating liquid can be returned to the liquid circuit or the gas flow. The principle of exhaust air cooling according to the invention therefore not only leads to the desired cooling of the exhaust air, but also enables the operating fluid to be recovered. As a result, the operating fluid circuit does not have to be supplemented or only with a reduced amount of operating fluid. A constantly increasing concentration of chemical components, solids and lime in the operating fluid as well as the resulting corrosion, contamination and calcification are thus reliably prevented or delayed.

Die Verwendung einer Flüssigkeitsringmaschine als mechanischen Verdichter bietet gegenüber einer Drehschieberpumpe eine Vielzahl von Vorteilen. So ist eine Flüssigkeitsringmaschine gegenüber einer vom Fördermedium verursachten Verschmutzung durch Feststoffe unempfindlicher als eine Drehschieberpumpe. Weiterhin fungiert eine Flüssigkeitsringmaschine als Gaswäscher, da sie die Feststoffe des Fördermediums (z.B. Staub) im Betriebsflüssigkeitskreislauf bindet und im Abscheider (Ort mit der geringsten Strömungsgeschwindigkeit) abscheidet. Darüber hinaus arbeitet das Laufrad einer Flüssigkeitsringmaschine berührungslos (Abdichtmedium ist die Betriebsflüssigkeit) und damit, im Gegensatz zur Drehschieberpumpe, weitestgehend verschleißfrei.The use of a liquid ring machine as a mechanical compressor offers a number of advantages over a rotary vane pump. A liquid ring machine is less sensitive to contamination from solids caused by the pumped medium than a rotary vane pump. Furthermore, a liquid ring machine functions as a gas scrubber, since it binds the solids of the medium (e.g. dust) in the operating liquid circuit and separates it in the separator (location with the lowest flow rate). In addition, the impeller of a liquid ring machine works without contact (sealing medium is the operating fluid) and, in contrast to the rotary vane pump, is largely wear-free.

Bei der Nachkühleinheit sind unter dem Begriff Kammer alle konstruktiven Möglichkeiten zu verstehen, die wenigstens eine als Wärmeübertragungsfläche dienende Trennwand zwischen der Saugleitung und der Abluftleitung aufweisen. Dies kann z.B. auch durch ein ineinandergreifendes Geflecht von Rohrleitungen erzielt werden.In the case of the after-cooling unit, the term chamber means all constructive possibilities which have at least one partition between the suction line and the exhaust air line, which serves as a heat transfer surface. This can e.g. can also be achieved by an interlocking network of pipes.

Die Erfindung sowie weitere vorteilhafte Ausgestaltungen werden im folgenden anhand eines schematisch dargestellten Ausführungsbeispiels näher erläutert; darin zeigen:

FIG 1
eine erste Ausführungsform des erfindungsgemäßen mechanischen Verdichters,
FIG 2
eine zweite Ausführungsform des erfindungsgemäßen mechanischen Verdichters.
The invention and further advantageous embodiments are explained in more detail below with reference to a schematically illustrated embodiment; show in it:
FIG. 1
a first embodiment of the mechanical compressor according to the invention,
FIG 2
a second embodiment of the mechanical compressor according to the invention.

In FIG 1 ist mit 1 ein als Flüssigkeitsringmaschine ausgebildeter mechanischer Verdichter bezeichnet. An eine erste Anschlußöffnung 11 der Flüssigkeitsringmaschine 1 ist eine Saugleitung 2 geschaltet. An eine zweite, entgegengesetzt wirkende Anschlußöffnung 12 ist der Flüssigkeitsringmaschine 1 über eine Verbindungsleitung 3 ein Flüssigkeitsabscheider 4 nachgeschaltet.In FIG. 1, 1 denotes a mechanical compressor designed as a liquid ring machine. A suction line 2 is connected to a first connection opening 11 of the liquid ring machine 1. At a second, opposite acting connection opening 12 is the Liquid ring machine 1 is connected via a connecting line 3 to a liquid separator 4.

Der Flüssigkeitsabscheider 4 weist eine Abluftleitung 5 auf und ist über eine Rücklaufleitung 6 mit der Flüssigkeitsringmaschine 1 verbunden.The liquid separator 4 has an exhaust air line 5 and is connected to the liquid ring machine 1 via a return line 6.

Die Flüssigkeitsringmaschine 1 weist weiterhin eine Nachkühleinheit 7 auf, die mit ihrer ersten Kammer 71 in die Saugleitung 2 und mit ihrer zweiten Kammer 72 in die Abluftleitung 5 geschaltet ist. In der in der Zeichnung dargestellten Ausgestaltung der Flüssigkeitsringmaschine 1 zweigt von dem aus der Nachkühleinheit 7 herausgeführten Ende 51 der Abluftleitung 5 eine Kondensatleitung 8 ab, durch die die kondensierte Betriebsflüssigkeit in den Flüssigkeitsabscheider 4 und damit in den Betriebsflüssigkeitskreislauf (durchzogene Linie) und/oder in den Gasdurchlauf (gestrichelte Linie) zurückgeführt wird.The liquid ring machine 1 also has an after-cooling unit 7, which is connected with its first chamber 71 into the suction line 2 and with its second chamber 72 into the exhaust air line 5. In the embodiment of the liquid ring machine 1 shown in the drawing, a condensate line 8 branches off from the end 51 of the exhaust air line 5 which is led out of the after-cooling unit 7, through which the condensed operating liquid enters the liquid separator 4 and thus into the operating liquid circuit (solid line) and / or in the gas flow (dashed line) is returned.

Die Kondensatleitung 8 muß nicht notwendigerweise von dem Ende 51 der Abluftleitung 5 abzweigen; die Kondensatleitung 8 kann vielmehr auch direkt von der Kammer 72 der Nachkühleinheit 7 herausgeführt und dann wiederum in die Saugleitung 2 oder in den Flüssigkeitsabscheider 4 münden.The condensate line 8 does not necessarily have to branch off from the end 51 of the exhaust air line 5; rather, the condensate line 8 can also be led directly out of the chamber 72 of the after-cooling unit 7 and then in turn lead into the suction line 2 or into the liquid separator 4.

Die Anordnung der Nachkühleinheit 7 ist nicht auf das in der Zeichnung dargestellte Ausführungsbeispiel beschränkt. Die Nachkühleinheit 7 kann auch direkt auf dem Abluftstutzen des Abscheiders 4 sitzen. Dies hat den Vorteil, daß das Kondensat aufgrund der Schwerkraft direkt in den Abscheider 4 zurückläuft. Die Kondensatleitung wird dadurch eingespart.The arrangement of the after-cooling unit 7 is not limited to the exemplary embodiment shown in the drawing. The aftercooling unit 7 can also sit directly on the exhaust port of the separator 4. This has the advantage that the condensate runs back directly into the separator 4 due to gravity. This saves the condensate line.

Über eine Einspritzleitung 9, die im gezeigten Ausführungsbeispiel von der Rücklaufleitung 6 abzweigt, wird vor der Nachkühleinheit 7 in die Saugleitung 2 Betriebsflüssigkeit eingespritzt.Operating fluid is injected into the suction line 2 in front of the after-cooling unit 7 via an injection line 9, which branches off from the return line 6 in the exemplary embodiment shown.

Die im Flüssigkeitsabscheider 4 aus dem gasförmigen Fördermedium abgeschiedene Betriebsflüssigkeit wird durch ein in der Rücklaufleitung 6 angeordneten Wärmetauscher 10 gekühlt. Über die Einspritzleitung 9 wird damit nur gekühlte Betriebsflüssigkeit in die Saugleitung 2 eingespritzt.The operating liquid separated from the gaseous conveying medium in the liquid separator 4 is cooled by a heat exchanger 10 arranged in the return line 6. Only cooled operating liquid is thus injected into the suction line 2 via the injection line 9.

Das in der Saugleitung 2 strömende Fördermedium wird durch die beim Einspritzen verdampfende Betriebsflüssigkeit, vorzugsweise Wasser, teilweise oder vollständig gesättigt. Die zur Verdampfung der eingespritzten Betriebsflüssigkeit notwendige Verdampfungswärme wird dem Fördermedium in der Saugleitung entzogen, wodurch sich das Fördermedium abkühlt. Damit wird das bereits vorhandene Temperaturgefälle zwischen dem in der Saugleitung 2 strömenden Fördermedium (Saugluft) und dem in der Abluftleitung 5 strömenden Fördermedium (Abluft) vergrößert.The conveying medium flowing in the suction line 2 is partially or completely saturated by the operating liquid, preferably water, which evaporates during injection. The heat of vaporization required to evaporate the injected operating fluid is extracted from the medium in the suction line, causing the medium to cool down. The existing temperature gradient between the conveying medium (suction air) flowing in the suction line 2 and the conveying medium (exhaust air) flowing in the exhaust air line 5 is thus increased.

Die in FIG 1 dargestellte Flüssigkeitsringmaschine 1 arbeitet in einem geschlossenen Betriebsflüssigkeitskreislauf. Abhängig vom Ansaugdruck ist dadurch nur eine geringe bis gar keine Zugabe von Betriebsflüssigkeit (Ergänzungswasser, das chemische Bestandteile, Feststoffe und Kalk enthält) notwendig. Damit wird die von den chemischen Bestandteilen verursachte Korrosion und die Verschmutzung durch Feststoffe sowie die Verkalkung zuverlässig verhindert bzw. verzögert.The liquid ring machine 1 shown in FIG. 1 operates in a closed operating liquid circuit. Depending on the suction pressure, little or no addition of operating fluid (make-up water that contains chemical components, solids and lime) is necessary. This reliably prevents or delays the corrosion caused by the chemical components and the contamination by solids as well as the calcification.

Das erfindungsgemäße Prinzip der Abluftkühlung ist nicht nur auf Flüssigkeitsringmaschinen beschränkt, sondern eignet sich für alle mechanischen Verdichter. In FIG 2 ist dies am Beispiel einer trockenlaufenden Verdrängerpumpe gezeigt, die ebenfalls mit 1 bezeichnet ist. An eine erste Anschlußöffnung 11 der Verdrängerpumpe 1 ist eine Saugleitung 2 geschaltet. An eine zweite, entgegengesetzt wirkende Anschlußöffnung 12 der Verdrängerpumpe 1 ist eine Druckleitung 3 geschaltet, die bei dem in FIG 2 gezeigten Ausführungsbeispiel direkt in eine Nachkühleinheit 7 mündet. Die Nachkühleinheit 7 besteht aus zwei getrennten Kammern 71 und 72. Die Nachkühleinheit 7 ist mit ihrer ersten Kammer 71 in die Saugleitung 2 und mit ihrer zweiten Kammer 72 in die Druckleitung 3 geschaltet.The principle of exhaust air cooling according to the invention is not only limited to liquid ring machines, but is suitable for all mechanical compressors. This is shown in FIG. 2 using the example of a dry-running positive displacement pump, which is also designated by 1. A suction line 2 is connected to a first connection opening 11 of the displacement pump 1. A pressure line 3 is connected to a second, oppositely acting connection opening 12 of the positive displacement pump 1, which in the embodiment shown in FIG. 2 opens directly into an aftercooling unit 7. The after-cooling unit 7 consists of two separate chambers 71 and 72. The after-cooling unit 7 is switched with its first chamber 71 into the suction line 2 and with its second chamber 72 into the pressure line 3.

Über eine Einspritzleitung 9 wird vor der Nachkühleinheit 7 in die Saugleitung 2 gekühlte Flüssigkeit eingespritzt. Diese Flüssigkeit kann z.B. aus dem Prozeßkreislauf entnommen werden. Durch die Einspritzung von Flüssigkeit in die Saugleitung 2 wird der bereits bei FIG 1 beschriebene Kühleffekt erzielt.Cooled liquid is injected into the suction line 2 in front of the after-cooling unit 7 via an injection line 9. This liquid can e.g. be removed from the process cycle. The cooling effect already described in FIG. 1 is achieved by injecting liquid into the suction line 2.

Claims (6)

  1. Compressor system having a mechanical compressor, which has a first connection opening (11) and a second connection opening (12), with a suction line (2) being connected to the first connection opening (11), and a pressure line (3; 5) being connected to the second connection opening (12), in which system liquid is furthermore injected into the suction line (2) by means of an injection line (9), and provided in the course of the pressure line (3; 5) is an after-cooler unit (7) which in terms of flow is arranged downstream of the compressor, characterised
    - in that the after-cooler unit (7) consists of two separate chambers (71; 72) having at least one dividing wall, with the first chamber (71) being connected in series with the suction line (2) and the second chamber (72) being connected in series with the pressure line (3; 5), and
    - in that furthermore the injection line (9) opens out into the suction line upstream of the after-cooler unit (7) in terms of flow and/or inside the after-cooler unit (7).
  2. Compressor system according to claim 1, having a mechanical compressor which is constructed as a liquid ring machine, characterised by the following features:
    - the pressure line comprises a connection line (3), by which a liquid separator (4) is connected to the second connection opening (12) of the liquid ring machine (1), as well as at least one exhaust air line which leads out of the liquid separator (4);
    - the liquid separator (4) has at least one return line (6) which leads back to the liquid ring machine (1);
    - the second chamber (72) of the after-cooler unit (7) is connected into the exhaust air line (5);
    - the condensate can be returned from the second chamber (72) of the after-cooler unit (7) into the operating liquid circuit and/or into the passage of the gas.
  3. Compressor system according to claim 2, characterised in that a heat exchanger (10) is connected into the return line (6).
  4. Compressor system according to claim 2, characterised in that the injection line (9) branches off from the return line (6) between heat exchanger (10) and liquid ring machine (1).
  5. Compressor system according to claim 2, characterised in that the heat exchanger (10) is constructed as an air cooler.
  6. Compressor system according to claim 2, characterised in that the condensate return takes place by way of a condensate line (8), which branches off from the end (51) of the exhaust air line (5) that leads out of the after-cooler unit (7).
EP94110281A 1993-08-11 1994-07-01 Mechanical compression plant Expired - Lifetime EP0638723B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4327003 1993-08-11
DE19934327003 DE4327003C1 (en) 1993-08-11 1993-08-11 Liquid-ring machine
DE9404463U 1994-03-16
DE9404463U DE9404463U1 (en) 1994-03-16 1994-03-16 Mechanical compressor

Publications (2)

Publication Number Publication Date
EP0638723A1 EP0638723A1 (en) 1995-02-15
EP0638723B1 true EP0638723B1 (en) 1997-06-04

Family

ID=25928533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94110281A Expired - Lifetime EP0638723B1 (en) 1993-08-11 1994-07-01 Mechanical compression plant

Country Status (7)

Country Link
US (1) US5511953A (en)
EP (1) EP0638723B1 (en)
JP (1) JP3515998B2 (en)
CN (1) CN1040683C (en)
AT (1) ATE154103T1 (en)
DE (1) DE59402988D1 (en)
ES (1) ES2102731T3 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59500510D1 (en) * 1994-12-06 1997-09-18 Siemens Ag Compressor unit
DE19631766A1 (en) * 1996-08-06 1998-02-12 Siemens Ag Compressor unit
US6692234B2 (en) * 1999-03-22 2004-02-17 Water Management Systems Pump system with vacuum source
DE19942265A1 (en) * 1999-09-04 2001-03-08 Alup Kompressoren Gmbh Compressor system and method for compressing a gas
WO2002018032A2 (en) * 2000-08-31 2002-03-07 Harmse Barthlo Von Moltitz A method of treating an effluent gas stream, and apparatus for use in such method
DE20015744U1 (en) * 2000-09-12 2001-01-25 Rietschle Werner Gmbh & Co Kg Pump with water feed
CN102836903B (en) * 2012-08-27 2015-01-21 泰州市长征冷机管件有限公司 Gas-exhausting pipe numerical control automatic pipe-bending machine in freezer compressor
TWI527684B (en) 2013-07-17 2016-04-01 復盛股份有限公司 Air compression system and cooling structure thereof
CN104343663B (en) * 2013-07-23 2016-07-13 复盛股份有限公司 Air compression system and cooling structure thereof
WO2016112259A1 (en) * 2015-01-08 2016-07-14 Gardner Denver Nash Llc Low pressure sealing liquid entry area in a compressor type liquid ring pump
CN112944704A (en) * 2019-12-10 2021-06-11 珠海格力电器股份有限公司 Refrigeration system with cooling device and control method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1991548A (en) * 1930-09-30 1935-02-19 Prest O Lite Co Inc Gas pumping system
US2385667A (en) * 1944-08-24 1945-09-25 Robert C Webber Refrigerating system
GB934490A (en) * 1959-11-20 1963-08-21 Denco Miller Ltd Improvements in refrigeration equipment
GB985951A (en) * 1962-04-05 1965-03-10 Hick Hargreaves & Company Ltd Liquid ring pumps
US3765755A (en) * 1971-10-18 1973-10-16 Kane Corp Du Microimage viewer
DE2841906C2 (en) * 1978-09-26 1980-02-21 Siemens Ag, 1000 Berlin Und 8000 Muenchen Liquid ring compressor or vacuum pump
DE3425616A1 (en) * 1984-07-12 1986-01-23 Loewe Pumpenfabrik GmbH, 2120 Lüneburg ARRANGEMENT TO MINIMIZE COOLANT CONSUMPTION IN PARTICULAR. FOR LIQUID RING VACUUM PUMPS OR THE LIKE.
SE452790B (en) * 1985-06-07 1987-12-14 Svenska Rotor Maskiner Ab OIL-FREE GAS COMPRESSOR
EP0486726B1 (en) * 1990-11-23 1994-07-13 Siemens Aktiengesellschaft Liquid ring pump

Also Published As

Publication number Publication date
ATE154103T1 (en) 1997-06-15
ES2102731T3 (en) 1997-08-01
DE59402988D1 (en) 1997-07-10
JPH0777183A (en) 1995-03-20
CN1108357A (en) 1995-09-13
US5511953A (en) 1996-04-30
JP3515998B2 (en) 2004-04-05
CN1040683C (en) 1998-11-11
EP0638723A1 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
DE10138255B4 (en) Arrangement of cascade refrigeration system
DE60200493T2 (en) Two-stage vacuum pump
EP0638723B1 (en) Mechanical compression plant
DE602004003710T2 (en) CLIMATE CONTROL SYSTEM WITH A STEAM COMPRESSION CIRCUIT IN COMBINATION WITH AN ABSORPTION CIRCUIT
DE2638480A1 (en) HEAT PUMP SYSTEM
DE2231921A1 (en) STEAM CONDENSATION PLANT WITH TWO-STAGE AIR CONDENSATION
DE10201427A1 (en) Air dehumidification system in air conditioning systems
DE3035349C2 (en) Plant for the evaporation of liquid natural gas
DE3219680A1 (en) HEAT PUMP SYSTEM
EP0486726B1 (en) Liquid ring pump
DE3616797A1 (en) Steam turbine system
DE3440253A1 (en) COOLING DEVICE
DE4327003C1 (en) Liquid-ring machine
DE69921871T2 (en) Absorption refrigeration system with coupling of condensate and solution
WO2003083307A1 (en) Pump device, method for operating a pump device and the use thereof in a steam turbine installation
DE2837695A1 (en) METHOD AND DEVICE FOR IMPROVING EFFICIENCY IN A REFRIGERATION SYSTEM
DE102012017314A1 (en) System for increasing efficiency of two-stage or multi-stage compressor assembly for compression of process gas, circulates cooling agent to absorption-type refrigeration machine and intercooler
DE3130390A1 (en) Refrigerating aggregate
DE1035669B (en) Process for operating a compressor cooling system with at least two-stage compression of a refrigerant circulating in the system and a compressor cooling system for carrying out the process
DE3615375C2 (en)
DE19506186B4 (en) Method for operating a steam power plant and device for carrying out the method
DE1551615C3 (en) System for liquefying a gas that condenses at a very low temperature
EP1265042B1 (en) Refrigeration system, using a two or more component mixture, with at least one compressor unit
AT92227B (en) Process for generating distilled make-up water in power plants, in particular steam turbine plants.
DE2730769A1 (en) COMBUSTION MACHINE WITH A DEVICE FOR REDUCING EXHAUST GAS PRESSURE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19950307

17Q First examination report despatched

Effective date: 19960226

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 154103

Country of ref document: AT

Date of ref document: 19970615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59402988

Country of ref document: DE

Date of ref document: 19970710

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2102731

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970714

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981102

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990616

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990713

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990721

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20000731

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020603

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120725

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120724

Year of fee payment: 19

Ref country code: FR

Payment date: 20120731

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130729

Year of fee payment: 20

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59402988

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140702