EP0634497B1 - Composite material with intermetallic matrix of the A1Ni-type reinforced by silicon carbide particles - Google Patents

Composite material with intermetallic matrix of the A1Ni-type reinforced by silicon carbide particles Download PDF

Info

Publication number
EP0634497B1
EP0634497B1 EP94401585A EP94401585A EP0634497B1 EP 0634497 B1 EP0634497 B1 EP 0634497B1 EP 94401585 A EP94401585 A EP 94401585A EP 94401585 A EP94401585 A EP 94401585A EP 0634497 B1 EP0634497 B1 EP 0634497B1
Authority
EP
European Patent Office
Prior art keywords
matrix
composite material
alni
particles
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94401585A
Other languages
German (de)
French (fr)
Other versions
EP0634497A1 (en
Inventor
Henri Abiven
Christophe Colin
Jean Bouix
Michel Macari
Jean-Claude Viala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0634497A1 publication Critical patent/EP0634497A1/en
Application granted granted Critical
Publication of EP0634497B1 publication Critical patent/EP0634497B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC

Definitions

  • the present invention relates to a material composite comprising a compound matrix AlNi type intermetallic, reinforced by silicon carbide particles SiC, which is intended for medium or high temperature applications, for example 600 to 1200 ° C, possibly in an atmosphere oxidizing.
  • intermetallic compounds such as AlNi are currently the subject of a major research and development effort in all highly industrialized countries.
  • these intermetallic compounds exhibit great interest.
  • intermetallic compounds AlNi type nickel aluminide have low density (5.9) relative to that (9) of the superalloys nickel based, and they have excellent strength to high temperature oxidation.
  • materials reinforced with TiB 2 or Al 2 O 3 which have a markedly improved resistance to hot creep, have a lower resistance to oxidation than that of the intermetallic compound AlNi.
  • this reduction in oxidation resistance is due to the presence of TiB 2 particles which oxidize faster than the intermetallic compound AlNi; in the case of Al 2 O 3 reinforcement, this reduction in oxidation resistance is due to the fact that oxygen can migrate within the composite material by the microcracks which exist at the matrix-particle interface of Al 2 O 3 due to the weak interfacial bond.
  • the object of the present invention is precisely use as reinforcement in a matrix intermetallic AlNi type of a compound, carbide silicon, which although reactive with the matrix, can be stabilized in it thanks to a contribution of silicon and lead to a composite material satisfactory.
  • the composite material comprises a matrix consisting mainly of a compound AlNi type intermetallic comprising 43 to 63% nickel and containing in solid solution from 1.5 to 30% in silicon atoms, and a reinforcement formed of silicon carbide particles SiC dispersed in this matrix, said composite material comprising from 10 to 60% by volume of SiC particles.
  • Decomposition of silicon carbide SiC occurs from about 700 ° C by chemical reaction with the intermetallic compound AlNi, which releases aluminum carbide Al 4 C 3 or carbon, while silicon passes into solid solution in the intermetallic compound.
  • this amount of silicon is 2 at 11% in atoms for materials having to resist temperatures of 1000 ° C.
  • a material associating particles silicon carbide SiC and a matrix AlNi type intermetallic solution solid a sufficient quantity of silicon constitutes a system in thermodynamic equilibrium which does not evolve more, by chemical reaction matrix / reinforcement of SiC, when worn at high temperature.
  • a limited chemical reaction between the matrix and the silicon carbide reinforcement creates a strong interfacial bond between the reinforcement and the matrix, which is advantageous for obtaining a high oxidation resistance of the material.
  • the composite material comprising a reinforcement of silicon carbide exhibits both chemical stability and good behavior hot creep of AlNi / TiB 2 composites, while retaining the excellent oxidation resistance of unreinforced AlNi type intermetallic compounds.
  • the carbide particles of silicon used as reinforcement in the composite material can be in different forms.
  • the silicon carbide may be under different crystalline forms, for example under forms corresponding to alpha-hexagonal varieties and / or beta-cubics.
  • the carbide particles of silicon have an average length, following their longer large dimension, from 1 to 100 ⁇ m, because with these dimensions optimal particle efficiency in as reinforcement.
  • the composite material of the invention can understand more or less significant amounts of particle reinforcement.
  • any material composite with particulate reinforcement we are interested in increase the breaking strength, the modulus elasticity and high creep resistance temperature, use a large amount of reinforcing particles, especially as the density of the silicon carbide being less than that of the matrix (3.2 and 5.9 respectively), the material will be the lighter the quantity of particles will be bigger.
  • the proportion of reinforcement becomes important, the particles tend to enter contact between them and to form porous aggregates, which constitute weak points from which cracks may appear and then spread. he there is therefore a threshold not to be exceeded.
  • the composite material comprises of 10 60% by volume of SiC particles.
  • the SiC particle content is also chosen according to the geometrical characteristics (average size, shape, etc.) of the SiC particles and grains of the matrix to get the best results.
  • the SiC particles have a average length, according to their largest dimension, from 5 to 50 ⁇ m, we generally prefer to use 10 to 30% by volume of SiC particles to obtain a good compromise between toughness, breaking strength and resistance to creep at high temperature.
  • the AlNi type intermetallic compound used as a matrix in the composite material of the invention is an intermetallic aluminum compound and nickel mainly consisting of a phase having the B2 structure (CsCl type) characteristic of compound AlNi, which contains in solution a quantity suitable silicon.
  • the matrix can also include common impurities such as alumina and / or iron, in small proportions, for example of 0.5 to 2% by volume for alumina and 0.5 to 2% by volume weight for iron, dissolved or in the form of microprecipitates.
  • the phase with structure B2 of AlNi compound is characterized by a domain of existence relatively large in the AlNi binary system, since this domain extends for example from 43 to 63% in nickel atoms at 1000 ° C. This phase can dissolve, in the form of a solid solution, an amount of silicon which depends on the temperature and the atomic ratio between aluminum and nickel.
  • any Al-Ni-Si ternary alloy of composition located inside the domain of existence of this phase of structure B2 can be suitable as a matrix provided that this alloy contains the minimum silicon content required for the intermetallic compound be in equilibrium thermodynamics with silicon carbide at the desired temperature, so that the interface reinforcement matrix no longer evolves by chemical reaction to high temperature.
  • This minimum content depends on the content of nickel of the matrix and the temperature. So she is 1.5% in the case of a matrix containing 43% in nickel atom at a temperature of 1000 ° C.
  • the compound intermetallic AlNi constituting the matrix comprises of 50 to 63% in atoms of nickel to avoid that, in the case of a limited reaction between the matrix and the silicon carbide, we have a carbide deposit of aluminum at the matrix-particle interface of silicon.
  • the composite material of the invention can be prepared by conventional metallurgy processes for powders or foundries. Since the reinforcement and the matrix constituting the composite material are very refractory compounds, since the points of fusion of silicon carbide SiC and aluminide of nickel AlNi are respectively around 2550 and 1650 ° C, these processes will preferably be classic solid phase processes in metallurgy of powders such as hot compression, uniaxial or isostatic, or the hot extrusion of mixtures of SiC and AlNi powders.
  • the silicon which must be included in the intermetallic compound matrix can be added, at least in part, before manufacture composite material, or be obtained only by partial decomposition of carbide particles from silicon during material development composite.
  • the material can be prepared composite of the invention by subjecting it to a hot densification in solid phase a mixture of powder of an AlNi intermetallic compound containing or not silicon and SiC particles.
  • materials composites of the invention are prepared from of an AlNi intermetallic compound to which has been added silicon.
  • the amount of silicon added can be less, equal or greater than the content required in silicon to reach equilibrium thermodynamics between matrix and SiC particles.
  • thermodynamic equilibrium matrix / particles When this quantity is equal to or greater than the content corresponding to the thermodynamic equilibrium matrix / particles, at the production temperature, obtains a material characterized by a bond weak at the matrix / particle interface because the chemical compatibility between matrix and particles of SiC is ensured at all stages of the development of the material, so there is no reaction between the matrix and the SiC particles.
  • the SiC decomposition reaction gives silicon which diffuses very quickly in the intermetallic compound while carbon remains at near the particle / matrix interface in the form of submicron precipitates.
  • this interfacial zone has an average coefficient of expansion between that of the particles (4 to 5.10 -6 K -1 ) and that of the matrix (13 to 15.10 -6 K -1 ), and therefore it can gradually absorb some of the static mechanical stresses generated in thermal cycling, the submicron carbon precipitates acting as dislocation traps.
  • the SiC decomposition reaction is not accompanied by the formation of a continuous layer of a brittle compound at the interface, which is particularly favorable for obtaining high mechanical properties with regard to the composite material.
  • a quantity of aluminum higher than the quantity of nickel, aluminum carbide (Al 4 C 3 ) is would form at the matrix / particle interface, which is unfavorable for the composite material, due, on the one hand, to the low stability of this carbide in a humid atmosphere, and, on the other hand, to the lower resistance to cracking of matrices poor in nickel.
  • materials composites of the invention are prepared from of an AlNi intermetallic compound without addition of silicon.
  • the required silicon content comes only from the decomposition reaction of the silicon carbide during material development composite.
  • intermetallic compound comprising at least 50% nickel atoms to create around the particles of SiC a two-phase transition zone consisting of a dispersion of free carbon in the matrix.
  • the amount of silicon dissolved in the matrix of intermetallic compound depends on the composition of the starting intermetallic compound and the processing temperature, because it corresponds to thermodynamic equilibrium between the matrix and the SiC particles at this temperature.
  • the SiC particles used for the preparation composite materials of the invention can be grains with an angular outline obtained by grinding industrially produced silicon carbide blocks and composed of crystals of the alpha hexagonal variety (more precisely a mixture of polytypes derived from this variety), almost monocrystalline wafers alpha-hexagonal or beta-cubic varieties, obtained by crystal growth techniques or whiskers of silicon carbide obtained by processes classics.
  • intermetallic compound AlNi containing or not silicon used as the starting material for this elaboration, is also obtained by processes classics such as reactive sintering, "O-spray” foundry, plasma projection. Generally, it is used under the powder form with a particle size of 5 to 50 ⁇ m.
  • a mixture of powders comprising 20% in particle volume of silicon carbide by grinding mechanical in a carbide ball mortar tungsten.
  • the mixture thus obtained is then subjected to densification by hot compression under vacuum of 10Pa, in a cell made up of a matrix cylindrical and two graphite pistons. After application of a pressure of 100 MPa for 2 hours at 1150 ° C, a disc of composite material is obtained with a total porosity of less than 1%.
  • the particles silicon carbide can no longer react with the matrix as long as the temperature remains below 1150 ° C, which corresponds to an upper limit of use of the material. So we got, after a transient reaction which allowed the establishment of a strong interfacial bond, matrix / particles, a composite disc, in which the interface has become chemically stable.
  • a mixture of the two powders is prepared comprising 30% by volume of SiC particles and are formed at from this mixture a composite disc by hot compression under the same conditions as those of Example 1.
  • This material is chemically inert at 1150 ° C.
  • Silicon carbide whiskers are beta-cubic variety and their extreme dimension is 0.2 to 5 ⁇ m.
  • the whiskers are mixed with the powder of intermetallic compound so as to obtain a fraction volume in whiskers of 15%.
  • After mechanical mixing in the presence of a pasty organic binder the cold mixing in the form of a ribbon, then cut a disc in this ribbon and we put it in the cell of graphite compression. We then heat slowly the assembly under primary vacuum until evaporation complete with the organic binder, then bring the mixture to 1150 ° C for 2h, under a pressure of 100MPa.
  • a composite disc is thus obtained having a residual porosity less than 1.5% in which the silicon carbide whiskers are preferably aligned parallel to the direction extrusion.
  • the second mode of manufacture of the composite materials of the invention in starting from particles of silicon carbide and a AlNi intermetallic compound powder (50 atomic% of Al and 50 atomic% of Ni), having a particle size from 5 to 10 ⁇ m.
  • the silicon carbide particles have also an average dimension of 5 to 10 ⁇ m and we prepares from these particles a mixture comprising 15% by volume of particles. After homogenization of the mixture, it is injected into the flame of an arc plasma torch whose power has been set in such a way that the grains of compound intermetallic are melted but not the particles of SiC.

Description

La présente invention concerne un matériau composite comprenant une matrice de composé intermétallique du type AlNi, renforcée par des particules de carbure de silicium SiC, qui est destiné à des applications à moyenne ou à haute température, par exemple 600 à 1200°C, éventuellement en atmosphère oxydante.The present invention relates to a material composite comprising a compound matrix AlNi type intermetallic, reinforced by silicon carbide particles SiC, which is intended for medium or high temperature applications, for example 600 to 1200 ° C, possibly in an atmosphere oxidizing.

Des matériaux à base de composés intermétalliques tels que AlNi font actuellement l'objet d'un important effort de recherche et de développement dans tous les pays hautement industrialisés. Dans les domaines de l'aéronautique et de l'aérospatiale, où il existe une forte demande pour des matériaux présentant des propriétés mécaniques spécifiques, une résistance au fluage et une tenue à l'oxydation plus élevées que celles des alliages métalliques actuellement utilisés, ces composés intermétalliques présentent un grand intérêt.Materials based on intermetallic compounds such as AlNi are currently the subject of a major research and development effort in all highly industrialized countries. In the areas of aeronautics and aerospace, where there is a high demand for materials with specific mechanical properties, resistance to creep and resistance to oxidation higher than those of the metal alloys currently used, these intermetallic compounds exhibit great interest.

En effet, les composés intermétalliques d'aluminiure de nickel de type AlNi ont une faible densité (5,9) par rapport à celle (9) des superalliages à base de nickel, et ils ont une excellente résistance à l'oxydation à haute température. Aussi, on les a déjà utilisés comme revêtement protecteur, notamment sur des superalliages à base de nickel. Cependant, jusqu'à maintenant, ils n'ont pu être directement employés comme éléments de structure chaude car leurs propriétés mécaniques à chaud sont trop médiocres. Par ailleurs, à basse température, ils manquent de ductilité et ont une faible ténacité. Indeed, intermetallic compounds AlNi type nickel aluminide have low density (5.9) relative to that (9) of the superalloys nickel based, and they have excellent strength to high temperature oxidation. Also, we already have them used as a protective coating, in particular on nickel-based superalloys. However, until now they could not be directly employed as hot structural elements because their properties mechanical hot are too poor. Furthermore, at low temperature, they lack ductility and have a low toughness.

Aussi, des recherches ont été entreprises pour améliorer les propriétés de ces composés intermétalliques et l'on a ainsi envisagé de les utiliser sous la forme de matériaux composites renforcés par des fibres ou des particules. Des matériaux composites de ce type renforcés par des fibres de tungstène, des fibres d'alumine, des particules de TiB2 ou des particules de nitrure d'aluminium sont décrits par K. Vedula dans Intermetallic Compounds : Structure and Mechanical Properties. Proc. 6th, Jap Inst. of Metal Int. Symp. Sendai (Japan), juin 1991, pages 901-925, et par R.J. Arsenault dans Advanced Structural Inorganic Composites P. Vincenzini (Editor) Elsevier Science Publishers B.V., 1991.Also, research has been undertaken to improve the properties of these intermetallic compounds and it has thus been envisaged to use them in the form of composite materials reinforced with fibers or particles. Composite materials of this type reinforced with tungsten fibers, alumina fibers, TiB 2 particles or aluminum nitride particles are described by K. Vedula in Intermetallic Compounds: Structure and Mechanical Properties. Proc. 6th, Jap Inst. of Metal Int. Nice. Sendai (Japan), June 1991, pages 901-925, and by RJ Arsenault in Advanced Structural Inorganic Composites P. Vincenzini (Editor) Elsevier Science Publishers BV, 1991.

Toutefois, les matériaux renforcés avec TiB2 ou Al2O3 qui ont une résistance au fluage à chaud nettement améliorée, présentent une résistance à l'oxydation moins bonne que celle du composé intermétallique AlNi. Dans le cas du renfort en TiB2 , cette diminution de la résistance à l'oxydation est due à la présence des particules de TiB2 qui s'oxydent plus rapidement que le composé intermétallique AlNi ; dans le cas du renfort en Al2O3, cette diminution de la résistance à l'oxydation est due au fait que l'oxygène peut migrer au sein du matériau composite par les microfissures qui existent à l'interface matrice-particules de Al2O3 en raison de la faible liaison interfaciale.However, materials reinforced with TiB 2 or Al 2 O 3, which have a markedly improved resistance to hot creep, have a lower resistance to oxidation than that of the intermetallic compound AlNi. In the case of TiB 2 reinforcement, this reduction in oxidation resistance is due to the presence of TiB 2 particles which oxidize faster than the intermetallic compound AlNi; in the case of Al 2 O 3 reinforcement, this reduction in oxidation resistance is due to the fact that oxygen can migrate within the composite material by the microcracks which exist at the matrix-particle interface of Al 2 O 3 due to the weak interfacial bond.

Aussi, pour augmenter la résistance au fluage à chaud d'un composé intermétallique de type AlNi sans altérer son excellente tenue naturelle à l'oxydation, on a intérêt à le renforcer par des particules ou des fibres peu oxydables, formant de plus avec la matrice une liaison interfaciale très forte. Une telle liaison pourrait être obtenue avec un renfort chimiquement réactif vis-à-vis de la matrice, mais dans ce dernier cas, l'interaction chimique entre la matrice et le renfort peut se poursuivre durant tout le temps où le matériau est utilisé à haute température, ce qui conduira à une décroissance régulière de ses propriétés jusqu'à la destruction complète du renfort.Also, to increase the creep resistance to hot of an AlNi type intermetallic compound without alter its excellent natural resistance to oxidation, it is best to strengthen it with particles or weakly oxidizable fibers, also forming with the matrix a very strong interfacial bond. Such a bond could be obtained with a chemical reinforcement reactive towards the matrix, but in the latter case the chemical interaction between the matrix and the reinforcement can continue throughout the time when the material is used at high temperature, which will lead to a regular decrease in its properties until the reinforcement is completely destroyed.

De ce fait, on a exclu jusqu'à présent l'emploi de renforts chimiquement réactifs avec une matrice en AlNi comme il est indiqué par Vedula qui constate à la page 920 du document précité qu'il n'existe pour le moment aucune fibre de renforcement présentant toutes les propriétés requises pour une matrice de NiAl.As a result, the use of chemically reactive reinforcements with an AlNi matrix as indicated by Vedula who notes on the page 920 of the aforementioned document that it does not currently exist no reinforcing fiber having all the properties required for a NiAl matrix.

Le document "Fabrication and Mechanical Properties of Cf/NiAl and SiCw/NiAl Composites", (Nishiyama et al), 6TH CONF. PROC. JP-US COMPOSITE MATERIAL 1993, pages 417 à 424 divulgue la réalisation d'un matériau composite comprenant une matrice du type AlNi et un renfort formé de particules de carbure de silicium SiC dispersées dans la matrice.The document "Fabrication and Mechanical Properties of Cf / NiAl and SiCw / NiAl Composites ", (Nishiyama et al), 6TH CONF. PROC. JP-US COMPOSITE MATERIAL 1993, pages 417 to 424 discloses the realization of a composite material comprising a matrix of the AlNi type and a reinforcement formed of silicon carbide particles SiC scattered throughout the matrix.

La présente invention a précisément pour objet l'utilisation comme renfort dans une matrice intermétallique de type AlNi d'un composé, le carbure de silicium, qui bien qu'étant réactif avec la matrice, peut être stabilisé dans celle-ci grâce à un apport de silicium et conduire à un matériau composite satisfaisant.The object of the present invention is precisely use as reinforcement in a matrix intermetallic AlNi type of a compound, carbide silicon, which although reactive with the matrix, can be stabilized in it thanks to a contribution of silicon and lead to a composite material satisfactory.

Selon l'invention, le matériau composite comprend une matrice constituée principalement d'un composé intermétallique du type AlNi comprenant 43 à 63% en atomes de nickel et contenant en solution solide de 1,5 à 30 % en atomes de silicium, et un renfort formé de particules de carbure de silicium SiC dispersées dans cette matrice, ledit matériau composite comprenant de 10 à 60% en volume de particules de SiC.According to the invention, the composite material comprises a matrix consisting mainly of a compound AlNi type intermetallic comprising 43 to 63% nickel and containing in solid solution from 1.5 to 30% in silicon atoms, and a reinforcement formed of silicon carbide particles SiC dispersed in this matrix, said composite material comprising from 10 to 60% by volume of SiC particles.

En effet, on a découvert selon l'invention, que la décomposition du carbure de silicium par réaction chimique avec le composé intermétallique AlNi n'avait pas lieu lorsqu'une quantité suffisante de silicium se trouvait en solution solide dans le composé intermétallique AlNi.Indeed, it has been discovered according to the invention, that the decomposition of silicon carbide by reaction chemical with the intermetallic compound AlNi had not take place when a sufficient quantity of silicon was in solid solution in the compound AlNi intermetallic.

La décomposition du carbure de silicium SiC se produit à partir d'environ 700°C par réaction chimique avec le composé intermétallique AlNi, ce qui libère du carbure d'aluminium Al4C3 ou du carbone, alors que du silicium passe en solution solide dans le composé intermétallique.Decomposition of silicon carbide SiC occurs from about 700 ° C by chemical reaction with the intermetallic compound AlNi, which releases aluminum carbide Al 4 C 3 or carbon, while silicon passes into solid solution in the intermetallic compound.

Or, on a trouvé que, de façon surprenante, cette décomposition du carbure de silicium était totalement stoppée dès qu'une quantité suffisante de silicium avait été dissoute dans la matrice de composé intermétallique AlNi.However, we have found that, surprisingly, this decomposition of the silicon carbide was totally stopped as soon as a sufficient quantity of silicon had been dissolved in the compound matrix AlNi intermetallic.

Généralement, cette quantité de silicium est de 2 à 11% en atomes pour des matériaux devant résister à des températures de 1000°C.Generally, this amount of silicon is 2 at 11% in atoms for materials having to resist temperatures of 1000 ° C.

De ce fait, un matériau associant des particules de carbure de silicium SiC et une matrice intermétallique de type AlNi contenant en solution solide une quantité suffisante de silicium, constitue un système en équilibre thermodynamique qui n'évolue plus, par réaction chimique matrice/renfort de SiC, lorsqu'il est porté à haute température. De plus, une réaction chimique limitée entre la matrice et le renfort de carbure de silicium permet de créer une liaison interfaciale forte entre le renfort et la matrice, ce qui est avantageux pour obtenir une résistance à l'oxydation élevée du matériau.Therefore, a material associating particles silicon carbide SiC and a matrix AlNi type intermetallic solution solid a sufficient quantity of silicon, constitutes a system in thermodynamic equilibrium which does not evolve more, by chemical reaction matrix / reinforcement of SiC, when worn at high temperature. In addition, a limited chemical reaction between the matrix and the silicon carbide reinforcement creates a strong interfacial bond between the reinforcement and the matrix, which is advantageous for obtaining a high oxidation resistance of the material.

Enfin, étant donné que le carbure de silicium a de hautes caractéristiques mécaniques et une très bonne résistance à l'oxydation jusque vers 1400°C, le matériau composite comportant un renfort de carbure de silicium présente à la fois la stabilité chimique et la bonne tenue au fluage à chaud des composites AlNi/TiB2, tout en conservant l'excellente résistance à l'oxydation des composés intermétalliques de type AlNi non renforcés.Finally, since silicon carbide has high mechanical characteristics and very good resistance to oxidation up to around 1400 ° C., the composite material comprising a reinforcement of silicon carbide exhibits both chemical stability and good behavior hot creep of AlNi / TiB 2 composites, while retaining the excellent oxidation resistance of unreinforced AlNi type intermetallic compounds.

Selon l'invention, les particules de carbure de silicium servant de renfort dans le matériau composite peuvent être sous différentes formes. Par exemple, il peut s'agir de grains au contour anguleux, de plaquettes monocristallines et/ou de trichites. Par ailleurs, le carbure de silicium peut être sous différentes formes cristallines , par exemple sous les formes correspondant aux variétés alpha-hexagonales et/ou bêta-cubiques.According to the invention, the carbide particles of silicon used as reinforcement in the composite material can be in different forms. For example, may be grains with an angular outline, monocrystalline wafers and / or whiskers. Through elsewhere, the silicon carbide may be under different crystalline forms, for example under forms corresponding to alpha-hexagonal varieties and / or beta-cubics.

De préférence, les particules de carbure de silicium ont une longueur moyenne, suivant leur plus grande dimension, de 1 à 100µm, car on obtient avec ces dimensions une efficacité optimale des particules en tant que renfort.Preferably, the carbide particles of silicon have an average length, following their longer large dimension, from 1 to 100 µm, because with these dimensions optimal particle efficiency in as reinforcement.

Le matériau composite de l'invention peut comprendre des quantités plus ou moins importantes de renfort particulaire. Comme dans tout matériau composite à renfort particulaire, on a intérêt pour augmenter la résistance à la rupture, le module d'élasticité et la résistance au fluage à haute température, à utiliser une quantité importante de particules de renfort, d'autant plus que la densité du carbure de silicium étant inférieure à celle de la matrice (3,2 et 5,9 respectivement), le matériau sera d'autant plus léger que la quantité de particules sera plus grande. Toutefois, quand la proportion de renfort devient importante, les particules tendent à entrer en contact entre elles et à former des agrégats poreux, qui constituent des points faibles à partir desquels des fissures pourront naítre puis se propager. Il existe donc un seuil à ne pas dépasser.The composite material of the invention can understand more or less significant amounts of particle reinforcement. As in any material composite with particulate reinforcement, we are interested in increase the breaking strength, the modulus elasticity and high creep resistance temperature, use a large amount of reinforcing particles, especially as the density of the silicon carbide being less than that of the matrix (3.2 and 5.9 respectively), the material will be the lighter the quantity of particles will be bigger. However, when the proportion of reinforcement becomes important, the particles tend to enter contact between them and to form porous aggregates, which constitute weak points from which cracks may appear and then spread. he there is therefore a threshold not to be exceeded.

Néanmoins, lorsqu'on veut obtenir une résistance au fluage à chaud très élevée, avec des teneurs élevées en particules de SiC, on a au contraire intérêt à ce que toutes les particules de SiC soient en contact direct, ce qui nécessite d'élaborer le matériau à une température suffisamment élevée pour permettre le soudage-diffusion des particules entre elles, mais conduit à un comportement du matériau de type fragile.However, when you want resistance very high hot creep, with high contents in SiC particles, we have on the contrary an interest in this that all SiC particles are in contact direct, which requires developing the material at a temperature high enough to allow welding-diffusion of the particles between them, but leads to a behavior of the brittle type material.

Généralement, le matériau composite comprend de 10 à 60% en volume de particules de SiC.Generally, the composite material comprises of 10 60% by volume of SiC particles.

La teneur en particules de SiC est également choisie en fonction des caractéristiques géométriques (taille moyenne, forme, etc.) des particules de SiC et des grains de la matrice pour obtenir les meilleurs résultats. Dans le cas où les particules de SiC ont une longueur moyenne, suivant leur plus grande dimension, de 5 à 50µm, on préfère généralement utiliser 10 à 30% en volume de particules de SiC pour obtenir un bon compromis entre ténacité, résistance à la rupture et résistance au fluage à haute température.The SiC particle content is also chosen according to the geometrical characteristics (average size, shape, etc.) of the SiC particles and grains of the matrix to get the best results. In the case where the SiC particles have a average length, according to their largest dimension, from 5 to 50 µm, we generally prefer to use 10 to 30% by volume of SiC particles to obtain a good compromise between toughness, breaking strength and resistance to creep at high temperature.

Le composé intermétallique du type AlNi utilisé comme matrice dans le matériau composite de l'invention, est un composé intermétallique d'aluminium et de nickel constitué majoritairement d'une phase ayant la structure B2 (type CsCl) caractéristique du composé AlNi, qui contient en solution une quantité appropriée de silicium. La matrice peut également inclure des impuretés courantes telles que de l'alumine et/ou du fer, en faibles proportions, par exemple de 0,5 à 2% en volume pour l'alumine et 0,5 à 2% en poids pour le fer, à l'état dissous ou sous forme de microprécipités. La phase ayant la structure B2 du composé AlNi se caractérise par un domaine d'existence relativement large dans le système binaire AlNi, puisque ce domaine s'étend par exemple de 43 à 63% en atomes de nickel à 1000°C. Cette phase peut dissoudre, sous forme de solution solide, une quantité de silicium qui dépend de la température et du rapport atomique entre l'aluminium et le nickel.The AlNi type intermetallic compound used as a matrix in the composite material of the invention is an intermetallic aluminum compound and nickel mainly consisting of a phase having the B2 structure (CsCl type) characteristic of compound AlNi, which contains in solution a quantity suitable silicon. The matrix can also include common impurities such as alumina and / or iron, in small proportions, for example of 0.5 to 2% by volume for alumina and 0.5 to 2% by volume weight for iron, dissolved or in the form of microprecipitates. The phase with structure B2 of AlNi compound is characterized by a domain of existence relatively large in the AlNi binary system, since this domain extends for example from 43 to 63% in nickel atoms at 1000 ° C. This phase can dissolve, in the form of a solid solution, an amount of silicon which depends on the temperature and the atomic ratio between aluminum and nickel.

Selon l'invention, tout alliage ternaire Al-Ni-Si de composition située à l'intérieur du domaine d'existence de cette phase de structure B2 peut convenir comme matrice pourvu que cet alliage contienne la teneur minimale en silicium nécessaire pour que le composé intermétallique soit en équilibre thermodynamique avec le carbure de silicium à la température souhaitée, donc pour que l'interface matrice-renfort n'évolue plus par réaction chimique à haute température.According to the invention, any Al-Ni-Si ternary alloy of composition located inside the domain of existence of this phase of structure B2 can be suitable as a matrix provided that this alloy contains the minimum silicon content required for the intermetallic compound be in equilibrium thermodynamics with silicon carbide at the desired temperature, so that the interface reinforcement matrix no longer evolves by chemical reaction to high temperature.

Cette teneur minimale dépend de la teneur en nickel de la matrice et de la température. Ainsi, elle est de 1,5% dans le cas d'une matrice contenant 43% en atome de nickel à une température de 1000°C.This minimum content depends on the content of nickel of the matrix and the temperature. So she is 1.5% in the case of a matrix containing 43% in nickel atom at a temperature of 1000 ° C.

De préférence, selon l'invention, le composé intermétallique AlNi constituant la matrice comprend de 50 à 63% en atomes de nickel pour éviter que, dans le cas d'une réaction limitée entre la matrice et le carbure de silicium, on ait un dépôt de carbure d'aluminium à l'interface matrice-particules de silicium.Preferably, according to the invention, the compound intermetallic AlNi constituting the matrix comprises of 50 to 63% in atoms of nickel to avoid that, in the case of a limited reaction between the matrix and the silicon carbide, we have a carbide deposit of aluminum at the matrix-particle interface of silicon.

Le matériau composite de l'invention peut être préparé par des procédés classiques de métallurgie des poudres ou de fonderie. Etant donné que le renfort et la matrice constituant le matériau composite sont des composés très réfractaires, puisque les points de fusion du carbure de silicium SiC et de l'aluminiure de nickel AlNi sont respectivement de l'ordre de 2550 et 1650°C, ces procédés seront préférentiellement des procédés en phase solide classiques en métallurgie des poudres tels que la compression à chaud, uniaxiale ou isostatique, ou encore l'extrusion à chaud de mélanges de poudres de SiC et de AlNi. On peut toutefois préparer également des matériaux par des techniques de fonderie à très haute température (plus de 1700°C) et de projection au moyen d'un plasma, ou par un procédé mixte associant les techniques de fonderie à haute température et les techniques de métallurgie des poudres comme le procédé de marque XD de Martin Marietta.The composite material of the invention can be prepared by conventional metallurgy processes for powders or foundries. Since the reinforcement and the matrix constituting the composite material are very refractory compounds, since the points of fusion of silicon carbide SiC and aluminide of nickel AlNi are respectively around 2550 and 1650 ° C, these processes will preferably be classic solid phase processes in metallurgy of powders such as hot compression, uniaxial or isostatic, or the hot extrusion of mixtures of SiC and AlNi powders. We can however also prepare materials by techniques of very high temperature foundry (over 1700 ° C) and projection by means of a plasma, or by a process mixed combining high casting techniques temperature and metallurgy techniques of powders like Martin's XD brand process Marietta.

En revanche, les procédés de préparation faisant appel à un frittage réactif à partir de poudres d'aluminium et de nickel sont exclus car la dégradation des particules de renfort par réaction chimique avec ces éléments au cours du frittage serait beaucoup trop importante.On the other hand, the preparation processes making call for reactive sintering from powders aluminum and nickel are excluded because degradation reinforcing particles by chemical reaction with these elements during sintering would be way too much important.

Quel que soit le procédé utilisé, il est important de choisir des conditions permettant d'obtenir un matériau présentant le minimum de porosité, dans lequel les grains ou les cristaux de matrice soient intimement soudés avec une dispersion uniforme des particules de SiC dans la matrice intermétallique.Whatever process is used, it is important to choose conditions allowing to obtain a material with minimum porosity, in which the grains or matrix crystals are intimately welded with a uniform dispersion of particles of SiC in the intermetallic matrix.

Selon l'invention, le silicium qui doit être inclus dans la matrice de composé intermétallique peut être ajouté, au moins en partie, avant la fabrication du matériau composite, ou être obtenu uniquement par décomposition partielle des particules de carbure de silicium au cours de l'élaboration du matériau composite.According to the invention, the silicon which must be included in the intermetallic compound matrix can be added, at least in part, before manufacture composite material, or be obtained only by partial decomposition of carbide particles from silicon during material development composite.

Dans les deux cas, on peut préparer le matériau composite de l'invention en soumettant à une densification à chaud en phase solide un mélange d'une poudre d'un composé intermétallique AlNi contenant ou non du silicium et de particules de SiC.In both cases, the material can be prepared composite of the invention by subjecting it to a hot densification in solid phase a mixture of powder of an AlNi intermetallic compound containing or not silicon and SiC particles.

On peut aussi préparer le matériau composite de l'invention en dispersant des particules de SiC dans une matrice de AlNi contenant ou non du silicium, à une température telle que la matrice est à l'état liquide et que les particules de SiC restent à l'état solide.We can also prepare the composite material of the invention by dispersing particles of SiC in an AlNi matrix containing or not containing silicon, at a temperature such that the matrix is in the liquid state and that the SiC particles remain in the solid state.

Selon un premier mode d'élaboration des matériaux composites de l'invention, on prépare ceux-ci à partir d'un composé intermétallique AlNi auquel on a ajouté du silicium.According to a first mode of development of materials composites of the invention, these are prepared from of an AlNi intermetallic compound to which has been added silicon.

Dans ce cas la quantité de silicium ajoutée peut être inférieure, égale ou supérieure à la teneur requise en silicium pour atteindre l'équilibre thermodynamique entre matrice et particules de SiC.In this case the amount of silicon added can be less, equal or greater than the content required in silicon to reach equilibrium thermodynamics between matrix and SiC particles.

Lorsque cette quantité est égale ou supérieure à la teneur correspondant à l'équilibre thermodynamique matrice/particules, à la température d'élaboration, on obtient un matériau se caractérisant par une liaison faible à l'interface matrice/particules car la compatibilité chimique entre matrice et particules de SiC est assurée à tous les stades de l'élaboration du matériau, si bien qu'il n'existe aucune réaction entre la matrice et les particules de SiC.When this quantity is equal to or greater than the content corresponding to the thermodynamic equilibrium matrix / particles, at the production temperature, obtains a material characterized by a bond weak at the matrix / particle interface because the chemical compatibility between matrix and particles of SiC is ensured at all stages of the development of the material, so there is no reaction between the matrix and the SiC particles.

En revanche, lorsque la quantité de silicium ajoutée au composé intermétallique AlNi est inférieure à celle qui correspond à l'équilibre thermodynamique matrice/particules, à la température d'élaboration du matériau, on obtient une mise en solution supplémentaire de silicium dans la matrice (Al-Ni-Si) par décomposition partielle des particules de SiC, à la température d'élaboration, pour atteindre l'équilibre thermodynamique à cette température.On the other hand, when the quantity of silicon added to the intermetallic compound AlNi is lower to that which corresponds to thermodynamic equilibrium matrix / particles, at the processing temperature of material, we get a solution additional silicon in the matrix (Al-Ni-Si) by partial decomposition of the SiC particles, at the processing temperature, to reach equilibrium thermodynamics at this temperature.

Dans ce cas, à condition d'utiliser une matrice comportant davantage de nickel que d'aluminium, on peut obtenir, à l'interface matrice/particules de SiC, une zone de transition biphasée constituée d'une dispersion de carbone libre dans la matrice.In this case, provided you use a matrix containing more nickel than aluminum, we can obtain, at the SiC matrix / particle interface, a two-phase transition zone consisting of a dispersion of free carbon in the matrix.

En effet, la réaction de décomposition du SiC donne du silicium qui diffuse très rapidement dans le composé intermétallique alors que le carbone reste au voisinage de l'interface particules/matrice sous forme de précipités submicroniques. Indeed, the SiC decomposition reaction gives silicon which diffuses very quickly in the intermetallic compound while carbon remains at near the particle / matrix interface in the form of submicron precipitates.

Ces précipités forment avec la matrice une zone de transition interfaciale biphasée particulièrement favorable, établissant une liaison interfaciale forte entre les particules et la matrice.These precipitates form with the matrix a zone of biphasic interfacial transition particularly favorable, establishing a strong interfacial bond between the particles and the matrix.

En effet, cette zone interfaciale a un coefficient de dilatation moyen intermédiaire entre celui des particules (4 à 5.10-6K-1) et celui de la matrice (13 à 15.10-6K-1), et de ce fait, elle peut absorber graduellement une partie des contraintes mécaniques statiques engendrées en cyclage thermique, les précipités submicroniques de carbone agissant comme pièges à dislocation.Indeed, this interfacial zone has an average coefficient of expansion between that of the particles (4 to 5.10 -6 K -1 ) and that of the matrix (13 to 15.10 -6 K -1 ), and therefore it can gradually absorb some of the static mechanical stresses generated in thermal cycling, the submicron carbon precipitates acting as dislocation traps.

Ainsi, la réaction de décomposition de SiC ne s'accompagne pas, comme dans la plupart des réactions solide-solide de la formation d'une couche continue d'un composé fragile à l'interface, ce qui est particulièrement favorable pour l'obtention de propriétés mécaniques élevées en ce qui concerne le matériau composite.En revanche, si l'on utilisait dans le composé intermétallique AlNi, une quantité d'aluminium supérieure à la quantité de nickel, du carbure d'aluminium (Al4C3) se formerait à l'interface matrice/particules, ce qui est défavorable pour le matériau composite, en raison, d'une part, de la faible stabilité de ce carbure en atmosphère humide, et, d'autre part, de la résistance plus faible à la fissuration des matrices pauvres en nickel.Thus, as in most solid-solid reactions, the SiC decomposition reaction is not accompanied by the formation of a continuous layer of a brittle compound at the interface, which is particularly favorable for obtaining high mechanical properties with regard to the composite material. On the other hand, if one used in the intermetallic compound AlNi, a quantity of aluminum higher than the quantity of nickel, aluminum carbide (Al 4 C 3 ) is would form at the matrix / particle interface, which is unfavorable for the composite material, due, on the one hand, to the low stability of this carbide in a humid atmosphere, and, on the other hand, to the lower resistance to cracking of matrices poor in nickel.

Selon un second mode d'élaboration des matériaux composites de l'invention, on prépare ceux-ci à partir d'un composé intermétallique AlNi sans addition de silicium.According to a second mode of development of materials composites of the invention, these are prepared from of an AlNi intermetallic compound without addition of silicon.

Dans ce cas, la teneur requise en silicium provient uniquement de la réaction de décomposition du carbure de silicium lors de l'élaboration du matériau composite. In this case, the required silicon content comes only from the decomposition reaction of the silicon carbide during material development composite.

Comme précédemment, on a intérêt à utiliser un composé intermétallique comprenant au moins 50% en atomes de nickel pour créer autour des particules de SiC une zone de transition biphasée constituée d'une dispersion de carbone libre dans la matrice.As before, it is beneficial to use a intermetallic compound comprising at least 50% nickel atoms to create around the particles of SiC a two-phase transition zone consisting of a dispersion of free carbon in the matrix.

Dans ce cas, la quantité de silicium dissoute dans la matrice de composé intermétallique dépend de la composition du composé intermétallique de départ et de la température d'élaboration, car elle correspond à l'équilibre thermodynamique entre la matrice et les particules de SiC, à cette température.In this case, the amount of silicon dissolved in the matrix of intermetallic compound depends on the composition of the starting intermetallic compound and the processing temperature, because it corresponds to thermodynamic equilibrium between the matrix and the SiC particles at this temperature.

Ainsi, à 1000°C, cette quantité de silicium est de

  • 2,5% en atomes lorsque le composé AlNi contient 50% en atomes de Ni,
  • 7% en atomes lorsque le composé AlNi contient 53% en atomes de Ni,
  • 11% en atomes lorsque le composé AlNi contient 56% en atomes de Ni.
So, at 1000 ° C, this amount of silicon is
  • 2.5% by atoms when the compound AlNi contains 50% by atoms of Ni,
  • 7 atomic% when the compound AlNi contains 53 atomic% of Ni,
  • 11 atomic% when the compound AlNi contains 56 atomic% of Ni.

Par conséquent, selon l'invention, en jouant sur le rapport Ni/Al, sur la quantité de silicium éventuellement ajoutée avant élaboration et sur la fraction volumique des particules de SiC, on peut moduler à volonté le degré d'interaction matrice/particules et, par suite, la force de liaison interfaciale dans le matériau résultant.Consequently, according to the invention, by playing on the Ni / Al ratio, on the quantity of silicon possibly added before preparation and on the volume fraction of SiC particles, we can modulate at will the degree of interaction matrix / particles and therefore the bond strength interfacial in the resulting material.

De plus, en choisissant une teneur en silicium élevée et/ou une température d'élaboration supérieure à la température d'utilisation du matériau composite, on obtient un matériau qui conservera ses propriétés mécaniques au cours de son vieillissement en service à température élevée car, une fois l'étape d'élaboration terminée et la matrice saturée en silicium, l'ensemble matrice-particules de SiC-zone de transition interfaciale forme un système en équilibre thermodynamique. In addition, by choosing a silicon content high and / or a processing temperature higher than the temperature of use of the composite material, we obtains a material which will retain its properties mechanical during its aging in service at high temperature because, once the elaboration stage finished and the matrix saturated with silicon, the whole matrix-particles of SiC-transition zone interfacial forms a system in equilibrium thermodynamic.

Les particules de SiC utilisées pour l'élaboration des matériaux composites de l'invention, peuvent être des grains au contour anguleux obtenus par broyage de blocs de carbure de silicium produits industriellement et composés de cristaux de la variété alpha hexagonale (plus exactement d'un mélange de polytypes dérivant de cette variété), des plaquettes quasi monocristallines des variétés alpha-hexagonales ou bêta-cubiques, obtenues par des techniques de croissance cristalline appropriées, ou encore des trichites (ou whiskers) de carbure de silicium obtenus par des procédés classiques.The SiC particles used for the preparation composite materials of the invention can be grains with an angular outline obtained by grinding industrially produced silicon carbide blocks and composed of crystals of the alpha hexagonal variety (more precisely a mixture of polytypes derived from this variety), almost monocrystalline wafers alpha-hexagonal or beta-cubic varieties, obtained by crystal growth techniques or whiskers of silicon carbide obtained by processes classics.

Le composé intermétallique AlNi contenant ou non du silicium, utilisé comme produit de départ pour cette élaboration, est également obtenu par des procédés classiques tels que frittage réactif, fonderie "O-spray", projection plasma. Généralement, on l'utilise sous la forme de poudre ayant une granulométrie de 5 à 50µm.The intermetallic compound AlNi containing or not silicon, used as the starting material for this elaboration, is also obtained by processes classics such as reactive sintering, "O-spray" foundry, plasma projection. Generally, it is used under the powder form with a particle size of 5 to 50 μm.

Lorsqu'on utilise les techniques de densification à chaud en phase solide pour élaborer le matériau, on réalise cette densification en utilisant les appareillages et les conditions de température et de pression mises en oeuvre habituellement pour fabriquer les matériaux de ce type. Il en est de même lorsqu'on réalise le matériau par des techniques de fonderie, ou de projection au moyen d'un plasma, ou par le procédé mixte XD de Martin Marietta.When using densification techniques hot in solid phase to develop the material, we achieves this densification using the switchgear and the temperature and pressure usually used to manufacture materials of this type. The same is true when produces the material using foundry techniques, or projection by means of a plasma, or by the process mixed XD by Martin Marietta.

D'autres caractéristiques et avantages de l'invention apparaítront mieux à la lecture des exemples suivants donnés bien entendu à titre illustratif et non limitatif.Other features and benefits of the invention will appear better on reading the following examples given of course as illustrative and not limiting.

Exemple 1.Example 1.

Dans cet exemple, on utilise le second mode de préparation des matériaux composites de l'invention en partant de particules de carbure de silicium ayant une taille moyenne de 5 à 45µm, et d'une poudre de composé intermétallique monophasé AlNi ayant une granulométrie de 5 à 50µm et la composition suivante :

  • Al = 50% en atomes
  • Ni = 50% en atomes.
In this example, the second mode of preparation of the composite materials of the invention is used, starting from particles of silicon carbide having an average size of 5 to 45 μm, and a powder of single-phase intermetallic compound AlNi having a particle size of 5. at 50 μm and the following composition:
  • Al = 50 atomic%
  • Ni = 50 atomic%.

On prépare un mélange de poudres comprenant 20% en volume de particules de carbure de silicium par broyage mécanique dans un mortier à billes en carbure de tungstène. On soumet ensuite le mélange ainsi obtenu à une densification par compression à chaud sous un vide de 10Pa, dans une cellule constituée d'une matrice cylindrique et de deux pistons en graphite. Après application d'une pression de 100MPa pendant 2h à 1150°C, on obtient un disque de matériau composite d'une porosité totale inférieure à 1%.A mixture of powders comprising 20% in particle volume of silicon carbide by grinding mechanical in a carbide ball mortar tungsten. The mixture thus obtained is then subjected to densification by hot compression under vacuum of 10Pa, in a cell made up of a matrix cylindrical and two graphite pistons. After application of a pressure of 100 MPa for 2 hours at 1150 ° C, a disc of composite material is obtained with a total porosity of less than 1%.

L'examen métallographique de ce disque révèle que la compression à chaud a permis le soudage par diffusion en phase solide des grains de composé intermétallique entre eux. Les particules de carbure de silicium apparaissent quant à elles uniformément dispersées dans la matrice de composé intermétallique et une zone biphasée contenant les précipités de carbone submicroniques est observée autour de chaque particule de carbure de silicium. L'épaisseur de cette zone biphasée est de l'ordre de 1,2µm, ce qui correspond à la décomposition par réaction chimique d'environ 14% du carbure initialement introduit. On retrouve par ailleurs du silicium uniformément réparti en solution solide dans la matrice.Metallographic examination of this disc reveals that hot compression allowed welding by solid phase diffusion of compound grains intermetallic between them. The carbide particles of silicon appear uniformly dispersed in the intermetallic compound matrix and a two-phase zone containing the precipitates of submicron carbon is observed around each particle of silicon carbide. The thickness of this two-phase area is around 1.2 µm, which corresponds to decomposition by chemical reaction about 14% of the carbide initially introduced. We also finds uniformly distributed silicon in solid solution in the matrix.

La composition en atomes % de cette matrice est alors :

  • Al = 47,7%
  • Ni = 47,9%
  • Si = 4,4%.
The composition in% atoms of this matrix is then:
  • Al = 47.7%
  • Ni = 47.9%
  • If = 4.4%.

Avec cette composition de matrice, les particules de carbure de silicium ne peuvent plus réagir avec la matrice tant que la température reste inférieure à 1150°C, ce qui correspond à une limite supérieure d'emploi du matériau. On a donc obtenu, après une réaction transitoire qui a permis l'établissement d'une liaison interfaciale forte, matrice/particules, un disque composite, dans lequel l'interface est devenue chimiquement stable.With this matrix composition, the particles silicon carbide can no longer react with the matrix as long as the temperature remains below 1150 ° C, which corresponds to an upper limit of use of the material. So we got, after a transient reaction which allowed the establishment of a strong interfacial bond, matrix / particles, a composite disc, in which the interface has become chemically stable.

Exemple 2.Example 2.

Dans cet exemple, on utilise le premier mode de préparation des matériaux composites de l'invention en partant d'une poudre de carbure de silicium identique à celle utilisée dans l'exemple 1 et d'une poudre de composé intermétallique AlNi contenant du silicium en solution solide ayant la composition suivante :

  • Al = 40% en atomes
  • Ni = 53% en atomes
  • Si = 7% en atomes.
In this example, the first mode of preparation of the composite materials of the invention is used, starting from a powder of silicon carbide identical to that used in Example 1 and a powder of intermetallic compound AlNi containing silicon in solid solution having the following composition:
  • Al = 40 atomic%
  • Ni = 53 atomic%
  • Si = 7 atomic%.

On prépare un mélange des deux poudres comprenant 30% en volume de particules de SiC et l'on forme à partir de ce mélange un disque composite par compression à chaud dans les mêmes conditions que celles de l'exemple 1.A mixture of the two powders is prepared comprising 30% by volume of SiC particles and are formed at from this mixture a composite disc by hot compression under the same conditions as those of Example 1.

On obtient ainsi un disque ayant une porosité résiduelle inférieure à 2%. Dans ce cas, l'épaisseur de la zone biphasée matrice/carbone entourant chaque particule de carbure de silicium est de l'ordre de 0,7 µ m, ce qui correspond à la décomposition par réaction chimique d'environ 8% du carbure de silicium initialement introduit. Au cours de cette réaction, la matrice intermétallique s'est enrichie en silicium et sa composition finale est la suivante :

  • Al = 38,5% en atomes
  • Ni = 50,5% en atomes
  • Si = 11% en atomes.
A disc is thus obtained having a residual porosity of less than 2%. In this case, the thickness of the two-phase matrix / carbon zone surrounding each particle of silicon carbide is of the order of 0.7 μm, which corresponds to the decomposition by chemical reaction of approximately 8% of the carbide. initially introduced silicon. During this reaction, the intermetallic matrix is enriched in silicon and its final composition is as follows:
  • Al = 38.5 atomic%
  • Ni = 50.5 atomic%
  • Si = 11 atomic%.

Ce matériau est chimiquement inerte à 1150°C.This material is chemically inert at 1150 ° C.

Exemple 3.Example 3.

Dans cet exemple, on utilise le second mode de préparation des matériaux composites de l'invention en partant de particules de carbure de silicium de 1 à 2µm de diamètre moyen et d'une poudre de composé AlNi (50% en atomes de Al et 50% en atomes de Ni) ayant une granulométrie moyenne de 1 à 2µm.In this example, we use the second mode of preparation of the composite materials of the invention in starting from particles of silicon carbide from 1 to 2µm of average diameter and of a powder of compound AlNi (50% in Al atoms and 50% in Ni atoms) having a average particle size from 1 to 2µm.

On prépare à partir de la poudre et des particules un mélange comprenant 50% en volume de particules de SiC. Après un malaxage mécanique prolongé du mélange en présence d'alcool éthylique liquide, on essore le mélange et on l'introduit dans la cellule de compression à pistons en graphite utilisée dans l'exemple 1. Après séchage par évaporation sous vide à la température ambiante, on porte progressivement le mélange à une température de 1450°C, sous une pression de 100MPa, et on le maintient à cette température et à cette pression pendant 30min. Afin d'éviter un trop fort détitrage par évaporation d'aluminium, on réalise la compression sous atmosphère d'argon.We prepare from powder and particles a mixture comprising 50% by volume of particles of SiC. After prolonged mechanical mixing of the mixture in presence of liquid ethyl alcohol, mixture and we introduce it into the cell graphite piston compression used in Example 1. After drying by vacuum evaporation at ambient temperature, the temperature is gradually increased mixing at a temperature of 1450 ° C, under pressure of 100MPa, and it is maintained at this temperature and at this pressure for 30min. In order to avoid too much strong titration by aluminum evaporation, we realize compression under an argon atmosphere.

On obtient ainsi un disque composite ayant une porosité résiduelle inférieure à 3% et une densité de l'ordre de 4,6. Environ 8% du carbure de silicium initialement introduit ont été décomposés par réaction avec la matrice au cours de l'élaboration. La zone biphasée matrice/carbone entourant chaque particule de carbure de silicium a une épaisseur comprise entre 0 et 0,3µm et la composition finale de la matrice est la suivante :

  • Al = 41% en atomes
  • Ni = 50% en atomes
  • Si = 9% en atomes.
A composite disc is thus obtained having a residual porosity of less than 3% and a density of the order of 4.6. About 8% of the initially introduced silicon carbide was decomposed by reaction with the matrix during processing. The two-phase matrix / carbon zone surrounding each particle of silicon carbide has a thickness of between 0 and 0.3 μm and the final composition of the matrix is as follows:
  • Al = 41 atomic%
  • Ni = 50 atomic%
  • Si = 9 atomic%.

Malgré l'atmosphère d'argon, on remarque une perte d'aluminium.Despite the argon atmosphere, there is a loss aluminum.

Exemple 4.Example 4.

Dans cet exemple, on utilise le premier mode de préparation des matériaux composites de l'invention en partant de trichites de SiC et d'une poudre de composé intermétallique AlNi contenant du silicium en solution ayant une granulométrie de 2 à 5µm, et présentant la composition suivante :

  • Al : 48% en atomes,
  • Ni : 48% en atomes,
  • Si : 4% en atomes.
In this example, the first method of preparing the composite materials of the invention is used, starting with SiC whiskers and a powder of AlNi intermetallic compound containing silicon in solution having a particle size of 2 to 5 μm, and having the composition next :
  • Al: 48% by atoms,
  • Ni: 48% by atoms,
  • If: 4 atomic%.

Les trichites de carbure de silicium sont de la variété bêta-cubique et leur dimension extrême est de 0,2 à 5µm. On mélange les trichites avec la poudre de composé intermétallique de façon à obtenir une fraction volumique en trichites de 15%. Après malaxage mécanique en présence d'un liant organique pâteux, on extrude le mélange à froid en forme de ruban, puis on découpe un disque dans ce ruban et on l'introduit dans la cellule de compression en graphite. On chauffe alors lentement l'ensemble sous vide primaire jusqu'à évaporation complète du liant organique, puis on porte le mélange à 1150°C pendant 2h, sous une pression de 100MPa.Silicon carbide whiskers are beta-cubic variety and their extreme dimension is 0.2 to 5µm. The whiskers are mixed with the powder of intermetallic compound so as to obtain a fraction volume in whiskers of 15%. After mechanical mixing in the presence of a pasty organic binder, the cold mixing in the form of a ribbon, then cut a disc in this ribbon and we put it in the cell of graphite compression. We then heat slowly the assembly under primary vacuum until evaporation complete with the organic binder, then bring the mixture to 1150 ° C for 2h, under a pressure of 100MPa.

On obtient ainsi un disque composite ayant une porosité résiduelle inférieure à 1,5% dans lequel les trichites de carbure de silicium sont préférentiellement alignés parallèlement à la direction d'extrusion.A composite disc is thus obtained having a residual porosity less than 1.5% in which the silicon carbide whiskers are preferably aligned parallel to the direction extrusion.

Aucune réaction chimique ne s'est produite lors de la compression à chaud à l'interface matrice/trichites car la quantité de silicium initialement présente dans la poudre de composé intermétallique était suffisante pour assurer l'inertie chimique du système renfort/matrice jusqu'à 1150°C. No chemical reaction occurred during hot compression at the matrix / whiskers interface because the amount of silicon initially present in the powder of intermetallic compound was sufficient to ensure the chemical inertness of the system reinforcement / matrix up to 1150 ° C.

Exemple 5.Example 5.

Dans cet exemple, on utilise le second mode de fabrication des matériaux composites de l'invention en partant de particules de carbure de silicium et d'une poudre de composé intermétallique AlNi (50% en atomes de Al et 50% en atomes de Ni), ayant une granulométrie de 5 à 10µm. Les particules de carbure de silicium ont également une dimension moyenne de 5 à 10µm et on prépare à partir de ces particules un mélange comprenant 15% en volume de particules. Après homogénéisation du mélange, on injecte celui-ci dans la flamme d'une torche à plasma d'arc dont la puissance a été réglée de telle manière que les grains de composé intermétallique soient fondus mais pas les particules de SiC.In this example, we use the second mode of manufacture of the composite materials of the invention in starting from particles of silicon carbide and a AlNi intermetallic compound powder (50 atomic% of Al and 50 atomic% of Ni), having a particle size from 5 to 10µm. The silicon carbide particles have also an average dimension of 5 to 10µm and we prepares from these particles a mixture comprising 15% by volume of particles. After homogenization of the mixture, it is injected into the flame of an arc plasma torch whose power has been set in such a way that the grains of compound intermetallic are melted but not the particles of SiC.

Par projection sur la surface d'une pièce en fonte, on obtient un revêtement de bonne adhérence de 150µm d'épaisseur moyenne présentant une grande dureté, une excellente résistance à l'abrasion et protégeant la pièce sous-jacente de l'oxydation.By projection on the surface of a part in cast iron, a good adhesion coating of 150µm of average thickness with great hardness, excellent abrasion resistance and protecting the underlying piece of oxidation.

La composition finale de la matrice est la suivante :

  • Al : 41% en atomes
  • Ni : 50% en atomes
  • Si : 9% en atomes.
The final composition of the matrix is as follows:
  • Al: 41 atomic%
  • Ni: 50% by atoms
  • If: 9% by atoms.

Claims (11)

  1. Composite material comprising a matrix mainly constituted by an intermetallic compound of the AlNi type containing 43 to 63 atom % silicon, and a reinforcement formed from silicon carbide (SiC) particles dispersed in said matrix, said composite material containing 10 to 60 vol.% of SiC particles.
  2. Material according to claim 1, characterized in that the SiC particles are in the form of grains, monocrystalline platelets and/or whiskers.
  3. Material according to either of the claims 1 and 2, characterized in that the silicon carbide is in crystalline form corresponding to the alpha-hexagonal and/or beta-cubic types.
  4. Material according to any one of the claims 1 to 3, characterized in that the SiC particles have an average size, in accordance with their largest dimension of 1 to 100 µm.
  5. Composite material according to any one of the claims 1 to 4, characterized in that the mean dimension of the SiC particles is 5 to 50 µm and that the composite material contains 10 to 30 vol.% SiC particles.
  6. Composite material according to any one of the claims 1 to 5, characterized in that the AlNi-type intermetallic compound constituting the matrix comprises 50 to 63 atom % nickel and in that it is largely constituted by a phase having the B2 structure.
  7. Composite material according to any one of the claims 1 to 6, characterized in that the SiC particles are surrounded, at the matrix-particle interface, by a two-phase transition zone constituted a free carbon dispersion in the matrix.
  8. Composite material according to any one of the claims 1 to 7, characterized in that the matrix also comprises 0.5 to 2 vol.% alumina and/or iron.
  9. Composite material according to any one of the claims 1 to 8, characterized in that the AlNi-type intermetallic compound contains 2 to 11 atom % silicon.
  10. Process for the production of a composite material according to any one of the claims 1 to 9, characterized in that a mixture of a powder of an AlNi intermetallic compound and SiC particles is subject to hot densification in the solid phase.
  11. Process for the production of a composite material according to any one of the claims 1 to 9, characterized in that it consists of dispersing SiC particles into an AlNi matrix, which may or may not contain silicon, at a temperature such that the matrix is in the liquid state and that the SiC particles remain in the solid state.
EP94401585A 1993-07-12 1994-07-08 Composite material with intermetallic matrix of the A1Ni-type reinforced by silicon carbide particles Expired - Lifetime EP0634497B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9308557A FR2707667B1 (en) 1993-07-12 1993-07-12 AlNi type intermetallic matrix composite material reinforced with silicon carbide particles.
FR9308557 1993-07-12

Publications (2)

Publication Number Publication Date
EP0634497A1 EP0634497A1 (en) 1995-01-18
EP0634497B1 true EP0634497B1 (en) 1999-11-17

Family

ID=9449176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94401585A Expired - Lifetime EP0634497B1 (en) 1993-07-12 1994-07-08 Composite material with intermetallic matrix of the A1Ni-type reinforced by silicon carbide particles

Country Status (4)

Country Link
US (1) US5556486A (en)
EP (1) EP0634497B1 (en)
DE (1) DE69421651T2 (en)
FR (1) FR2707667B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404348B (en) * 2014-12-02 2016-06-08 湖南科技大学 A kind of nickel-aluminum base alloy and its preparation method
CN113755769B (en) * 2021-08-13 2022-04-08 上海交通大学 High-strength high-toughness aluminum-based composite material and heat treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050138A (en) * 1983-08-30 1985-03-19 Riken Corp Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
US4836982A (en) * 1984-10-19 1989-06-06 Martin Marietta Corporation Rapid solidification of metal-second phase composites
US4906531A (en) * 1986-10-01 1990-03-06 Ryobi Limited Alloys strengthened by dispersion of particles of a metal and an intermetallic compound and a process for producing such alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NISHIYAMA ET AL: "Fabrication and Mechanical Properties of Cf/NiAl and SiCw/NiAl Composites", 6TH CONF. PROC. JP-US COMPOSITE MATERIAL 1993, pages 417 - 424 *

Also Published As

Publication number Publication date
FR2707667A1 (en) 1995-01-20
US5556486A (en) 1996-09-17
DE69421651T2 (en) 2000-06-08
EP0634497A1 (en) 1995-01-18
DE69421651D1 (en) 1999-12-23
FR2707667B1 (en) 1995-09-29

Similar Documents

Publication Publication Date Title
BE1009486A5 (en) Ceramic coated contents of charge.
EP2547479B1 (en) Method of joining parts made of sic-based materials by non-reactive brazing with addition of a reinforcement, brazing compositions and assembly that are obtained by such a method
EP2475487B1 (en) Method of assembling parts made of sic materials by non-reactive brazing ; brazing compositions
EP2547480B1 (en) Method of joining parts made of sic-based materials by non-reactive brazing, brazing composition and assembly that is obtained by this method
EP2165794B1 (en) Process of joining in an average refractory state of workpieces made of SiC using non reactive brazing ; Brazing composition and suspension ; Joint and assembly obtained through this process
EP2547481B1 (en) Method of joining parts of sic-based materials by nonreactive brazing, brazing composition, and assembly obtained by this method
FR2475534A1 (en) COMPOSITE STRUCTURE HAVING CERAMIC MATERIAL REINFORCED WITH SILICON CARBIDE FIBERS
EP2326607B1 (en) Multilayer material, used for contacting liquid silicon
FR2598644A1 (en) THERMOSTABLE DIAMOND ABRASIVE PRODUCT AND PROCESS FOR PRODUCING SUCH A PRODUCT
FR2528823A1 (en) PROCESS FOR MANUFACTURING CARBON OR GRAPHITE ARTICLES CONTAINING REACTION-LINKED SILICON CARBIDE
FR2482080A1 (en) COMPOSITE STRUCTURES IN GLASS REINFORCED WITH SILICON CARBIDE FIBERS
LU86916A1 (en) Oxidation-resistant carbon and process for its manufacture.
EP0948469A1 (en) COMPOSITE MATERIAL WITH CERAMIC MATRIX AND SiC FIBER REINFORCEMENT, METHOD FOR MAKING SAME
WO2000008222A1 (en) Method for making an iron-aluminium intermetallic alloy reinforced with ceramic dispersoids and resulting alloy
EP2234944B1 (en) Method for making a refractory carbide layer on a part made of c/c composite material
FR2748471A1 (en) BRAZING ASSEMBLY OF CERAMIC MATERIALS CONTAINING SILICON CARBIDE
EP0634497B1 (en) Composite material with intermetallic matrix of the A1Ni-type reinforced by silicon carbide particles
EP2192097B1 (en) Moderately refractory method for assembling parts made from SiC-based materials by non-reactive brazing in an oxidising atmosphere, brazing suspension and seal and assembly obtained by this method.
FR2682674A1 (en) COMPOSITE MATERIAL WITH VITRO-CERAMIC OR CERAMIC MATRIX OBTAINED BY THE SOL-GEL PATH AND REINFORCED WITH SICILIUM CARBIDE-TYPE FIBERS, ITS MANUFACTURE AND ITS APPLICATIONS
EP0960217B1 (en) Corrosion resistant alloy, preparation method and article made from said alloy
WO2018158509A1 (en) Alloy for a fibre-forming plateid50000077372917 pub copy null
EP0657402B1 (en) Neutron absorbing composite material and process for its preparation
EP1689904B1 (en) Refractory alloy and mineral wool production method
FR2637890A1 (en) COMPOSITE MATERIAL WITH ZIRCONIA MATRIX
FR2666578A1 (en) MOLYBDENE-ZIRCONE DISILICIURE COMPOSITES.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19950629

17Q First examination report despatched

Effective date: 19971001

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69421651

Country of ref document: DE

Date of ref document: 19991223

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000705

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000803

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010708

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050708