EP0633934A1 - Modifizierte Zellen und Behandlungsverfahren - Google Patents
Modifizierte Zellen und BehandlungsverfahrenInfo
- Publication number
- EP0633934A1 EP0633934A1 EP93907972A EP93907972A EP0633934A1 EP 0633934 A1 EP0633934 A1 EP 0633934A1 EP 93907972 A EP93907972 A EP 93907972A EP 93907972 A EP93907972 A EP 93907972A EP 0633934 A1 EP0633934 A1 EP 0633934A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cells
- myc
- bcl
- cell
- apoptosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims description 60
- 230000006907 apoptotic process Effects 0.000 claims abstract description 144
- 101100239628 Danio rerio myca gene Proteins 0.000 claims abstract description 132
- 101150039798 MYC gene Proteins 0.000 claims abstract description 99
- 101100459258 Xenopus laevis myc-a gene Proteins 0.000 claims abstract description 94
- 210000004408 hybridoma Anatomy 0.000 claims abstract description 31
- 210000004881 tumor cell Anatomy 0.000 claims abstract description 29
- 102000052575 Proto-Oncogene Human genes 0.000 claims abstract description 26
- 108700020978 Proto-Oncogene Proteins 0.000 claims abstract description 26
- 238000003556 assay Methods 0.000 claims abstract description 22
- 239000000074 antisense oligonucleotide Substances 0.000 claims abstract description 21
- 238000012230 antisense oligonucleotides Methods 0.000 claims abstract description 21
- 150000001875 compounds Chemical class 0.000 claims abstract description 21
- 210000004027 cell Anatomy 0.000 claims description 340
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 claims description 138
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 claims description 131
- 230000014509 gene expression Effects 0.000 claims description 101
- 108020004414 DNA Proteins 0.000 claims description 50
- 206010028980 Neoplasm Diseases 0.000 claims description 42
- 108091034117 Oligonucleotide Proteins 0.000 claims description 31
- 230000000692 anti-sense effect Effects 0.000 claims description 28
- 102000039446 nucleic acids Human genes 0.000 claims description 22
- 108020004707 nucleic acids Proteins 0.000 claims description 22
- 150000007523 nucleic acids Chemical class 0.000 claims description 22
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 22
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 21
- 229920001184 polypeptide Polymers 0.000 claims description 19
- 102000044209 Tumor Suppressor Genes Human genes 0.000 claims description 15
- 108700025716 Tumor Suppressor Genes Proteins 0.000 claims description 15
- 238000003782 apoptosis assay Methods 0.000 claims description 12
- 239000003112 inhibitor Substances 0.000 claims description 12
- 230000005522 programmed cell death Effects 0.000 claims description 12
- 230000004927 fusion Effects 0.000 claims description 10
- 230000001939 inductive effect Effects 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims description 10
- 238000013518 transcription Methods 0.000 claims description 10
- 230000035897 transcription Effects 0.000 claims description 10
- 108091026890 Coding region Proteins 0.000 claims description 8
- 230000002401 inhibitory effect Effects 0.000 claims description 8
- 108020005544 Antisense RNA Proteins 0.000 claims description 6
- 239000003184 complementary RNA Substances 0.000 claims description 5
- 241000251539 Vertebrata <Metazoa> Species 0.000 claims description 4
- 206010025323 Lymphomas Diseases 0.000 claims description 3
- 150000003384 small molecules Chemical class 0.000 claims description 3
- 230000030833 cell death Effects 0.000 abstract description 33
- 108020000948 Antisense Oligonucleotides Proteins 0.000 abstract description 9
- 210000004748 cultured cell Anatomy 0.000 abstract description 3
- 108090000623 proteins and genes Proteins 0.000 description 64
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 56
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 56
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 56
- 210000002966 serum Anatomy 0.000 description 46
- 210000002950 fibroblast Anatomy 0.000 description 42
- 230000012010 growth Effects 0.000 description 36
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 28
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 26
- 241000282414 Homo sapiens Species 0.000 description 25
- 230000004083 survival effect Effects 0.000 description 23
- 102000004169 proteins and genes Human genes 0.000 description 22
- 230000000694 effects Effects 0.000 description 20
- 239000002609 medium Substances 0.000 description 20
- 239000013598 vector Substances 0.000 description 20
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 18
- 239000003814 drug Substances 0.000 description 18
- 101710150912 Myc protein Proteins 0.000 description 17
- 108700020796 Oncogene Proteins 0.000 description 17
- 206010035226 Plasma cell myeloma Diseases 0.000 description 17
- 229940079593 drug Drugs 0.000 description 17
- 201000000050 myeloid neoplasm Diseases 0.000 description 17
- 241001430294 unidentified retrovirus Species 0.000 description 16
- 239000000427 antigen Substances 0.000 description 15
- 108091007433 antigens Proteins 0.000 description 15
- 102000036639 antigens Human genes 0.000 description 15
- 230000034994 death Effects 0.000 description 15
- 231100000517 death Toxicity 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 14
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 14
- 201000011510 cancer Diseases 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 229940104230 thymidine Drugs 0.000 description 14
- 102000004127 Cytokines Human genes 0.000 description 13
- 108090000695 Cytokines Proteins 0.000 description 13
- 230000002074 deregulated effect Effects 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 13
- 230000035755 proliferation Effects 0.000 description 13
- 229950010131 puromycin Drugs 0.000 description 13
- 230000004913 activation Effects 0.000 description 12
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 11
- 239000003102 growth factor Substances 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 11
- 108010090931 Proto-Oncogene Proteins c-bcl-2 Proteins 0.000 description 10
- 102000013535 Proto-Oncogene Proteins c-bcl-2 Human genes 0.000 description 10
- 230000002424 anti-apoptotic effect Effects 0.000 description 10
- 244000309466 calf Species 0.000 description 10
- 230000001419 dependent effect Effects 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 108700041737 bcl-2 Genes Proteins 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 238000010367 cloning Methods 0.000 description 9
- 230000000295 complement effect Effects 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 108020004999 messenger RNA Proteins 0.000 description 9
- 108700024542 myc Genes Proteins 0.000 description 9
- 206010059866 Drug resistance Diseases 0.000 description 8
- 241000238631 Hexapoda Species 0.000 description 8
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 230000001640 apoptogenic effect Effects 0.000 description 8
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 239000001963 growth medium Substances 0.000 description 8
- 229960000310 isoleucine Drugs 0.000 description 8
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 208000005623 Carcinogenesis Diseases 0.000 description 7
- 235000014676 Phragmites communis Nutrition 0.000 description 7
- 108010087705 Proto-Oncogene Proteins c-myc Proteins 0.000 description 7
- 230000027455 binding Effects 0.000 description 7
- 230000036952 cancer formation Effects 0.000 description 7
- 231100000504 carcinogenesis Toxicity 0.000 description 7
- 230000022131 cell cycle Effects 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 239000000411 inducer Substances 0.000 description 7
- 230000003389 potentiating effect Effects 0.000 description 7
- RLMISHABBKUNFO-WHFBIAKZSA-N Ala-Ala-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)NCC(O)=O RLMISHABBKUNFO-WHFBIAKZSA-N 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 230000018199 S phase Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 6
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 6
- 238000003119 immunoblot Methods 0.000 description 6
- 208000032839 leukemia Diseases 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000003226 mitogen Substances 0.000 description 6
- 230000002297 mitogenic effect Effects 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 230000002062 proliferating effect Effects 0.000 description 6
- 230000008685 targeting Effects 0.000 description 6
- 206010057248 Cell death Diseases 0.000 description 5
- 241000701022 Cytomegalovirus Species 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- 108700026244 Open Reading Frames Proteins 0.000 description 5
- 102000009092 Proto-Oncogene Proteins c-myc Human genes 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 230000002411 adverse Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 230000004663 cell proliferation Effects 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 235000003642 hunger Nutrition 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 210000001161 mammalian embryo Anatomy 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000037351 starvation Effects 0.000 description 5
- 230000001052 transient effect Effects 0.000 description 5
- 239000003643 water by type Substances 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 108010077544 Chromatin Proteins 0.000 description 4
- 108010068250 Herpes Simplex Virus Protein Vmw65 Proteins 0.000 description 4
- 241000251188 Holocephali Species 0.000 description 4
- 108010007013 Melanocyte-Stimulating Hormones Proteins 0.000 description 4
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 description 4
- 102000055056 N-Myc Proto-Oncogene Human genes 0.000 description 4
- 108091081024 Start codon Proteins 0.000 description 4
- 108010069020 alanyl-prolyl-glycine Proteins 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 4
- 239000005557 antagonist Substances 0.000 description 4
- 230000005775 apoptotic pathway Effects 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 230000003833 cell viability Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000002512 chemotherapy Methods 0.000 description 4
- 210000003483 chromatin Anatomy 0.000 description 4
- 231100000433 cytotoxic Toxicity 0.000 description 4
- 230000001472 cytotoxic effect Effects 0.000 description 4
- 239000000262 estrogen Substances 0.000 description 4
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 4
- 229960005420 etoposide Drugs 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000003902 lesion Effects 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 3
- 108091028690 C-myc mRNA Proteins 0.000 description 3
- 241000699800 Cricetinae Species 0.000 description 3
- 101100381516 Homo sapiens BCL2 gene Proteins 0.000 description 3
- 102000014150 Interferons Human genes 0.000 description 3
- 108010050904 Interferons Proteins 0.000 description 3
- 102000004889 Interleukin-6 Human genes 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- UGTHTQWIQKEDEH-BQBZGAKWSA-N L-alanyl-L-prolylglycine zwitterion Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O UGTHTQWIQKEDEH-BQBZGAKWSA-N 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 239000000637 Melanocyte-Stimulating Hormone Substances 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 108010047956 Nucleosomes Proteins 0.000 description 3
- 208000012868 Overgrowth Diseases 0.000 description 3
- 208000005074 Retroviridae Infections Diseases 0.000 description 3
- 241000283984 Rodentia Species 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 108010087924 alanylproline Proteins 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 108010013835 arginine glutamate Proteins 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 235000011010 calcium phosphates Nutrition 0.000 description 3
- 230000032823 cell division Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 230000001085 cytostatic effect Effects 0.000 description 3
- 230000003828 downregulation Effects 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000013467 fragmentation Methods 0.000 description 3
- 238000006062 fragmentation reaction Methods 0.000 description 3
- 210000004524 haematopoietic cell Anatomy 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000006882 induction of apoptosis Effects 0.000 description 3
- 229940079322 interferon Drugs 0.000 description 3
- 229940100601 interleukin-6 Drugs 0.000 description 3
- 230000001665 lethal effect Effects 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- 230000000394 mitotic effect Effects 0.000 description 3
- 210000001623 nucleosome Anatomy 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 230000002459 sustained effect Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 3
- WGDNWOMKBUXFHR-BQBZGAKWSA-N Ala-Gly-Arg Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCN=C(N)N WGDNWOMKBUXFHR-BQBZGAKWSA-N 0.000 description 2
- MPLOSMWGDNJSEV-WHFBIAKZSA-N Ala-Gly-Asp Chemical compound [H]N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O MPLOSMWGDNJSEV-WHFBIAKZSA-N 0.000 description 2
- UWIQWPWWZUHBAO-ZLIFDBKOSA-N Ala-Leu-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](NC(=O)[C@H](C)N)CC(C)C)C(O)=O)=CNC2=C1 UWIQWPWWZUHBAO-ZLIFDBKOSA-N 0.000 description 2
- ZZZWQALDSQQBEW-STQMWFEESA-N Arg-Gly-Tyr Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O ZZZWQALDSQQBEW-STQMWFEESA-N 0.000 description 2
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 241000701533 Escherichia virus T4 Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- HQOGXFLBAKJUMH-CIUDSAMLSA-N Glu-Met-Ser Chemical compound CSCC[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCC(=O)O)N HQOGXFLBAKJUMH-CIUDSAMLSA-N 0.000 description 2
- VJVAQZYGLMJPTK-QEJZJMRPSA-N Glu-Trp-Asp Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CCC(=O)O)N VJVAQZYGLMJPTK-QEJZJMRPSA-N 0.000 description 2
- PYTZFYUXZZHOAD-WHFBIAKZSA-N Gly-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)CN PYTZFYUXZZHOAD-WHFBIAKZSA-N 0.000 description 2
- RNVUQLOKVIPNEM-BZSNNMDCSA-N His-Tyr-Lys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC2=CN=CN2)N)O RNVUQLOKVIPNEM-BZSNNMDCSA-N 0.000 description 2
- XOWMDXHFSBCAKQ-SRVKXCTJSA-N Leu-Ser-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC(C)C XOWMDXHFSBCAKQ-SRVKXCTJSA-N 0.000 description 2
- SBANPBVRHYIMRR-UHFFFAOYSA-N Leu-Ser-Pro Natural products CC(C)CC(N)C(=O)NC(CO)C(=O)N1CCCC1C(O)=O SBANPBVRHYIMRR-UHFFFAOYSA-N 0.000 description 2
- AAKRWBIIGKPOKQ-ONGXEEELSA-N Leu-Val-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O AAKRWBIIGKPOKQ-ONGXEEELSA-N 0.000 description 2
- MUYQDMBLDFEVRJ-LSJOCFKGSA-N Met-Ala-His Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CNC=N1 MUYQDMBLDFEVRJ-LSJOCFKGSA-N 0.000 description 2
- FXBKQTOGURNXSL-HJGDQZAQSA-N Met-Thr-Glu Chemical compound CSCC[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CCC(O)=O FXBKQTOGURNXSL-HJGDQZAQSA-N 0.000 description 2
- 108010079364 N-glycylalanine Proteins 0.000 description 2
- 206010061309 Neoplasm progression Diseases 0.000 description 2
- 108010025020 Nerve Growth Factor Proteins 0.000 description 2
- 102000015336 Nerve Growth Factor Human genes 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 102000043276 Oncogene Human genes 0.000 description 2
- MCIXMYKSPQUMJG-SRVKXCTJSA-N Phe-Ser-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O MCIXMYKSPQUMJG-SRVKXCTJSA-N 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- IFMDQWDAJUMMJC-DCAQKATOSA-N Pro-Ala-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O IFMDQWDAJUMMJC-DCAQKATOSA-N 0.000 description 2
- WSRWHZRUOCACLJ-UWVGGRQHSA-N Pro-Gly-His Chemical compound C([C@@H](C(=O)O)NC(=O)CNC(=O)[C@H]1NCCC1)C1=CN=CN1 WSRWHZRUOCACLJ-UWVGGRQHSA-N 0.000 description 2
- 239000012979 RPMI medium Substances 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- WTMPKZWHRCMMMT-KZVJFYERSA-N Thr-Pro-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O WTMPKZWHRCMMMT-KZVJFYERSA-N 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- MVFQLSPDMMFCMW-KKUMJFAQSA-N Tyr-Leu-Asn Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O MVFQLSPDMMFCMW-KKUMJFAQSA-N 0.000 description 2
- JFAWZADYPRMRCO-UBHSHLNASA-N Val-Ala-Phe Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 JFAWZADYPRMRCO-UBHSHLNASA-N 0.000 description 2
- CGGVNFJRZJUVAE-BYULHYEWSA-N Val-Asp-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N CGGVNFJRZJUVAE-BYULHYEWSA-N 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 229960003767 alanine Drugs 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 2
- 108010069205 aspartyl-phenylalanine Proteins 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 229950004398 broxuridine Drugs 0.000 description 2
- 229960004562 carboplatin Drugs 0.000 description 2
- 190000008236 carboplatin Chemical compound 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 239000000824 cytostatic agent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000003831 deregulation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 229940011871 estrogen Drugs 0.000 description 2
- 102000015694 estrogen receptors Human genes 0.000 description 2
- 108010038795 estrogen receptors Proteins 0.000 description 2
- -1 etoposϊde Chemical compound 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 206010020718 hyperplasia Diseases 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000003365 immunocytochemistry Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 210000000066 myeloid cell Anatomy 0.000 description 2
- 230000001613 neoplastic effect Effects 0.000 description 2
- 229940053128 nerve growth factor Drugs 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 108010070409 phenylalanyl-glycyl-glycine Proteins 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000013615 primer Substances 0.000 description 2
- 238000012207 quantitative assay Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 229930000044 secondary metabolite Natural products 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 108010026333 seryl-proline Proteins 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000000392 somatic effect Effects 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000003211 trypan blue cell staining Methods 0.000 description 2
- 230000000381 tumorigenic effect Effects 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 108010015385 valyl-prolyl-proline Proteins 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 2
- BMKDZUISNHGIBY-ZETCQYMHSA-N (+)-dexrazoxane Chemical compound C([C@H](C)N1CC(=O)NC(=O)C1)N1CC(=O)NC(=O)C1 BMKDZUISNHGIBY-ZETCQYMHSA-N 0.000 description 1
- LLXVXPPXELIDGQ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(2,5-dioxopyrrol-1-yl)benzoate Chemical compound C=1C=CC(N2C(C=CC2=O)=O)=CC=1C(=O)ON1C(=O)CCC1=O LLXVXPPXELIDGQ-UHFFFAOYSA-N 0.000 description 1
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- COEXAQSTZUWMRI-STQMWFEESA-N (2s)-1-[2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]pyrrolidine-2-carboxylic acid Chemical compound C([C@H](N)C(=O)NCC(=O)N1[C@@H](CCC1)C(O)=O)C1=CC=C(O)C=C1 COEXAQSTZUWMRI-STQMWFEESA-N 0.000 description 1
- SNKDCTFPQUHAPR-UHFFFAOYSA-N 1-fluoropyrimidine-2,4-dione Chemical compound FN1C=CC(=O)NC1=O SNKDCTFPQUHAPR-UHFFFAOYSA-N 0.000 description 1
- DHKVCYCWBUNNQH-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(1,4,5,7-tetrahydropyrazolo[3,4-c]pyridin-6-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)C=NN2 DHKVCYCWBUNNQH-UHFFFAOYSA-N 0.000 description 1
- MEOVPKDOYAIVHZ-UHFFFAOYSA-N 2-chloro-1-(1-methylpyrrol-2-yl)ethanol Chemical compound CN1C=CC=C1C(O)CCl MEOVPKDOYAIVHZ-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- YPSXFMHXRZAGTG-UHFFFAOYSA-N 4-methoxy-2-[2-(5-methoxy-2-nitrosophenyl)ethyl]-1-nitrosobenzene Chemical compound COC1=CC=C(N=O)C(CCC=2C(=CC=C(OC)C=2)N=O)=C1 YPSXFMHXRZAGTG-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- CXRCVCURMBFFOL-FXQIFTODSA-N Ala-Ala-Pro Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O CXRCVCURMBFFOL-FXQIFTODSA-N 0.000 description 1
- YYSWCHMLFJLLBJ-ZLUOBGJFSA-N Ala-Ala-Ser Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O YYSWCHMLFJLLBJ-ZLUOBGJFSA-N 0.000 description 1
- UHMQKOBNPRAZGB-CIUDSAMLSA-N Ala-Glu-Met Chemical compound C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCSC)C(=O)O)N UHMQKOBNPRAZGB-CIUDSAMLSA-N 0.000 description 1
- YHKANGMVQWRMAP-DCAQKATOSA-N Ala-Leu-Arg Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N YHKANGMVQWRMAP-DCAQKATOSA-N 0.000 description 1
- IHMCQESUJVZTKW-UBHSHLNASA-N Ala-Phe-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)CC1=CC=CC=C1 IHMCQESUJVZTKW-UBHSHLNASA-N 0.000 description 1
- ZJLORAAXDAJLDC-CQDKDKBSSA-N Ala-Tyr-Leu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(O)=O ZJLORAAXDAJLDC-CQDKDKBSSA-N 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- MFAMTAVAFBPXDC-LPEHRKFASA-N Arg-Asp-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)O)NC(=O)[C@H](CCCN=C(N)N)N)C(=O)O MFAMTAVAFBPXDC-LPEHRKFASA-N 0.000 description 1
- DJAIOAKQIOGULM-DCAQKATOSA-N Arg-Glu-Met Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCSC)C(O)=O DJAIOAKQIOGULM-DCAQKATOSA-N 0.000 description 1
- HQIZDMIGUJOSNI-IUCAKERBSA-N Arg-Gly-Arg Chemical compound N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O HQIZDMIGUJOSNI-IUCAKERBSA-N 0.000 description 1
- NVCIXQYNWYTLDO-IHRRRGAJSA-N Arg-His-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CN=CN1)NC(=O)[C@H](CCCN=C(N)N)N NVCIXQYNWYTLDO-IHRRRGAJSA-N 0.000 description 1
- CZUHPNLXLWMYMG-UBHSHLNASA-N Arg-Phe-Ala Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](C)C(O)=O)CC1=CC=CC=C1 CZUHPNLXLWMYMG-UBHSHLNASA-N 0.000 description 1
- NGYHSXDNNOFHNE-AVGNSLFASA-N Arg-Pro-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(O)=O NGYHSXDNNOFHNE-AVGNSLFASA-N 0.000 description 1
- INOIAEUXVVNJKA-XGEHTFHBSA-N Arg-Thr-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O INOIAEUXVVNJKA-XGEHTFHBSA-N 0.000 description 1
- QMQZYILAWUOLPV-JYJNAYRXSA-N Arg-Tyr-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)CC1=CC=C(O)C=C1 QMQZYILAWUOLPV-JYJNAYRXSA-N 0.000 description 1
- DAYDURRBMDCCFL-AAEUAGOBSA-N Asn-Trp-Gly Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CC(=O)N)N DAYDURRBMDCCFL-AAEUAGOBSA-N 0.000 description 1
- NECWUSYTYSIFNC-DLOVCJGASA-N Asp-Ala-Phe Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 NECWUSYTYSIFNC-DLOVCJGASA-N 0.000 description 1
- VGRHZPNRCLAHQA-IMJSIDKUSA-N Asp-Asn Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CC(N)=O)C(O)=O VGRHZPNRCLAHQA-IMJSIDKUSA-N 0.000 description 1
- CASGONAXMZPHCK-FXQIFTODSA-N Asp-Asn-Arg Chemical compound C(C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)O)N)CN=C(N)N CASGONAXMZPHCK-FXQIFTODSA-N 0.000 description 1
- GWTLRDMPMJCNMH-WHFBIAKZSA-N Asp-Asn-Gly Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O GWTLRDMPMJCNMH-WHFBIAKZSA-N 0.000 description 1
- WSGVTKZFVJSJOG-RCOVLWMOSA-N Asp-Gly-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O WSGVTKZFVJSJOG-RCOVLWMOSA-N 0.000 description 1
- GYWQGGUCMDCUJE-DLOVCJGASA-N Asp-Phe-Ala Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C)C(O)=O GYWQGGUCMDCUJE-DLOVCJGASA-N 0.000 description 1
- RPUYTJJZXQBWDT-SRVKXCTJSA-N Asp-Phe-Ser Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CC(=O)O)N RPUYTJJZXQBWDT-SRVKXCTJSA-N 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 108700032588 Baculovirus p35 Proteins 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102000007269 CA-125 Antigen Human genes 0.000 description 1
- 108010008629 CA-125 Antigen Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 102000005636 Cyclic AMP Response Element-Binding Protein Human genes 0.000 description 1
- 108010045171 Cyclic AMP Response Element-Binding Protein Proteins 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 229940124087 DNA topoisomerase II inhibitor Drugs 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 108091035710 E-box Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 101710121417 Envelope glycoprotein Proteins 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- 101900034680 Epstein-Barr virus Apoptosis regulator BHRF1 Proteins 0.000 description 1
- 108010069621 Epstein-Barr virus EBV-associated membrane antigen Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 230000006370 G0 arrest Effects 0.000 description 1
- 241001200922 Gagata Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- MUSGDMDGNGXULI-DCAQKATOSA-N Glu-Glu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CCC(O)=O MUSGDMDGNGXULI-DCAQKATOSA-N 0.000 description 1
- QIZJOTQTCAGKPU-KWQFWETISA-N Gly-Ala-Tyr Chemical compound [NH3+]CC(=O)N[C@@H](C)C(=O)N[C@H](C([O-])=O)CC1=CC=C(O)C=C1 QIZJOTQTCAGKPU-KWQFWETISA-N 0.000 description 1
- JLXVRFDTDUGQEE-YFKPBYRVSA-N Gly-Arg Chemical compound NCC(=O)N[C@H](C(O)=O)CCCN=C(N)N JLXVRFDTDUGQEE-YFKPBYRVSA-N 0.000 description 1
- TZOVVRJYUDETQG-RCOVLWMOSA-N Gly-Asp-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CN TZOVVRJYUDETQG-RCOVLWMOSA-N 0.000 description 1
- UPADCCSMVOQAGF-LBPRGKRZSA-N Gly-Gly-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)CNC(=O)CN)C(O)=O)=CNC2=C1 UPADCCSMVOQAGF-LBPRGKRZSA-N 0.000 description 1
- OLPPXYMMIARYAL-QMMMGPOBSA-N Gly-Gly-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)CNC(=O)CN OLPPXYMMIARYAL-QMMMGPOBSA-N 0.000 description 1
- GULGDABMYTYMJZ-STQMWFEESA-N Gly-Trp-Asp Chemical compound [H]NCC(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC(O)=O)C(O)=O GULGDABMYTYMJZ-STQMWFEESA-N 0.000 description 1
- YDIDLLVFCYSXNY-RCOVLWMOSA-N Gly-Val-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)CN YDIDLLVFCYSXNY-RCOVLWMOSA-N 0.000 description 1
- YAJQKIBLYPFAET-NAZCDGGXSA-N His-Thr-Trp Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)NC(=O)[C@H](CC3=CN=CN3)N)O YAJQKIBLYPFAET-NAZCDGGXSA-N 0.000 description 1
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 101000599940 Homo sapiens Interferon gamma Proteins 0.000 description 1
- 101001030211 Homo sapiens Myc proto-oncogene protein Proteins 0.000 description 1
- 101100404649 Homo sapiens NGF gene Proteins 0.000 description 1
- 101100508081 Human herpesvirus 1 (strain 17) ICP34.5 gene Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102000010790 Interleukin-3 Receptors Human genes 0.000 description 1
- 108010038452 Interleukin-3 Receptors Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- SITWEMZOJNKJCH-UHFFFAOYSA-N L-alanine-L-arginine Natural products CC(N)C(=O)NC(C(O)=O)CCCNC(N)=N SITWEMZOJNKJCH-UHFFFAOYSA-N 0.000 description 1
- KFKWRHQBZQICHA-STQMWFEESA-N L-leucyl-L-phenylalanine Natural products CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 KFKWRHQBZQICHA-STQMWFEESA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 241000272168 Laridae Species 0.000 description 1
- 241000255777 Lepidoptera Species 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- XWOBNBRUDDUEEY-UWVGGRQHSA-N Leu-His Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CNC=N1 XWOBNBRUDDUEEY-UWVGGRQHSA-N 0.000 description 1
- CSFVADKICPDRRF-KKUMJFAQSA-N Leu-His-Leu Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C([O-])=O)CC1=CN=CN1 CSFVADKICPDRRF-KKUMJFAQSA-N 0.000 description 1
- OHZIZVWQXJPBJS-IXOXFDKPSA-N Leu-His-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H]([C@@H](C)O)C(O)=O OHZIZVWQXJPBJS-IXOXFDKPSA-N 0.000 description 1
- RXGLHDWAZQECBI-SRVKXCTJSA-N Leu-Leu-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O RXGLHDWAZQECBI-SRVKXCTJSA-N 0.000 description 1
- OVZLLFONXILPDZ-VOAKCMCISA-N Leu-Lys-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O OVZLLFONXILPDZ-VOAKCMCISA-N 0.000 description 1
- GCXGCIYIHXSKAY-ULQDDVLXSA-N Leu-Phe-Arg Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O GCXGCIYIHXSKAY-ULQDDVLXSA-N 0.000 description 1
- ZAVCJRJOQKIOJW-KKUMJFAQSA-N Leu-Phe-Asp Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CC(O)=O)C(O)=O)CC1=CC=CC=C1 ZAVCJRJOQKIOJW-KKUMJFAQSA-N 0.000 description 1
- ADJWHHZETYAAAX-SRVKXCTJSA-N Leu-Ser-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N ADJWHHZETYAAAX-SRVKXCTJSA-N 0.000 description 1
- KLSUAWUZBMAZCL-RHYQMDGZSA-N Leu-Thr-Pro Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(O)=O KLSUAWUZBMAZCL-RHYQMDGZSA-N 0.000 description 1
- WFCKERTZVCQXKH-KBPBESRZSA-N Leu-Tyr-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)NCC(O)=O WFCKERTZVCQXKH-KBPBESRZSA-N 0.000 description 1
- RPWTZTBIFGENIA-VOAKCMCISA-N Lys-Thr-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O RPWTZTBIFGENIA-VOAKCMCISA-N 0.000 description 1
- MYTOTTSMVMWVJN-STQMWFEESA-N Lys-Tyr Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 MYTOTTSMVMWVJN-STQMWFEESA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 108010000410 MSH receptor Proteins 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- YKWHHKDMBZBMLG-GUBZILKMSA-N Met-Cys-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CCSC)N YKWHHKDMBZBMLG-GUBZILKMSA-N 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- 108091008604 NGF receptors Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- BKWJQWJPZMUWEG-LFSVMHDDSA-N Phe-Ala-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=CC=C1 BKWJQWJPZMUWEG-LFSVMHDDSA-N 0.000 description 1
- VHWOBXIWBDWZHK-IHRRRGAJSA-N Phe-Arg-Asp Chemical compound NC(N)=NCCC[C@@H](C(=O)N[C@@H](CC(O)=O)C(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 VHWOBXIWBDWZHK-IHRRRGAJSA-N 0.000 description 1
- DJPXNKUDJKGQEE-BZSNNMDCSA-N Phe-Asp-Phe Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O DJPXNKUDJKGQEE-BZSNNMDCSA-N 0.000 description 1
- OYQBFWWQSVIHBN-FHWLQOOXSA-N Phe-Glu-Phe Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O OYQBFWWQSVIHBN-FHWLQOOXSA-N 0.000 description 1
- NAXPHWZXEXNDIW-JTQLQIEISA-N Phe-Gly-Gly Chemical compound OC(=O)CNC(=O)CNC(=O)[C@@H](N)CC1=CC=CC=C1 NAXPHWZXEXNDIW-JTQLQIEISA-N 0.000 description 1
- MRWOVVNKSXXLRP-IHPCNDPISA-N Phe-Ser-Trp Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O MRWOVVNKSXXLRP-IHPCNDPISA-N 0.000 description 1
- GMWNQSGWWGKTSF-LFSVMHDDSA-N Phe-Thr-Ala Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O GMWNQSGWWGKTSF-LFSVMHDDSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- KMSKQZKKOZQFFG-HSUXVGOQSA-N Pirarubicin Chemical compound O([C@H]1[C@@H](N)C[C@@H](O[C@H]1C)O[C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1CCCCO1 KMSKQZKKOZQFFG-HSUXVGOQSA-N 0.000 description 1
- HFVNWDWLWUCIHC-GUPDPFMOSA-N Prednimustine Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 HFVNWDWLWUCIHC-GUPDPFMOSA-N 0.000 description 1
- DZZCICYRSZASNF-FXQIFTODSA-N Pro-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1 DZZCICYRSZASNF-FXQIFTODSA-N 0.000 description 1
- CGBYDGAJHSOGFQ-LPEHRKFASA-N Pro-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@@H]2CCCN2 CGBYDGAJHSOGFQ-LPEHRKFASA-N 0.000 description 1
- YTWNSIDWAFSEEI-RWMBFGLXSA-N Pro-His-Pro Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CC2=CN=CN2)C(=O)N3CCC[C@@H]3C(=O)O YTWNSIDWAFSEEI-RWMBFGLXSA-N 0.000 description 1
- LEIKGVHQTKHOLM-IUCAKERBSA-N Pro-Pro-Gly Chemical compound OC(=O)CNC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 LEIKGVHQTKHOLM-IUCAKERBSA-N 0.000 description 1
- KBUAPZAZPWNYSW-SRVKXCTJSA-N Pro-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 KBUAPZAZPWNYSW-SRVKXCTJSA-N 0.000 description 1
- BJCXXMGGPHRSHV-GUBZILKMSA-N Pro-Ser-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@@H]1CCCN1 BJCXXMGGPHRSHV-GUBZILKMSA-N 0.000 description 1
- XDKKMRPRRCOELJ-GUBZILKMSA-N Pro-Val-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H]1CCCN1 XDKKMRPRRCOELJ-GUBZILKMSA-N 0.000 description 1
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 1
- 102100038358 Prostate-specific antigen Human genes 0.000 description 1
- 101150027249 RL1 gene Proteins 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- DYAHQFWOVKZOOW-UHFFFAOYSA-N Sarin Chemical compound CC(C)OP(C)(F)=O DYAHQFWOVKZOOW-UHFFFAOYSA-N 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- NLQUOHDCLSFABG-GUBZILKMSA-N Ser-Arg-Arg Chemical compound NC(N)=NCCC[C@H](NC(=O)[C@H](CO)N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O NLQUOHDCLSFABG-GUBZILKMSA-N 0.000 description 1
- QEDMOZUJTGEIBF-FXQIFTODSA-N Ser-Arg-Asp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O QEDMOZUJTGEIBF-FXQIFTODSA-N 0.000 description 1
- CLKKNZQUQMZDGD-SRVKXCTJSA-N Ser-His-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)CC1=CN=CN1 CLKKNZQUQMZDGD-SRVKXCTJSA-N 0.000 description 1
- RQXDSYQXBCRXBT-GUBZILKMSA-N Ser-Met-Arg Chemical compound OC[C@H](N)C(=O)N[C@@H](CCSC)C(=O)N[C@H](C(O)=O)CCCN=C(N)N RQXDSYQXBCRXBT-GUBZILKMSA-N 0.000 description 1
- FKYWFUYPVKLJLP-DCAQKATOSA-N Ser-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CO FKYWFUYPVKLJLP-DCAQKATOSA-N 0.000 description 1
- CKDXFSPMIDSMGV-GUBZILKMSA-N Ser-Pro-Val Chemical compound [H]N[C@@H](CO)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(O)=O CKDXFSPMIDSMGV-GUBZILKMSA-N 0.000 description 1
- FVFUOQIYDPAIJR-XIRDDKMYSA-N Ser-Trp-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)NC(=O)[C@H](CO)N FVFUOQIYDPAIJR-XIRDDKMYSA-N 0.000 description 1
- PCMZJFMUYWIERL-ZKWXMUAHSA-N Ser-Val-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O PCMZJFMUYWIERL-ZKWXMUAHSA-N 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000035286 Spontaneous Remission Diseases 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108700025695 Suppressor Genes Proteins 0.000 description 1
- 241001424341 Tara spinosa Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- MQCPGOZXFSYJPS-KZVJFYERSA-N Thr-Ala-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O MQCPGOZXFSYJPS-KZVJFYERSA-N 0.000 description 1
- JQAWYCUUFIMTHE-WLTAIBSBSA-N Thr-Gly-Tyr Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O JQAWYCUUFIMTHE-WLTAIBSBSA-N 0.000 description 1
- BQBCIBCLXBKYHW-CSMHCCOUSA-N Thr-Leu Chemical compound CC(C)C[C@@H](C([O-])=O)NC(=O)[C@@H]([NH3+])[C@@H](C)O BQBCIBCLXBKYHW-CSMHCCOUSA-N 0.000 description 1
- RFKVQLIXNVEOMB-WEDXCCLWSA-N Thr-Leu-Gly Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)O)N)O RFKVQLIXNVEOMB-WEDXCCLWSA-N 0.000 description 1
- JAJOFWABAUKAEJ-QTKMDUPCSA-N Thr-Pro-His Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N)O JAJOFWABAUKAEJ-QTKMDUPCSA-N 0.000 description 1
- OLFOOYQTTQSSRK-UNQGMJICSA-N Thr-Pro-Phe Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 OLFOOYQTTQSSRK-UNQGMJICSA-N 0.000 description 1
- VUXIQSUQQYNLJP-XAVMHZPKSA-N Thr-Ser-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CO)C(=O)N1CCC[C@@H]1C(=O)O)N)O VUXIQSUQQYNLJP-XAVMHZPKSA-N 0.000 description 1
- VYVBSMCZNHOZGD-RCWTZXSCSA-N Thr-Val-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(O)=O VYVBSMCZNHOZGD-RCWTZXSCSA-N 0.000 description 1
- 239000000317 Topoisomerase II Inhibitor Substances 0.000 description 1
- 101001023030 Toxoplasma gondii Myosin-D Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000007238 Transferrin Receptors Human genes 0.000 description 1
- 108010033576 Transferrin Receptors Proteins 0.000 description 1
- 102100033725 Tumor necrosis factor receptor superfamily member 16 Human genes 0.000 description 1
- 102000018594 Tumour necrosis factor Human genes 0.000 description 1
- 108050007852 Tumour necrosis factor Proteins 0.000 description 1
- AKXBNSZMYAOGLS-STQMWFEESA-N Tyr-Arg-Gly Chemical compound NC(N)=NCCC[C@@H](C(=O)NCC(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 AKXBNSZMYAOGLS-STQMWFEESA-N 0.000 description 1
- DANHCMVVXDXOHN-SRVKXCTJSA-N Tyr-Asp-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 DANHCMVVXDXOHN-SRVKXCTJSA-N 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- DDRBQONWVBDQOY-GUBZILKMSA-N Val-Ala-Arg Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O DDRBQONWVBDQOY-GUBZILKMSA-N 0.000 description 1
- UDLYXGYWTVOIKU-QXEWZRGKSA-N Val-Asn-Arg Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N UDLYXGYWTVOIKU-QXEWZRGKSA-N 0.000 description 1
- ROLGIBMFNMZANA-GVXVVHGQSA-N Val-Glu-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](C(C)C)N ROLGIBMFNMZANA-GVXVVHGQSA-N 0.000 description 1
- OQWNEUXPKHIEJO-NRPADANISA-N Val-Glu-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CO)C(=O)O)N OQWNEUXPKHIEJO-NRPADANISA-N 0.000 description 1
- CELJCNRXKZPTCX-XPUUQOCRSA-N Val-Gly-Ala Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@@H](C)C(O)=O CELJCNRXKZPTCX-XPUUQOCRSA-N 0.000 description 1
- KVRLNEILGGVBJX-IHRRRGAJSA-N Val-His-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)CC1=CN=CN1 KVRLNEILGGVBJX-IHRRRGAJSA-N 0.000 description 1
- IOETTZIEIBVWBZ-GUBZILKMSA-N Val-Met-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CS)C(=O)O)N IOETTZIEIBVWBZ-GUBZILKMSA-N 0.000 description 1
- UEPLNXPLHJUYPT-AVGNSLFASA-N Val-Met-Lys Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(O)=O UEPLNXPLHJUYPT-AVGNSLFASA-N 0.000 description 1
- DOFAQXCYFQKSHT-SRVKXCTJSA-N Val-Pro-Pro Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DOFAQXCYFQKSHT-SRVKXCTJSA-N 0.000 description 1
- NLNCNKIVJPEFBC-DLOVCJGASA-N Val-Val-Glu Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCC(O)=O NLNCNKIVJPEFBC-DLOVCJGASA-N 0.000 description 1
- SSKKGOWRPNIVDW-AVGNSLFASA-N Val-Val-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N SSKKGOWRPNIVDW-AVGNSLFASA-N 0.000 description 1
- 101710101493 Viral myc transforming protein Proteins 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- IFJUINDAXYAPTO-UUBSBJJBSA-N [(8r,9s,13s,14s,17s)-17-[2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]acetyl]oxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-3-yl] benzoate Chemical compound C([C@@H]1[C@@H](C2=CC=3)CC[C@]4([C@H]1CC[C@@H]4OC(=O)COC(=O)CCCC=1C=CC(=CC=1)N(CCCl)CCCl)C)CC2=CC=3OC(=O)C1=CC=CC=C1 IFJUINDAXYAPTO-UUBSBJJBSA-N 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 208000038016 acute inflammation Diseases 0.000 description 1
- 230000006022 acute inflammation Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 108010039538 alanyl-glycyl-aspartyl-valine Proteins 0.000 description 1
- 108010005233 alanylglutamic acid Proteins 0.000 description 1
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 108010060035 arginylproline Proteins 0.000 description 1
- 108010047857 aspartylglycine Proteins 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 229950008548 bisantrene Drugs 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 238000009582 blood typing Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 235000010633 broth Nutrition 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010370 cell cloning Methods 0.000 description 1
- 230000006721 cell death pathway Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 108091092356 cellular DNA Proteins 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- ZWAOHEXOSAUJHY-ZIYNGMLESA-N doxifluridine Chemical compound O[C@@H]1[C@H](O)[C@@H](C)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ZWAOHEXOSAUJHY-ZIYNGMLESA-N 0.000 description 1
- 229950005454 doxifluridine Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000010218 electron microscopic analysis Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 230000000925 erythroid effect Effects 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- 230000010429 evolutionary process Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 229940044627 gamma-interferon Drugs 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 1
- 108010077515 glycylproline Proteins 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 108010025306 histidylleucine Proteins 0.000 description 1
- 108010085325 histidylproline Proteins 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000007440 host cell apoptosis Effects 0.000 description 1
- 102000043557 human IFNG Human genes 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000012760 immunocytochemical staining Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 230000001861 immunosuppressant effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000037041 intracellular level Effects 0.000 description 1
- 230000006525 intracellular process Effects 0.000 description 1
- 238000007852 inverse PCR Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 108010034529 leucyl-lysine Proteins 0.000 description 1
- 108010044056 leucyl-phenylalanine Proteins 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 230000008747 mitogenic response Effects 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 238000004264 monolayer culture Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 230000036457 multidrug resistance Effects 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- NJSMWLQOCQIOPE-OCHFTUDZSA-N n-[(e)-[10-[(e)-(4,5-dihydro-1h-imidazol-2-ylhydrazinylidene)methyl]anthracen-9-yl]methylideneamino]-4,5-dihydro-1h-imidazol-2-amine Chemical compound N1CCN=C1N\N=C\C(C1=CC=CC=C11)=C(C=CC=C2)C2=C1\C=N\NC1=NCCN1 NJSMWLQOCQIOPE-OCHFTUDZSA-N 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000004987 nonapoptotic effect Effects 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 230000009701 normal cell proliferation Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 210000001331 nose Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000001293 nucleolytic effect Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000006508 oncogene activation Effects 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 108010012581 phenylalanylglutamate Proteins 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 229960001221 pirarubicin Drugs 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 108010000685 platelet-derived growth factor AB Proteins 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229960004694 prednimustine Drugs 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 108010014186 ras Proteins Proteins 0.000 description 1
- 230000026267 regulation of growth Effects 0.000 description 1
- 230000018866 regulation of programmed cell death Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 108010061238 threonyl-glycine Proteins 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- 108010080629 tryptophan-leucine Proteins 0.000 description 1
- 230000004222 uncontrolled growth Effects 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1135—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/72—Receptors; Cell surface antigens; Cell surface determinants for hormones
- C07K14/721—Steroid/thyroid hormone superfamily, e.g. GR, EcR, androgen receptor, oestrogen receptor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/82—Translation products from oncogenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/71—Fusion polypeptide containing domain for protein-protein interaction containing domain for transcriptional activaation, e.g. VP16
- C07K2319/715—Fusion polypeptide containing domain for protein-protein interaction containing domain for transcriptional activaation, e.g. VP16 containing a domain for ligand dependent transcriptional activation, e.g. containing a steroid receptor domain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/73—Fusion polypeptide containing domain for protein-protein interaction containing coiled-coiled motif (leucine zippers)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/314—Phosphoramidates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/321—2'-O-R Modification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/352—Nature of the modification linked to the nucleic acid via a carbon atom
- C12N2310/3521—Methyl
Definitions
- This invention relates to genes involved in the regulation of programmed cell death (apoptosis) and modulation of the genes and their use in prolonging the life of cells in culture and in methods of treatment of cancer and other diseases.
- Cancer is a disease caused by over-proliferation of individual clones of cells that arise in somatic tissues through mutation. The inappropriate and uncontrolled growth that results disrupts the normal architecture of the organism and results in death by a variety of adventitious mechanisms. Because increased cell proliferation is the most prominent feature of cancer cells, cancer has almost exclusively been considered a disease in which the controls that determine the ability of an individual cell to proliferate become damaged in some way. As such, almost all past investigations of the molecular and biochemical mechanisms of cancer have concentrated on the machinery triggering cell proliferation (ie the dominant oncoge ⁇ es) or suppressing it (the tumour suppressor or anti- oncogenes).
- Apoptosis is the likely mechanism of cell death in a wide range of normal and pathological situations. Apoptosis is important during development in the establishment of complex architecture in limbs, the central nervous sytem, the immune system and many other tissues. Apoptosis has been proposed as the mechanism of cell death of neurons in Alzheimer's and Parkinson's diseases and in CD4 + helper T cells in response to binding by HIV envelope glycoproteins during AIDS. In all of these latter pathological conditions, the disease arises because cell death occurs when it should not, in complete contrast to the situation in cancer when cell death fails to occur when it should. Pharmacological intervention in cancer would focus on inducing apoptosis whereas in neurodegenerative and immunosuppresses pathologies intervention would seek to block death.
- the c-myc gene is the cellular homologue of the viral oncogene v-myc which is found in a number of avian and feline retroviruses that induce leukaemias and carcinomas.
- Myc c- myc protein
- Myc is a transcription factor. It possesses a number of functional domains found in other proteins modulating transcription, specifically the Ieucine zipper characteristic of the FOS/JUN/CREB transcription factor families and the basic-Helix-Loop-Helix motif found in, for example, the MyoD and E-box enhancer-binding proteins (Murre et al, 1989). Recently, both a heterodimeric partner and a consensus
- DNA-bi ⁇ ding sequence for Myc have been identified. However, it is still unknown precisely which genes are regulated by Myc or to what biological end.
- the c-myc oncogene has been implicated in the control of normal cell proliferation by many studies. In particular, it is one of the immediate early growth response genes that are rapidly induced in quiescent cells upon mitogenic induction, suggesting that it plays some role in mediating the transition from quiescence to proliferation.
- expression of c-myc is not confined to a brief period during the G 0 /G_ transition.
- both c-myc mRNA and protein are continuously present at an appreciable level throughout the cell cycle in proliferating cells.
- both c-myc mRNA and protein have very short half lives in fibroblasts (Waters et al, 1991)
- this sustained presence of Myc protein can only result from continuous synthesis.
- Ectopic induction of Myc activity is sufficient to drive quiescent growth factor-deprived fibroblasts into the cell cycle (Eilers et al, 1991). This argues that Myc regulates genes mediating the mitogenic response, an idea consistent with the protein's rapid induction by mitogens in quiescent cells.
- sustained expression of Myc can block both growth arrest and cell differentiation programmes, suggesting a role for Myc also in regulating genes mediating both of these processes.
- Untransformed fibroblasts respond to serum or mitogen deprivation by growth arrest in a G,-like state often termed G 0 and can remain viable in this arrested state for extended periods. Mitogen withdrawal is accompanied by rapid down-regulation of c-myc expression at both the mRNA and protein level, irrespective of position within the cell cycle. Because cells deprived of growth factors eventually become quiescent it has been suggested that Myc down-regulation is a requirement or even a signal for growth arrest (Freytag, 1988; Waters et al, 1991). In tumour cells, elevated or deregulated expression of c-myc (occasionally other myc genes) is so widespread as to suggest a critical role for myc gene activation in multi-stage carcinogenesis (Spencer and Groudine, 1991).
- fibroblasts or epithelial cells are the commonest types of cell used. All such cells eventually senesce and die in vitro, often before they reproduce in sufficient yields for preparative purposes. Part of the process by which such cells fail in culture appears to be by execution of apoptosis. Thus, any means for abrogating apoptotic cell death is likely to be of significant benefit in both the propagation and the prolongation of mammalian cells culture.
- tumour cells used in culture are transformed, immortalized or derived from tumours. As a consequence, almost all have deregulated myc gene expression and are thus sensitised to processes that induce apoptosis. We have theorised that this is precisely the reason why certain types of tumour cell die in vitro when subjected to nutrient privation (eg overgrowth, metabolite depletion) or exhaust growth factors that mediate their survival.
- nutrient privation eg overgrowth, metabolite depletion
- exhaust growth factors that mediate their survival.
- a good example in this context is hybridomas - tumours derived by fusion of lymphocytes with myeloma cells.
- Hybridomas require expensive growth media replete with multiple and costly growth factors or foetal calf serum, and even then are very prone to apoptotic death and poor cloning and growth, presumably due to transient and unintentional exposure to adverse growth conditions.
- a survival gene such as bc/-2 into cultured cells potentiates their survival and renders them more resistant to the capriciousness of in vitro culture conditions.
- the bcl-2 proto-oncogene is the site on human chromosome 18 that is reciprocally translocated to the Immunoglobulin Heavy Chain locus on chromosome 14 in a variety of B lymphoid tumours (Tsujimoto and Croce, 1986).
- the bcl-2 oncogene also synergises with the pervasive c-myc oncogene in tumour progression in experiments where the two genes are introduced into transgenic mice and expressed specifically in B cells (Strasser et al,
- some of the objects of the invention are to make use of these findings in methods of treating tumour cells, methods of enhancing the life-span of, and yield of recombinant molecules from, cells in culture, and methods of assaying compounds for their apoptosis-modulating effects.
- a first aspect of the invention provides a method of treating tumour cells in a vertebrate, the method comprising introducing into the tumour cells means for inhibiting an inhibitor of myc-induced programmed cell death.
- tumours suitable for treatment in accordance with the invention include leukaemias, and cancers of the uterine cervix, head, neck, brain glial cells, breast, colon, lung, prostate, skin, mouth, nose, oesophagus, stomach, liver, pancreas and metastatic forms of any of these.
- tumour cells to be treated are not lymphoma cells.
- the means for inhibiting an inhibitor of myc-induced programmed cell death (apoptosis) may be provided by a means for preventing or reducing the expression of the said inhibitor in the said tumour cell, or it may be provided by a means for competing with the said inhibitor for the site of action of the said inhibitor.
- the said means for inhibiting comprises means for preventing expression of an anti-oncogene or proto- oncogene.
- the anti-oncogene or proto-oncogene is &c/-2 or a cellular homologue thereof that fulfils the same function as bcl-2.
- a gene is likely to share at least 75% sequence identity with bcl-2.
- an anti-oncogene or proto-oncogene may be inhibited by the introduction into the cell of antisense nucleic acid adapted to bind to the anti-oncogene or proto-oncogene or transcription products thereof.
- Preventing or reducing bc/-2 expression may be clinically useful in situations in which pathological hyperplasia arises in tissues that express bcl-2, for example in the suppression of chronic or acute inflammation, and in the treatment of benign hyperplasias that lead to malignancy (for example as in familial polypopsis coli in the gut).
- the antisense nucleic acid is an antisense oligonucleotide.
- Antisense oligonucleotides are single-stranded nucleic acid, which can specifically bind to a complementary nucleic acid sequence- By binding to the appropriate target sequence, an RNA-RNA, a DNA-DNA, or RNA- DNA duplex is formed. These nucleic acids are often termed "antisense" because they are complementary to the sense or coding strand of the gene. Recently, formation of a triple helix has proven possible where the oligonucleotide is bound to a DNA duplex. It was found that oligonucleotides could recognise sequences in the major groove of the DNA double helix. A triple helix was formed thereby. This suggests that it is possible to synthesise sequence-specific molecules which specifically bind double-stranded DNA via recognition of major groove hydrogen binding sites.
- the above oligonucleotides can inhibit the function of the target nucleic acid. This could, for example, be a result of blocking the transcription, processing, poly(A) addition, replication, translation, or promoting inhibitory mechanisms of the cells, such as promoting RNA degradations.
- the antisense oligonucleotide can be used to selectively suppress certain cellular functions, for example the expression of the bcl-2 protein.
- oligonucleotides may be "modified oligonucleotides".
- modified oligonucleotides we mean that they may contain phosphorothioate, methylphosphonate or other phosphoramidite internucleosidic linkages as well as, or instead of the usual phosphodiester linkages. Such internucleosidic linkages are less susceptible to nucleolytic degradation, or may confer on the antisense oligonucleotide other preferred pharmacokinetic properties.
- a further modification that can be made instead of or in addition to the aforementioned modifications is the addition of a component capable of intercalating into the target nucleic acid, and thus stabilising the resultant (antisense oligonucleotide): (target nucleic acid) hybrid.
- the intercalating component is preferably acridine.
- oligonucleotide targeting of the oligonucleotide to a specific cell type is preferred, it is not necessary for the working of the invention because inhibition of bc/-2 may not be deleterious to those cells which are not tumourigenic.
- the antisense nucleic acid may additionally comprise a portion capable of targeting the antisense nucleic acid to cells generally or to a desired cell type.
- the targeting portion may specifically bind to a cell-type-specific entity or may be specifically taken up by the specific cell type which is the intended target.
- the entity recognised may be characteristic of cells in general, so that the antisense oligonucleotide is simply taken up into cells and is therefore exposed less to extracellular nucleases, for example.
- the specificity of the compound is thus derived solely from the antisense oligonucleotide.
- the entity which is recognised may be a suitable entity which is specifically expressed by tumour cells, virally-infected cells, cells introduced as part of gene therapy or even specific normal cells of the body into which, for whatever reason, one wishes to introduce the antisense oligonucleotide, but which entity is not expressed, or at least not with such frequency, in cells into which one does not wish to introduce the oligonucleotide.
- the entity which is recognised will often be an antigen. Examples of antigens include those listed in Table 1 below.
- a non-specific antigen is the transferrin receptor, to which antibodies may be raised, as taught in EP 226 419.
- Monoclonal antibodies which will bind specifically to many of these antigens are already known (for example those given in the Table) but in any case, with today's techniques in relation to monoclonal antibody technology, antibodies can be prepared to most antigens.
- the antigen-specific portion may be an entire antibody (usually, for convenience and specificity, a monoclonal antibody), a part or parts thereof (for example an F ab fragment, F(ab') 2 , dab or "minimum recognition unit") or a synthetic antibody or part thereof.
- a compound comprising only part of an antibody may be advantageous by virtue of being less likely to undergo non-specific binding due to the F c part.
- Suitable monoclonal antibodies to selected antigens may be prepared by known techniques, for example those disclosed in “Monoclonal Antibodies: A manual of techniques", H. Zola (CRC Press, 1988) and in “Monoclonal Hybridoma Antibodies: Techniques and Applications", J.G.R. Hurrell (CRC Press, 1982). All references mentioned in this specification are incorporated herein by reference.
- Bispecific antibodies may be prepared by cell fusion, by reassociation of monovalent fragments or by chemical cross-linking of whole antibodies, with one part of the resulting bispecific antibody being directed to the cell-specific antigen and the other to the oligonucleotide.
- the bispecific antibody can be administered bound to the oligonucleotide or it can be administered first, followed by the oligonucleotide.
- the former is preferred.
- Methods for preparing bispecific antibodies are disclosed in Corvalan et al (1987) Cancer Immunol. Immunother. 24, 127-132 and 133-137 and 138-143. Bispecific antibodies, chimaeric antibodies and single chain antibodies are discussed generally by Williams in Tibtech, February 1988, Vol. 6, 36-42, Neuberger et al (8th International Biotechnology Symposium, 1988, Part 2, 792-799) and Tan and Morrison (Adv. Drug Delivery Reviews 2, (1988), 129-142).
- Suitably prepared non-human antibodies can be "humanized” in known ways, for example by inserting the CDR regions of mouse antibodies into the framework of human antibodies. IgG class antibodies are preferred.
- antigens include alphafoetoprotein, Ca-125 and prostate specific antigen.
- the ligand binding molecules can be monoclonal antibodies against leukaemia-associated antigens. Examples of these are: anti-CALLA (common acute lymphoblastic leukaemia-associated antigen), J5, BA-3, RFB-1, BA-2, SJ-9A4 Du-ALL- 1, anti-3-3, anti-3-40, SN1 and CALL2, described in Foon, K.A. et al 1986 Blood 68(1), 1-31, "Review: Immunologic Classification of Leukemia and Lymphoma".
- the ligand binding molecules can also be antibodies that identify myeloid cell surface antigens, or antibodies that are reactive with B or T lymphocytes, respectively.
- antibodies examples include those which identify human myeloid cell surface antigens or those which are reactive with human B or T lymphocytes as described in Foon, K.A. Id. Additional examples are antibodies B43, CD22 and CD 19 which are reactive with B lymphocytes can also be used.
- the entity which is recognised may or may not be antigenic but can be recognised and selectively bound to in some other way.
- it may be a characteristic cell surface receptor such as the receptor for melanocyte-stimulating hormone (MSH) which is expressed in high numbers in melanoma cells.
- MSH melanocyte-stimulating hormone
- the cell-specific portion may then be a compound or part thereof which specifically binds to the entity in a non-immune sense, for example as a substrate or analogue thereof for a cell-surface enzyme or as a messenger.
- the cell-specific portion may be MSH itself or a part thereof which binds to the MSH receptor.
- MSH peptides are disclosed in, for example, Al- Obeidi et al (1980) J. Med. Chem. 32, 174.
- the specificity may be indirect: a first cell-specific antibody may be administered, followed by a compound of the invention directed against the first antibody.
- the entity which is recognised is not secreted to any relevant extent into body fluids, since otherwise the requisite specificity may not be achieved.
- the targeting portion of the antisense nucleic acid of this embodiment of the invention may be linked to the remainder of the antisense nucleic acid by any of the conventional ways of linking compounds, for example by disulphide, amide or thioether bonds, such as those generally described in Goodchild, supra or in Connolly (1985) Nucl. Acids Res. 13(12), 4485- 4502 or in PCT/US85/03312.
- a thiol group can be introduced at the 5'- end of an aminofunctionalised oligonucleotide (Nucleic Acids Res. (1991) 19, 4561).
- This group can be used to attach the oligonucleotide to a protein, such as a monoclonal antibody or growth factor, using standard heterobiofimctional protein cross-linking reagents such as m- maleimidobenzoyl N-hydroxysuccinimide ester (MBS).
- MBS m- maleimidobenzoyl N-hydroxysuccinimide ester
- These reagents usually link between a thiol group in one protein and the terminal amino group in a lysine residue in the other protein.
- the linkage is cleavable in lysosomes by lysosomal enzymes or by the acidic environment to liberate the antisense oligonucleotide.
- the antisense oligonucleotide can be conjugated with hydrophobic derivatives as taught in FR 2 649 321 to protect it from nucleases and to improve transport across cell membranes.
- the hydrophobic moiety may be cholesterol as taught by Zon in il Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression” , pp 234-247, J.S. Cohen (Ed), CRC Press, Boca Raton, FL, 1989.
- Conjugation of the oligonucleotides to poly-L-lysine may also enhance delivery of the said oligonucleotides to the cell as disclosed by Stevenson and Iversen (1989) J. Gen. Virol. 70, 2673-2682, and by LeMaitre et al (1987) Proc. Natl. Acad. Sci. USA 84, 648-652.
- polyamines conjugated to phosphorothioate oligonucleotides enhance their cellular uptake as taught in US 5 138 045.
- Suitable antisense oligonucleotides may be designed by reference to the sequence of the anti-oncogene or proto-oncogene.
- the sequence of the human bc!2-a cDNA (SEQ1) and its encoded amino acid sequence (SEQ2) are shown in Figure 13. It is preferable if the antisense oligonucleotide hybridises to the region of the mRNA encoding the translational initiation codon, for example, in the case of bcl-2 mRNA the oligonucleotide may have the sequence
- the means for preventing or reducing the expression of the said anti-oncogene or proto-oncogene in the said tumour cell is provided by a DNA construct which expresses an antisense RNA.
- an alternative strategy to blocking expression of the said anti- oncogene or proto-oncogene using antisense oligonucleotides is to introduce into cells vectors that drive expression of antisense RNAs to the said oncogenes.
- a suitable RNA to express would be the antisense sequence complementary to the entire oncogene open reading frame. This may be inserted into an appropriate promoter-driven vector, for example a CMV promoter-driven vector, and appropriate mRNA cap and poly A recognition sequences added to the antisense construct at 5' and 3' positions respectively (Kaufman, 1990b).
- the construct may be delivered to tumour cells using an amphotropic retrovirus vector based system.
- the said anti-oncogene or proto-oncogene is bcl-2 and the said antisense RNA is expressed from the sequence complementary to the entire bcl-2 open reading frame.
- a means for competing with the said inhibitor for the site of action of the said inhibitor may be provided by a DNA construct expressing a mutant of the said inhibitor which interacts with the normal site of action but in a futile and ineffective way, or by introducing directly into the cell a mutant of the said inhibitor.
- "dominant negative" mutants of Bcl-2 may be useful in the practice of the invention. By site-directed mutagenesis of the Bcl-2 protein inactive mutants of Bcl-2 may be identified which nonetheless interact with normal targets for the Bcl-2 protein but in a futile and ineffective way.
- Bcl-2 mutants because if expressed in cells they may compete with normal active Bcl-2 for essential cellular targets of Bcl-2 action and hence block its function. Introduction of such mutants into cells constitute an alternative strategy for interfering with Bcl-2 function.
- DNA constructs expressing either antisense RNA or mutants of the inhibitor as described above may be introduced into the target cells in known ways.
- the constructs of the invention may be introduced into the tumour cells by any convenient method, for example methods involving retroviruses, so that the construct is inserted into the genome of the tumour cell (see, for example, Kurijama et al (1991) Cell Struc. and Func. 16, 503-510, in which purified retroviruses are administered, and Culver et al (1992) Science 256, 1550-1552, in which cells which produce retroviruses are injected into the tumour) or methods involving simple delivery of the construct into the cell for expression therein either for a limited time or, following integration into the genome, for a longer time.
- tumour-cell-targeted liposomes see Nassander et al (1992) Cancer Res. 52, 646-653
- adenoviruses carrying external DNA via an antibody-polylysine bridge see Curiel et al, Human Gene Therapy, April 1992. It may be desirable to locally perfuse a tumour with the delivery vehicle (for example the retrovirus) for a period of time.
- the methods of the invention will find use in the area of human medicine, but may be used to treat other mammals such as horses, cattle, pigs, sheep, dogs, cats, and other vertebrates such as chickens.
- Inhibition o ⁇ bcl-2 expression during therapy may be imposed repeatedly, for example prior to adjuvant drug therapy. It may be used to sensitize tumour cells to the cytotoxic effects of chemo- and radiotherapy and can therefore be administered (either systemically or more specifically - for example through certain major blood vessels or introduced into specific body cavities) shortly (a few hours) before drug/radiation treatment.
- the half-life of the Bcl-2 protein is quite long, so the antisense inhibition should preferably be imposed for several hours (for example 6-12 hrs).
- tumour cells treated by the methods of the invention are additionally exposed to cytostatic or cytotoxic agents.
- Suitable agents are radiation, 6-mercaptopurine, vincristine, vinblastine, etopos ⁇ de, carboplatin, doxorubicin, cisplatin, fluoruracil, methotrexate, epirubicin, prednimustine, estramustine, bleomycin, mitoxantrone, mitomycin, doxifluridine, carboplatin, bisantrene, pirarubicin, ICRF-187, trimetrexate, idarubicin, bestrabucil or KS1/4 DA VLB. These may be used before, during or, preferably, following treatment using the methods of the invention.
- a second aspect of the invention provides a composition comprising an antisense oligonucleotide adapted to bind to an anti-oncogene or proto- oncogene or transcription product thereof and inhibit transcription or translation, and means to introduce the oligonucleotide into a mammalian tumour cell.
- a third aspect of the invention provides a composition
- a composition comprising a DNA construct capable of expressing antisense RNA adapted to bind to an anti- oncogene or proto-oncogene or transcription product thereof and inhibit transcription or translation thereof, and means to introduce the DNA construct into a mammalian tumour cell.
- compositions suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the composition isotonic with the blood of the intended receipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
- sterile liquid carrier for example water for injections, immediately prior to use.
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets.
- composition of the invention may be administered in any suitable way, usually parenterally, for example intravenously, intraperitoneally or, preferably (for bladder cancers), intra-vesically (ie into the bladder), in standard sterile, non-pyrogenic formulations of diluents and carriers, for example isotonic saline (when administered intravenously).
- parenterally for example intravenously, intraperitoneally or, preferably (for bladder cancers), intra-vesically (ie into the bladder), in standard sterile, non-pyrogenic formulations of diluents and carriers, for example isotonic saline (when administered intravenously).
- parenterally for example intravenously, intraperitoneally or, preferably (for bladder cancers), intra-vesically (ie into the bladder), in standard sterile, non-pyrogenic formulations of diluents and carriers, for example isotonic saline (when administered intravenously).
- the compound of the invention may be immunogenic, cycl
- bc/-2 may exert its survival promoting effects even in cell types in which it is not normally expressed.
- expression of bcl-2 may also serve to render cells of many different lineages more resistant to death by overgrowth, cytokine abuse or other stress when in culture.
- a fourth aspect of the invention comprises a cell which is a cell line or a parent for a cell line, the cell comprising means for expressing the function of the bcl-2 gene.
- Such a means includes a construct which expresses a polypeptide with substantially the same anti-apoptotic properties of the bcl-2 polypeptide.
- polypeptides include fragment or homologues of the bc/-2 polypeptide which retain the anti-apoptotic properties of the bcl-2 polypeptide, and include the genes of certain viruses whose function appears to be to block apoptosis of host cells, such as adenovirus pl9ElB (Rao et al, 1992); Epstein Barr Virus LMP-1
- bc/-2-Iike anti-apoptotic genes may be identified using the assay system disclosed below.
- the cell is derived from a multicellular organism, including mammals such as man, monkey, mouse, rat. hamster or from insects. Mammalian cells are preferred.
- the DNA encoding Bcl-2 may be joined to a wide variety of other DNA sequences for introduction into an appropriate cell line.
- the companion DNA will depend upon the nature of the host, the manner of the introduction of the DNA into the host, and whether episomal maintenance or integration is desired.
- the DNA is inserted into a vector, such as a plasmid, in proper orientation and correct reading frame for expression.
- a vector such as a plasmid
- the DNA may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognised by the desired host, although such controls are generally available in the expression vector.
- the vector is then introduced into the host through standard techniques. Generally, not all of the host cells will be transformed by the vector. Therefore, it will be necessary to select for transformed host cells.
- One selection technique involves incorporating into the expression vector a DNA sequence, with any necessary control elements, that codes for a selectable trait in the transformed cell, such as antibiotic resistance.
- the gene for such selectable trait can be on another vector, which is used to co-transform the desired host cell.
- Host cells that have been transformed by the recombinant DNA of the invention are then cultured for a sufficient time and under appropriate conditions known to those skilled in the art in view of the teachings disclosed herein to permit the expression of Bcl-2.
- a variety of methods have been developed to operatively link DNA to vectors via complementary cohesive termini. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.
- Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors.
- the DNA segment generated by endonuclease restriction digestion as described earlier, is treated with bacteriophage T4 DNA polymerase or E. coli DNA polymerase I, enzymes that remove protruding, 3 '-single-stranded termini with their 3'-5'-exonucleolytic activities, and fill in recessed 3 '-ends with their polymerizing activities. The combination of these activities therefore generates blunt-ended DNA segments.
- the blunt-ended segments are then incubated with a large molar excess of linker molecules in the presence of an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules, such as bacteriophage T4 DNA ligase.
- an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules such as bacteriophage T4 DNA ligase.
- the products of the reaction are DNA segments carrying polymeric linker sequences at their ends. These DNA segments are then cleaved with the appropriate restriction enzyme and ligated to an expression vector that has been cleaved with an enzyme that produces termini compatible with those of the DNA segment.
- Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies Inc, New Haven, CN, USA.
- a desirable way to modify the DNA encoding Bcl-2, and to facilitate its subcloning, is to use the polymerase chain reaction as disclosed by Saiki et al (1988) Science 239, 487-491.
- the DNA to be enzymatically amplified is flanked by two specific oligonucleotide primers which themselves become incorporated into the amplified DNA.
- the said specific primers may contain restriction endonuclease recognition sites which can be used for cloning into expression vectors using methods known in the art.
- the entire coding region of the human bcl-2 gene bcl-2 ⁇ is cloned into a suitable expression vector that will direct constitutive and high level expression from one of a range of transcriptional promoters.
- a drug resistance marker is included in the bc/-2 construct to allow selection for transfected or infected DNA.
- Typical promoters that may be used to drive Bcl-2 expression in cells include: (1) the Moloney Murine leukaemia virus (MoMuLV) LTR which is active in many mouse and human epithelial, mesenchymal and haematopoietic cells (Morgenstern and Land, 1991); (2) the cytomegalovirus (CMV) promoter which is extremely promiscuous and powerful (Boshart et al, 1985); (3) a range of cell lineage-specific promoters and enhancer elements may be used to direct tissue-specific expression of bc/-2.
- MoMuLV Moloney Murine leukaemia virus
- CMV cytomegalovirus
- Typical drug resistance markers are the genes encoding resistance to the antibiotics neomycin (G418), puromycin or hygromycin (Kaufman,
- the Bcl-2 constructs are introduced into recipient cells either by transfection using calcium phosphate precipitation (Sambrook et al, 1989), lipofection (Feigner et al, 1987) or electroporation (Bertiing et al, 1987) and stably expressing clones isolated under drug selection. If the Bcl-2 constructs are retroviral vectors, the vector DNA is introduced into an appropriate ecotropic (for rodent cells) or amphitropic (for human cells) packaging line and stably transfected packaging cells isolated under drug selection. Virus are then isolated from culture supernatants of the transfected packaging cells and used to infect recipient cells using standard procedures (Morgenstern & Land, 1991). Cells containing stably integrated and expressed retrovirally introduced bc/-2 are isolated under drug selection (Kaufman, 1990a).
- Reagents useful in transfecting vertebrate cells include calcium phosphate and DEAE-dextran or liposome formulation, available from Stratagene Cloning Systems or Life Technologies Inc, Gaithersburg, MD 20877, USA.
- Nutrient media useful for culturing transformed host cells are well known in the art and can be obtained from several commercial sources.
- Clones stably expressing Bcl-2 protein are isolated and assayed for Bcl-2 expression by immunocytochemical and immunoblotting techniques (Evan & Hancock, 1985; Evan etal, 1984) using Bcl-2-specific antibodies raised against synthetic peptides containing Bcl-2 residues 41-55 or 66-78 (see Example 3).
- the means for expressing the bcl-2 encoded polypeptide is integrated into the cell's chromosome or the cell's mitochondrial genome.
- retroviral vectors Although the use of retroviral vectors is suitable for carrying out the invention, their use may not satisfy the appropriate regulatory authorities.
- the means for expressing the bcl-2 encoded polypeptide does not comprise a retrovirus.
- cells used in culture are immortalized cells or cells derived from tumours, for example myeloma cells which are used to create hybridomas.
- the DNA construct expressing Bcl-2 are introduced into the immortalized cell and that transfected cell is then cloned.
- the daughter cells, as well as the parent cell form part of the invention.
- Cells in which the invention may be practised include all cells from multicellular organisms which are cultured, particularly those which require careful control of complex growth media, and in which the myc gene (which may be c-myc, L-myc, or N-myc but is preferably c-myc) is deregulated and overexpressed.
- myc gene which may be c-myc, L-myc, or N-myc but is preferably c-myc
- myc gene which may be c-myc, L-myc, or N-myc but is preferably c-myc
- These include human (eg HeLa) simian (eg Vero), canine (eg MDCK), rodent (eg Chinese Hamster Ovary) and insect cells.
- Insect cells are now commonly used to produce heterologous proteins that are expressed using baculovirus vectors and the like.
- the present invention may be used to enhance the survival in culture of insect cells such as the Sf9 cell.
- plant cells may be transfected with a Bcl-2 expressing construct and then cultured. Plant cells are useful for expressing protein products in culture and are also useful for the production of secondary metabolites. Methods of culturing plant cells and producing secondary metabolites from such cells are known in the art.
- the invention may be beneficial in extending the life of those cell lines in culture that express useful and valuable products.
- more and more pharmaceutical products for example, tissue plasminogen activator (tPA), erythropoietin (EPO), interleukin, interferon. tumour necrosis factor
- enzymes and the like are polypeptides expressed in cell culture; in particular many polypeptide products may only be expressed effectively from cell lines derived from higher eukaryotes, such as mammals. This may be due to necessary post-translational modifications, such as glycosylation, that occur.
- a fifth aspect of the invention provides a method of producing a product from a cultured cell line, the cells comprising means for expressing the function of the bc/-2 gene.
- the methods and cell lines of the invention therefore provide a means of extending the culture life of the cell line expressing the valuable product, and may reduce the cost of propagating such cells by reducing the requirements for expensive culture medium including cytokines, hormones, growth factors and the like.
- the invention will be particularly beneficial in the production of monoclonal antibodies.
- Monoclonal antibodies are produced from hybridoma cells (as disclosed herein in respect of the generation of binding moieties to target ' cells).
- introduction of bcl-2 into existing hybridomas may enhance their life in culture and lead to more effective production of the monoclonal antibody.
- the bcl-2 gene may be introduced into a parent myeloma cell line, and this myeloma cell line used in fusions to make the specific hybridoma expressing the desired monoclonal antibody.
- the bc/-2 gene may be introduced into suitable myeloma parent cells such as NSO, NS-1 and SP2/0, which do not express bcl-2 mRNA or Bcl-2 protein.
- the bc/-2 gene may be introduced into suitable hybridoma cells expressing antibodies useful in diagnostics (for example in blood-typing, pregnancy testing, immunocytochemistry, immunoscintigraphy); those expressing antibodies used in preparative procedures (eg immunopurification, quality control); those used therapeutically and those used in research.
- the benefits of expressing Bcl-2 in existing hybridomas may be to produce higher yields of antibody, exhibit less capriciousness in the growth of the secreting hybridoma in culture, show greater resistance to transient or long term adverse culture conditions, grow to and survive at higher densities in vitro, show more consistent growth in culture over time and from occasion to occasion, and have decreased requirements for foetal calf serum and expensive cytokine additives.
- hybridoma cells expressing monoclonal antibodies which may be usefully transfected with the bcl-2 gene are shown in Table 2. They are available from the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852-1776, USA. Table 2
- Dulbecco's modified Eagle medium Dulbecco & Freeman (1959) Virology 8, 396):
- RPMI 1640 medium is also suitable for mammalian cells (Moore et al (1967) il.Af.i4. 199, 519).
- RPMI 1640 may be supplemented, for example with 10% foetal calf serum, or with other growth factors as necessary.
- a HAT supplement is usually added to a concentration of hypoxanthine 0.1 mM; aminopterin 0.4 ⁇ M; and thymidine 16 ⁇ M. After fusion, cells are immediately cultured in HAT medium for 1 to 2 weeks.
- a typical growth medium for insect cells is Grace's medium (Grace (1962) Nature 195, 788):
- a sixth aspect of the invention provides a product prepared by a method according to the fifth aspect of the invention.
- Mammalian and insect cells have been used to express many valuable polypeptide products.
- recombinant human nerve growth factor is obtained by expression of the human NGF gene in mammalian as taught in US 5 082 774;
- recombinant interleukin-6 is expressed by eukaryotic host cells to have the same glycosylation and phosphorylation as native IL-6 as taught in US 7 612 675;
- human platelet- derived growth factor (PDGF) can be expressed in mouse fibroblast cells as taught in US 7 218 276;
- CD4 T cell surface protein T4
- human interferon-gamma may be expressed in mammalian cells as taught in US 4 939 088 or in insect cells as taught in US 5 147 788.
- Compounds that modulate apoptosis are of interest. Those compounds that are agonists (inducers) may allow for controlled death of cells either in culture, or in a patient who will benefit from such controlled cell death, for example, death of tumour cells. Those compounds that are antagonists (blockers) may prevent death of cells in culture or in a patient who will benefit from the prevention of cell death, for example, in a patient with a degenerative disease.
- Requirements for an assay system for anti-apoptotic compounds can be summarized: (1) an indicator cell line that can be induced to undergo apoptosis; (2) a defined and reproducible system for inducing apoptosis, with a very low background of cell death in uninduced cells; and (3) a quantitative assay for cell viability or cell death. A system meeting these requirements is described later.
- an eighth aspect of the invention provides an assay for detecting whether a compound is involved in modulating apoptosis, the assay comprising a cell transformed with a DNA construct comprising a proto- oncogene coding sequence encoding a polypeptide which, when forcibly expressed or activated, induces apoptosis, and regulatory elements which allow transcription of the coding sequence.
- compound we include a gene, which may be transfected into the transformed cell of the assay, polypeptides which may act as cell growth modulators such as cytokines, and low molecular weight compounds and small molecules, for example those of M r ⁇ 1000.
- the forcible expression of the proto-oncogene coding sequence may conveniently be accomplished using an inducible promoter.
- an inducible promoter for example, the well known glucocorticoid/dexamethasone-inducible MMTV or metallothionein promoters inducible by cadmium or zinc may be used to drive myc expression.
- the tetracycline regulatable system ofumblerma ⁇ n et al (1992) Mol. Cell. Biol. 12, 4038-4045 or the isopropyl thio- ⁇ -D-galactopyranoside (IPTG)-inducibIe system of Bairn et al (1991) Proc. Natl. Acad. Sci. USA 88, 5072-5076 may be used.
- the proto-oncogene polypeptide may be forcibly activated.
- fusion of the myc protein with fragments of the oestrogen receptor (ER) protein may yield a protein which only produces its myc activity when it is activated by an oestrogen such as ⁇ - oestradiol.
- the proto-oncogene is myc; the myc gene may be c-myc, L-myc or N-myc but is preferably c-myc.
- DNA containing the N-myc sequence may be obtained using the methods described in Taya et al (1986) EMBO J. incorporated herein by way of reference and DNA containing the L-myc sequence may be obtained using the methods described in De Pinho (1987) Genes Dev. 1, 1311-1326.
- Figure 1 shows growth curves of Rat- 1 fibroblasts either with or without constitutive c-myc expression in various concentrations of FCS.
- Triplicate cultures of control Rat-1 cells or Rat-1 cells constitutively expressing wild type c-myc or c-myc mutants were cultured in medium containing the various levels of FCS shown and live cells counted at daily intervals. Mean values of the triplicates, together with standard errors, are shown plotted against time.
- Figure 2 shows that constitutive c-myc expression prevents growth-arrest in serum-deprived Rat-1 cells.
- Rat-l e ⁇ control and Rat-11 myc cells were transferred into medium containing either 10% or 0.1 % FCS. After 48 hours, cells were labelled for 1 hour with 2mM BrdU, trypsinised, fixed in ethanol and stained with propidium iodide and appropriately conjugated anti-BrdU antibody. Flow cytometric analysis was carried out on a Beckton-Dickinson FACSstar plus.
- Figure 3 A Rat-11 c-myc cells were transferred to medium containing 0.1% FCS and observed by time-lapse cinemicroscopy at a rate of one frame every 30 seconds. Representative frames from a typical apoptotic event are shown with the time in minutes given from the last frame when the cell appeared normal.
- Figure 3B Cell death is accompanied by nucleosome laddering.
- Rat-1 cells constitutively expressing either active ⁇ 144-262 (lanes 2, 4 and 6) or inactive ⁇ 106-144 (lanes 3, 5 and 7) c-myc mutants were transferred to medium containing 0.1 % FCS.
- Dying cells were harvested at various times after transfer, by virtue of their reduced adherence. In cultures with no dying cells, very few cells were harvested by this method. DNA isolated and fractionated on a 1.5% agarose gel. Lane 1 - standards; Lanes 2 and 3 - 0 hours; Lanes 4 and 5 - 30 hours; Lanes 6 and 7 - 40 hours; Lane 8 - dexamethasone treated thymocytes.
- FIG. 3C Electron microscopic analysis of individual Rat-1/myc cells undergoing apoptosis in low serum.
- Frame 1 shows a normal viable Rat- 1/myc cell. The nucleus is marked N.
- Frames 2 to 4 are representative EM micrographs of Rat-11 myc cells at progressively more advanced stages of apoptosis and exhibiting cytoplasmic and nuclear vesicularisation.
- Figure 4 shows that apoptosis in serum-deprived Rat-1/myc cells is dependent upon active Myc protein.
- Log-phase Rat-1 cells constitutively expressing either full length c-myc protein or the deletion mutant ⁇ 106-143 fused to estrogen receptor were transferred to medium containing 0.1 % FCS either with or without 2nm /3-oestradiol. After 3 days, cultures were examined by phase microscopy.
- Figure 5 shows that deregulated Myc expression induces apoptosis in serum-deprived primary cells.
- Figure 6 shows that the degree of apoptosis in serum-deprived Rat-11 myc cells* is dependent upon intracellular level of Myc protein.
- FIG. 6A Sparse exponential cultures of each clone growing in 10% FCS were transferred to medium containing various concentrations of FCS and inspected for apoptosis by phase microscopy after 3 days. Results are shown from three independent Rat-1 clones chosen on the basis of level of expression of c-myc protein (Penn et al, 1990). Clone 21 expresses —5,000 Myc molecules per cell (mpc), clone 19 ⁇ 12,000 mpc, and clone 26 ⁇ 18,000 mpc. Four other clones, 2 (4,000 mpc), 5 (5,500 mpc), 12 (7,000 mpc) and 11 (14,000 mpc) were also studied but data for them is not shown.
- Figure 6B The rate of apoptotic events in each of the three Rat-11 myc clones is shown after transfer to medium containing 0.1 % FCS. 75 randomly picked live cells were selected at the start of the experiment and these were followed by time-lapse cinemicroscopy at a rate of 12 frames per hour. At the end of each 2 hour (24 frame) time interval, the total number apoptotic events (top) and the total number of live cells were summed and plotted against time.
- Figure 7 shows Myc-dependent apoptosis in Rat-1 fibroblasts growth arrested by various means.
- Rat-1/myc-ER and Rat-1/ ⁇ 106-143 yc-ER cells were growth-blocked by the following means, either in the presence of absence of 2mM j3-oestradiol as indicated:
- Thymidine block DME containing 10% stripped FCS plus 2mM thymidine ii.
- Isoleucine starvation isoleucine-free DME containing 10% dialysed and stripped FCS iii.
- Interferon DME containing 10% stripped FCS plus 2,000 units/ml recombinant rat ⁇ -interferon iv.
- Cycloheximide DME containing 10% stripped FCS plus 50 ⁇ g/ml cycloheximide
- Figure 8 shows that ectopic Myc activation induces apoptosis in Rat- 1/myc-ER fibroblasts already growth-arrested by serum deprivation, thymidine block or isoleucine starvation.
- Rat-1/myc-ER fibroblasts were growth-arrested either by serum deprivation (0.1% FCS for 48 hrs), thymidine block (2mM thymidine for 48 hrs) or isoleucine starvation (60 hrs). Cells were observed by time-lapse cinemicroscopy for the last 40 hours of this starvation period which revealed essentially a complete absence of cell division. Growth arrest was further confirmed by flow cytometry (not shown). The medium was then changed and replaced with the same growth-blocking medium either with or without 2mm S-oestradiol. The cells were then observed for a subsequent 35 hours and apoptotic cell deaths recorded and summed for each 1 hour period. The cell number indicated at "start” is the actual number of live cells followed from the time of the start of recording.
- Figure 9 shows the determination of expression of Bcl-2a protein by immunoblotting.
- Figure 10 shows the results of time-lapse cinemicroscopic quanitation of apoptosis in Rat-1 cells.
- Figure 11 shows the time-lapse cinemicroscopic analysis of the effect of Bcl-2 expression on Myc-induced proiferation of Rat-1 cells.
- Figure 12 shows that constitutive Bcl-2 expression protects Rat-1 /Myc cells from thymidine and VP16/etoposide-induced apoptotic cell death.
- Figure 13 shows the bc/-2 open reading frame and translation thereof.
- Figure 14 shows the effect of bcl-2 expression on myeloma parent NSl survives at high density.
- Figure 15 shows the survival of myeloma parent NSl in foetal calf serum (FCS).
- Example 1 Induction of apoptosis in fibroblasts by c-myc protein.
- Myc-induced cell death occurs by apoptosis.
- Apoptosis is dependent upon active Myc expression.
- Rat-1 cells constitutively expressing Myc-estrogen receptor chimaeras (Rat- 1/myc-ER cells).
- activity of the chimaeric Myc protein is completely dependent upon the availability of exogenous ⁇ -oestradiol (Eilers et al, 1989).
- Rat-1/myc-ER cells arrest in low serum in a G 0 /G,-like state (not shown) and remain viable for several weeks.
- Rat-1 fibroblasts expressing the transformation-defective mutant of Myc ⁇ 106-143 (Penn et al, 1990; Stone et al, 1987) fused to ER (Rat-I/ ⁇ 106-143-ER cells) arrest in low serum and exhibit no apoptosis irrespective of the presence of j ⁇ -oestradiol ( Figure 4).
- apoptosis of Rat-1/myc-ER depends upon the presence of active Myc protein and is not a trivial result of the addition of /3-oestradioi to the culture.
- Rat-1 cells are an immortalised and established cell line. We were therefore interested to determine how general was Myc-induced apoptosis; in particular, whether it occurred in a non-established primary fibroblast culture. Accordingly, Rrimary Rat Embryo Fibroblasts (REFs) constitutively expressing Myc were subjected to serum deprivation and monitored microscopically over a 72 hour period. As with Rat-1/myc cells, such REF/myc fibroblasts fail to arrest growth in low serum as determined by flow cytometry (not shown). As can be seen in Figure 5 substantial apoptosis occurs within 24 hours of transfer into low serum.
- REFs Rrimary Rat Embryo Fibroblasts
- Extent of Myc-induced apoptosis is related to the levels of Myc protein in cells.
- Rat-1/myc cell clones were selected, each of which expresses a different steady-state level of Myc protein (Penn et al, 1990). Each clone was then assayed for apoptosis by two independent assays. First, cells were cultured in various concentrations of FCS and the degree of cell death was assesse by microscopic examination after 3 days. Results are shown in Figure 6 A for the three Rat-11 myc clones 21, 19 and 26, which representatively span the range of Myc protein levels investigated.
- Clone 26 expresses most Myc and exhibits significant apoptosis even in serum levels as high as 2% . Apoptosis is even more evident at lower serum levels.
- clone 21 which expresses a level of Myc protein similar to that found in normal fibroblasts (Waters et al, 1991), exhibits apoptosis only at the lowest serum levels.
- Rat-11 myc cells both depend upon the level of Myc protein expressed. Even the low levels of Myc protein observed in normal Rat-1 fibroblasts are, however, sufficient to induce apoptosis in serum-deprived cells if Myc expression is deregulated. Regions of the Myc protein required for apoptosis.
- Myc protein Certain regions of the Myc protein are absolutely required for its known activities in co-transformation, autosuppression and inhibition of differentiation (Freyta ertz/, 1990; Penn etal, 1990; Stone etal, 1987). These regions include the basic-Helix-Loop-Helix-Leuci ⁇ e zipper at the C- terminus and part of the N-terminal region.
- Myc mutants We examined the ability of a range of Myc mutants to induce apoptosis when expressed constitutively in serum-deprived Rat-I cells. The results demonstrate a complete concordance between those regions required for apoptosis and those necessary for co-transformation, autosuppression and inhibition of differentiation (Table 3).
- the ability of Myc to induce apoptosis is mediated by similar domains of the protein to those involved in other known functions attributed to the Myc protein.
- Fibroblast proliferation can be temporarily blocked in a number of mechanistically different ways whilst maintaining viability (reviewed in Pardee, 1989). These include G 0 -arrest by serum deprivation, S phase block by thymidine excess, late G,-bIock by isoleucine deprivation, interferon arrest in G,, and transient treatment with cycloheximide (Zetterberg and Larsson, 1985). We examined whether any of these procedures induced apoptosis in Rat-1 cells in a Myc-dependent fashion.
- Rat-1/myc-ER fibroblasts were maintained in asynchronous subconfluent logarithmic cultures for several days and then subjected to various types of proliferation block either in the absence or presence of 0-oestradiol. Cultures were then examined for apoptosis at various appropriate time points ( Figure 7). Application of any of these growth-blocking regimes activated apoptosis in a Myc-dependent manner, although the onset of apoptosis varied depending upon the specific treatment. Significant apoptosis was visible within only four hours of treatment with cycloheximide in cells containing active Myc. In contrast, appreciable apoptosis was visible only after 24-48 hours in cells starved of serum or isoleucine or blocked with thymidine.
- Rat-1/myc-ER cells were growth arrested by serum-deprivation (G 0 ), isoleucine starvation (G,) or thymidine-block (S) for 48 hours in the absence of 3-oestradiol. Growth arrest and cell cycle position was confirmed by flow cytometric analysis and by BrdU incorporation (not shown). /3-oestradiol was then added and the cultures monitored for apoptosis by time-lapse cinemicroscopy ( Figure 8). Apoptosis is evident within 60 minutes of Myc activation in serum- starved cells and within 3-4 hours of Myc activation in isoleucine-starved or thymidine-blocked cells.
- Myc expression induces apoptosis in fibroblasts blocked in proliferation.
- Myc expression induces apoptosis both in proliferating cells upon which a proliferation block is imposed and in cells already arrested and in which Myc is subsequently activated. In both cases, the effect is observed irrespective of the method used to implement growth arrest, whether it be by growth factor or metabolite depletion or by the action of a drug or chalone. Moreover, the fact that rapid initiation of apoptosis by Myc occurs in cells arrested in either G, or S phase argues that cells can enter a programmed cell death pathway both before and after the commitment point in late G, (Pardee, 1989).
- isoleucine deprivation arrests cells only after about 48 hours, the time we presume it takes to exhaust endogenous isoleucine stores. Apoptosis also becomes evident around this time.
- serum deprivation tends to arrest fibroblasts when they next enter G,.
- Rat-1 cells have a cell-cycle time of about 15 hours (unpublished observations of GIE and TDL), we expect virtually all cells in an asynchronous culture would pass through G x and encounter a signal to arrest within that time, although some would do so much sooner. Consistent with this, apoptosis is first detectable within an hour of serum withdrawal in asynchronous Rat-11 myc cultures after which it continues at a more or less uniform rate.
- Example 2 Materials and methods relating to Example 1.
- Rat-1 cells were maintained in Dulbecco's modified E4 medium supplemented with 10% foetal calf serum and 1 mg/ml Geneticin. Cells were passaged by standard trypsinisation and seeded directly onto tissue culture plastic. Ecotropic viruses directing expression of chimaeras between Myc and truncated estrogen receptor were a kind gift from Drs Martin Eilers and Professor J. Michael Bishop (UCSF, California, USA). Rat-1 cells were infected with retroviruses encoding Myc-estrogen receptor chimaeras and Rat-1 lines expressing wt Myc-ER and ⁇ 106- 143 Myc-ER isolated as described for Rat-11 myc lines (Penn et al, 1990a,b).
- Myc-ER and ⁇ 106-143 Myc-ER clones were maintained in phenol red-free Dulbecco's E4 medium supplemented with 10% charcoal-dextran stripped FCS and 1 mg/ml Geneticin. Myc was functionally activated by the addition of -oestradiol to the medium at a final concentration of 2 ⁇ M.
- Time-lapse cinemicroscopy was conducted using a Olympus inverted phase contrast microscopes and images were collected on 16mm monochrome cine film with a cine camera regulated by an external timer. Cell division events were scored at the time at which septa formed between two daughter cells. Apoptotic cell death events were scored midway between the last appearance or normality and the point at which the cell became fully detached and rounded. This corresponds to about t+ 15 minutes in Figure 3A.
- Example 3 Interaction between c-myc and bcl-2 proto-oncogenes.
- the bcl-2 proto-oncogene is activated by translocation in a variety of B- lymphoid tumours and synergises with the c-myc oncogene in tumour progression (Strasser etal, 1990).
- the mechanism of synergy is unclear but Bcl-2 expression has been shown to inhibit apoptosis (Hockenbery e ⁇ al, 1990; Korsmeyer et al, 1990) a property presumably pertinent to its proto-oncogenic modus operandi (Korsmeyer et al, 1990).
- the c-myc gene is a potent inducer of apoptosis, in addition to its established role in mitoge ⁇ esis.
- Rat-1/cMyc-ER cells were infected Rat-1/cMyc-ER cells with a retrovirus directing constitutive expression of human bc/-2a together with a selectable puromycin resistant marker.
- Puromycin-resistant cells positive for Bcl-2 protein expression were identified by immunoblotting ( Figure 9A) and immunocytochemistry (data not shown) using anti-Bcl-2 monoclonal antibodies (Hockenbery et al, 1990; Pezella et al, 1990).
- Time-lapse cinemicroscopy also permits confirmation that each death is apoptotic: apoptosis is characterised by its extreme rapidity, typically taking about 30-60 minutes to proceed through a diagnostic sequence of cytoplasmic blebbing, vesicularisation and nuclear condensation (Wyllie, 1987; Bursch et al, 1990).
- Figure 10 demonstrates that Bcl-2 expression completely inhibits the onset of apoptosis in serum-deprived Rat-1 cells following cMyc activation.
- cMyc expression induces the rapid onset of apoptosis in cells arrested by a variety of cytostatic and cytotoxic drugs (see Examples 1 and
- Bcl-2 mitigates the apoptotic effects of deregulated cMyc expression without affecting its ability to promote continuous cell growth, so providing a mechanistic basis for the oncogenic synergy between these two proto-oncogenes.
- the interaction between c-myc and Bcl-2 differs from the classical form of oncogene cooperation observed between cMyc and activated RAS (Land et al, 1983) in that, although cMyc/Bcl-2 fibroblasts exhibit continuous proliferation in the absence of mitogens, they neither appear morphologically transformed nor form foci in monolayer culture (Reed et al, 1990 and see Figure 9).
- FIG. 9A Determination of expression of Bcl-2a protein by immunoblotting Lysates from control Rat-1/myc-ER cells (tracks 1 and 2) and a representative Rat-l/myc-ER/Bcl-2 clone (clone 5) (tracks 3 and 4) were fractionated on a 15% SDS polyacryiamide gel, blotted onto nitrocellulose paper and probed with either mouse (Bcl-2/100 - tracks 1 and 3) or a hamster (6C8 - tracks 2 and 4) anti-Bcl-2 monoclonal antibodies.
- 9B Constitutive Bcl-2 expression prevents cMyc-induced apoptosis in serum-deprived Rat-I fibroblasts.
- Rat-1-derived cell lines were transferred into medium containing
- Rat-l/Myc-ER/Bcl-2 no ⁇ -oestradiol
- 4 Rat-l/Myc-ER/Bcl-2, plus ⁇ - oestradiol.
- Rat-1 fibroblasts stably expressing the cMyc-ER fusion protein and the defective cMyc mutant protein ⁇ 106-143MycER have been described (see Examples 1 and 2).
- a retrovirus vector directing constitutive expression of Bcl-2a was made by expressing a full length bc/-2a cDNA in pBabe puro (Morgenstern & Land, 1991).
- Infectious ecotropic Bcl-2/PURO virus was prepared from culture supernatants of WE cells (Morgenstern & Land, 1991), transfected with the Bcl-2/PURO vector and this was used to infect Rat-1 /Myc-ER cells (Morgenstern & Land, 1991).
- Infected clones were selected in 5 ⁇ g/ml puromycin. Immunoblotting of bulk cultures of puromycin resistant cells was performed as described previously (Evan & Hancock, 1985) using either the Bcl-2/ 100 mouse monoclonal antibody (Pezella et al, 1990) (a generous gift from Dr D.Y. Mason, Dept. Haematology, Oxford, UK) or the 6C8 hamster monoclonal antibody (Hockenbery et al, 1990) (a generous gift from Dr S.J. Korsmeyer, Howard Hughes Medical Institute, Washington University, St Louis, USA).
- Figure 10 10.
- FIG. 1 Time-lapse cinemicroscopic analysis of the effect of Bcl-2 expression on Myc-induced proliferation of Rat-1 cells
- Rat-1 /Myc-ER and Rat-l/Myc-ER/BcI-2 cells were cultured in 0.05% FCS containing 2 ⁇ M jS-oestradiol and mitotic events observed by time-lapse cinemicroscopy. Cells that underwent apoptosis prior to division were excluded from the analysis. Of the remaining cells, 95 were randomly picked and their fates followed. 12 frames were recorded per hour. Only first divisions in each lineage were counted in order to permit comparability between experiments. Cumulative divisions are shown plotted against time.
- FIG. 12 Constitutive Bcl-2 expression protects Rat-1 /Myc cells from thymidine and VP16/etoposide-induced apoptotic cell death A - Thymidine block. Exponentially growing Rat-1/Myc-ER and Rat-l/Myc-ER/Bcl-2 cells were arrested in S phase by addition of 2mM thymidine to the growth medium for a period of 24 hours, exactly as previously described (see Examples 1 and 2). cMyc was then activated by addition of ⁇ - oestradiol to a final concentration of 2 ⁇ M and the cells monitored by time- lapse cinemicroscopy at a rate of 12 frames/hour. Cumulative apoptotic deaths are shown plotted against time.
- B - Etoposide/VP16 block Exponentially growing Rat-1/Myc-ER and Rat-l/Myc-ER/Bcl-2 cells in 10% FCS were incubated for 24 hours with O.lmM etoposide/VP16 (Sigma).
- cMyc was then activated by addition of /3-oestradiol to a final concentration of 2 ⁇ M and the cells monitored by time-lapse cinemicroscopy at a rate of 12 frames/hour. Cumulative apoptotic deaths are shown plotted against time.
- Example 4 Antisense inhibition of Bcl-2.
- the activated bc/-2 gene as the only currently known oncogene with anti-apoptotic activity, is an obvious target for inhibition.
- bcl-2 is quite widely expressed (Hockenbery et al, 1991) and, in addition, active as an anti-apoptotic agent even in cells in which it is not normally expressed (Example 3).
- bc/-2 has a role to play in non-lymphoid carcinogenesis.
- Oligonucleotides and derivatives for inhibition of Bcl-2 expression are useful. Antisense sequences used to block bc/-2 expression cover the initiation codon of the bcl-2 open reading frame. Oligonucleotides, typically 18-21 bases in length and synthesised as conventional oligodeoxynucleotides or as phosphorothioate or phosphoramidate derivatives, are useful.
- Phosphorothioate and phosphoramidate oligodeoxynucleotides derivatives exhibit higher stability in vitro and in vivo (Agrawal et al, 1988; Campbell et al, 1990; Matsukura et al, 1987; Stein et al, 1988; ' Woolf et al, 1990) but possess lower Tm (ie dissociate from their complementary sequences at lower temperatures) relative to their normal counterparts (Stein et al, 1988) and may thus be less effective on a molar basis.
- RNA oligonucleotides have a higher Tm with their complementary sequences compared to deoxyribonucleotides, and have significantly higher stability both in vitro and in vivo (Beijer et al, 1990; Iribarren et al, 1990; Lamond et al, 1990).
- Optimal sequences for antisense inhibition are sequences that span the initiation codon of the human bc/-2 open reading frame.
- the antisense 22mer sequence corresponding to the sense target sequence spanning the initiation codon of bc/-2 is:
- bc/-2 antisense oligonucleotides in vivo is via liposomes (Loke et al, 1988; 1989). These are targeted in a variety of ways. For example, by coating the liposomes with antibodies specific for the tumour cells.
- the significant advantage of anti-bc/-2 strategies is that inhibiting bcl-2 is not especially likely to be toxic to bystanding cells even if it enters them. This is because most normal cells are prevented from undergoing apoptosis by a variety of cytokine mechanisms. It is specifically the tumour cell that needs to avoid apoptosis in order to survive and grow and thereby is dependent upon continuous bcl-2 expression.
- Example 5 Expression of Bcl-2 in hybridomas to enhance growth and productivity.
- Bcl-2 is expressed in hybridomas in order to enhance their resistance to adverse culture conditions and increase their cloning efficiency and survival at high density.
- the bcl-2 gene is introduced either into the parent lines prior to fusion with lymphocytes, in which case all resultant hybridomas would be expected to express Bcl-2, or into existing hybridomas in order to potentiate their growth in vitro. Expression of the bcl-2 gene is driven either from the MoMuLV LTR or from the CMV promoter.
- Bcl-2 is expressed in the hybridoma parent lines currently used, namely SP2/0, X63, NSl and NSO.
- Bcl-2 is introduced either by transfection or by retrovirus infection with appropriate Bcl-2-expressing constructs.
- Parent hybridomas expressing Bcl-2 are initially selected using whatever drug resistance is present in the Bcl-2 construct (ie G418 at 500 ⁇ g/ml, puromycin at 3-5 ⁇ g/mi, hygromycin at 200 ⁇ g/ml).
- Drug- resistant clones are isolated by standard ring cloning and assessed for Bcl-2 expression by immunocytochemical and immunoblotting techniques using Bcl-2-specific antibodies (see Example 3).
- the Bcl-2-expressing parent myeloma cells are used for fusion to immune lymphocytes exactly as in standard fusion protocols. The only difference is the continuous presence of the drug used as the selectable marker in the Bcl-2 construct- This ensures that the exogenous bc/-2 gene is not lost during the course of the procedure.
- the benefits of expressing Bcl-2 in parental myeloma lines and hence in resultant hybridomas are increased cloning efficiencies and resistance to the unavoidable adverse culture conditions (eg very low densities, presence of large numbers of dead cells, alkaline or acidic growth medium) that occur during the early phases post-fusion, and reduced loss of antibody- positive hybridomas during early cloning.
- unavoidable adverse culture conditions eg very low densities, presence of large numbers of dead cells, alkaline or acidic growth medium
- the resulting Bcl-2-expressing hybridomas produce higher yields of antibody, exhibit less capriciousness in the growth of the secreting hybridoma in culture, show greater resistance to transient or long term adverse culture conditions, grow to and survive at higher densities in vitro, show more consistent growth in culture over time and from occasion to occasion, and have decreased requirements for foetal calf serum and expensive cytoki ⁇ e additives.
- bcl-2 gene into existing hybridomas is carried out either by transfection or retrovirus infection with appropriate drug- selectable bcl-2 constructs essentially as described above for the parental myeloma lines.
- the transfected hybridomas will be continuously maintained under this drug selection to prevent loss of the bc/-2 gene. Any commercially important hybridoma should profit from introduction of Bcl-2 and consequent invigoration.
- Hybridomas have a significant tendency to undergo apoptotic death en masse in response to transient sub-optimal culture conditions such as growth to high density, exhaustion of serum or other growth factors or excessive dilution (for example during single cell cloning).
- myeloma/hybridoma cell lines NSl , NSO and SP2/0 commonly used in hybridoma fusion experiments express essentially no bcl-2 mRNA or protein and thus do not benefit from any protective properties derived from this gene. Accordingly, the introduction of bcl-2 expression promotes survival of these cells.
- An exogenous human bcl-2 gene expressed from a constitutive MoMuLV LTR promoter has been introduced into stock NSl cells by retrovirus infection and several parameters of growth and resistance to insult assessed.
- the bcl-2 ORF has been cloned into a retroviral expression vector containing a moloney murine leukaemia virus promoter and a selectable puromycin resistance marker.
- a retroviral expression vector containing a moloney murine leukaemia virus promoter and a selectable puromycin resistance marker.
- the ecotropic bc/-2/PURO retrovirus is used to infect mouse or rat hybridomas or parental fusion partner myelomas (eg NSl , NSO, SP2/0). Positive clones are selected under 3-5 ⁇ g/ml puromycin selection and tested for bcl-2 expression by immunocytochemical staining with an anti-.be/-2 peptide poly clonal antibody.
- NSl/bcl-2 cells grow to an approximately 2 fold higher density in culture and exhibit extended survival under high density conditions.
- NSl I bcl-2 cells also survive better in conditions of low serum and show higher cloning efficiencies after limiting dilution.
- expression of bcl-2 confers significant protective effects on the NSl parent.
- results were obtained with primary pools of infected cells and contain clones expressing a range of levels of bcl-2. It is likely that the protective effects of bcl-2 are dose-dependent.
- clones ofNSl/bcl-2 cells that express higher levels of bc/-2 cells may exhibit even greater resistance to cell death.
- NSO, NS-1 and SP2/0 parent myeloma lines do not express bc/-2 mRNA or Bcl-2 protein;
- NS-1 expressing Bcl-2 or Bcl-2 and c-Myc exhibit more sustained growth and survival in low serum (0% or 0.5%) and greater viability for longer at maximum densities. They also clone at higher effciencies; and (3) the results are significant and can probably be bettered using indivdual clones selected to express higher levels of Bcl-2.
- Figure 14 shows the results of introducing a constitutively active human bcl-2a gene into NSl myeloma cells using the pBabe PURO retrovirus vector.
- Z7C/-2 expression is driven from the retrovirus LTR promoter and puromycin resistance from the S V40 early promoter.
- Puromycin-resistant pools of NSl cells that express Bcl-2 ⁇ protein and appropriate Bcl-2 " controls were seeded at a density of 5 x 10 5 cells/ml in complete RPMI medium + 10% foetal calf serum. Equivalent triplicate aliquots were taken from the cultures every two days and the percentage cell viability measured by trypan blue dye exclusion (top) and live cell numbers assessed (bottom).
- Figure 15 shows the results of introducing a constitutively active human bcl-2 gene into NSl myeloma cells using the pBabe PURO retrovirus vector.
- bc/-2 expression is driven from the retrovirus LTR promoter and puromycin resistance from the SV40 early promoter.
- Puromycin-resistant pools of NSl cells that express Bcl-2 ⁇ protein and appropriate Bcl-2 " controls were seeded at a density of 5 x 10 5 cells/ml in complete RPMI medium + 0.5% foetal calf serum. Equivalent triplicate aliquots were taken from the cultures every two days and numbers of live cells assessed by trypan blue dye exclusion (top) and percentage cell viability estimated (bottom).
- Example 6 Stabilisation of other cell types.
- bc/-2 is introduced into a variety of cell lines used in the production of biopharmaceutical reagents as a way of increasing resistance of the appropriate cells to death as a consequence of overgrowth, depleted culture conditions, or as a consequence of the toxic effects of the reagent they are producing.
- Mouse and rat cells may be infected with the murine ecotropic virus as described above and selected in puromycin.
- Human cells may be infected either with an amphotropic version of the bcl- 2/PURO vitrus (ie that can infect human cells) or by transfection using lipofectin, calcium phosphate precipitation or electroporation (Sa brook et al, 1989), as convenient and best suited to the respective cell type concerned-
- bcl-2 expression is introduced into a range of cell lines. This may be useful in deriving variants of existing cell lines that are resistant to the vicissitudes of culture conditions or in cell types that spontaneously undergo apoptosis (eg cells derived from the embryonic central nervous system, lymphoid cells, haematopoietic cells) and in promoting establishment of cell lines from normal, dysplastic and neoplastic tissues without the need for recondite and/or costly growth factors.
- apoptosis eg cells derived from the embryonic central nervous system, lymphoid cells, haematopoietic cells
- Example 7 Assay systems for modulators of apoptosis.
- Two kinds of modulator of apoptosis are of interest - agonists (inducers) and antagonists (blockers) . Screening for antagonists of apoptosis requires a reproducible, easy and consistent system for inducing apoptosis in target cells. Genes, cytokines and chemicals that block apoptosis will yield surviving cells whereas control cells will all die.
- An indicator cell line that can be induced to undergo apoptosis.
- the cell line should preferably be immortal, fast growing and easy to maintain.
- Rat-1 /Myc assay system allows the systematic screening of any introduced gene (eg from tumour cells, normal cells, brain cells, drosphila cells etc) for survival-potentiating properties. This may enable rapid progress in defining the intracellular processes involved in regulating cell death and define new pharmacological targets.
- Genes that block apoptosis are likely to be of two general kinds. (1) those, like bcl-2, that block apoptosis when inappropriately expressed (ie become active following regulatory mutations in their control elements) and (2) those that are normally involved in modulating the apoptotic pathway but only in response to the correct contextual signals.
- Rat-1 /Myc-ER cells are infected with MoMuLV. This integrates at random into the host cell genome and activates nearby genes. When apoptosis is triggered in the host Rat-1 /Myc-ER cells by withdrawing serum and adding 2 ⁇ M 0-oestradiol, all cells will die except those in which the infecting MoMuLV has activated expression of a survival gene. These cells are then propogated as clones. The clones are examined for common MoMuLV integration sites to identify likely target genes. Cellular DNA adjacent to virus integration sites are cloned using an inverse PCR strategy (van Lohuizen et al, 1991) and the resultant genes cloned and sequenced.
- Antibodies may be raised against synthetic peptides comprising likely antigenic epitopes and the protein products of the survival genes characterised.
- synthetic peptides comprising likely antigenic epitopes and the protein products of the survival genes characterised.
- mRNA from aggressive and drug-insensitive tumours is randomly reverse transcribed and the resultant double stranded cDNAs are inserted into a CMV expression vector.
- the cloned tumour sequences are then introduced into Rat-I /Myc-ER cells by electroporation or Iipofection and cells carrying transfected sequences selected with neomyci ⁇ by virtue of the selectable marker in the plasmid.
- Rat-1 /Myc-ER cells will then be triggered to undergo apoptosis by withdrawing serum and adding 2 ⁇ M ⁇ - oestradiol. All cells will die except those which have acquired novel survival genes from the original tumour. Survival gene sequences will be directly isolated by PCR using primers flanking the plasmid cloning site in which they were introduced. Cytokines that interfere with apoptosis.
- Rat-1 /Myc indicator assay system can be almost completely blocked by addition of specific cytokines to the medium for example IGF1 and PDGF AB.
- various cytokines may be screened for their abilities to specifically block apoptosis.
- transfecting into our Rat-1 /Myc indicator cells various components of non- fibroblast signal transduction pathways (eg NGF receptor, IL-3 receptor) it may be possible to screen for the activity of cytokines not normally active in fibroblasts.
- Rat-1 /Myc cells are cultured as adherent cells in microtitre/Terasaki plates and then subjected to conditions that induce apoptosis (eg for the Myc-ER constructs, this would be by dropping serum levels and adding /3-oestradiol) in the presence of small molecular weight compounds or broths. Most chemicals will be toxic or neutral to cells and all the cells in such culture wells will die.
- Cells in which apoptosis is blocked by a small molecular weight compound may be identified by the presence of live cells which can be detected by fluorescence (eg cleavage of added fluoroscein diacetate), by incorporation of 3 H-thymidine, or by their continued growth and survival.
- fluorescence eg cleavage of added fluoroscein diacetate
- MOLECULE TYPE DNA (genomic)
- Lys Tyr lie His Tyr Lys Leu Ser Gin Arg Gly Tyr Glu Trp Asp Ala 20 25 30
- Gly Arg lie Val Ala Phe Phe Glu Phe Gly Gly Val Met Cys Val Glu 145 150 155 160
- MOLECULE TYPE cDNA to mRNA
- HYPOTHETICAL NO
- ANTI-SENSE YES
- MOLECULE TYPE RNA (genomic)
- HYPOTHETICAL NO
- ANTI-SENSE YES
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Oncology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Physics & Mathematics (AREA)
- Endocrinology (AREA)
- Toxicology (AREA)
- Plant Pathology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB9207276 | 1992-04-02 | ||
| GB929207275A GB9207275D0 (en) | 1992-04-02 | 1992-04-02 | Method of treatment |
| GB9207275 | 1992-04-02 | ||
| GB929207276A GB9207276D0 (en) | 1992-04-02 | 1992-04-02 | Modified cells |
| PCT/GB1993/000686 WO1993020200A1 (en) | 1992-04-02 | 1993-04-02 | Modified cells and method of treatment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0633934A1 true EP0633934A1 (de) | 1995-01-18 |
Family
ID=26300633
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP93907972A Withdrawn EP0633934A1 (de) | 1992-04-02 | 1993-04-02 | Modifizierte Zellen und Behandlungsverfahren |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP0633934A1 (de) |
| WO (1) | WO1993020200A1 (de) |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6841541B1 (en) | 1992-02-21 | 2005-01-11 | The Trustees Of The University Of Pennsylvania | Regulation of BCL-2-gene expression |
| US5831066A (en) | 1988-12-22 | 1998-11-03 | The Trustees Of The University Of Pennsylvania | Regulation of bcl-2 gene expression |
| US5550019A (en) * | 1993-05-26 | 1996-08-27 | La Jolla Cancer Research Foundation | Methods of identifying compounds which alter apoptosis |
| CA2172153C (en) * | 1993-09-20 | 2010-03-09 | John C. Reed | Regulation of bcl-2 gene expression |
| WO1995011301A1 (en) * | 1993-10-19 | 1995-04-27 | The Regents Of The University Of Michigan | P53-mediated apoptosis |
| US5539094A (en) * | 1993-11-12 | 1996-07-23 | La Jolla Cancer Research Foundation | DNA encoding Bcl-2-associated proteins |
| JPH1189573A (ja) * | 1994-10-14 | 1999-04-06 | Yutaka Shindo | アポトーシス関与遺伝子 |
| US5789389A (en) * | 1995-03-17 | 1998-08-04 | Board Of Trustees Of University Of Illinois | BCL2 derived genetic elements associated with sensitivity to chemotherapeutic drugs |
| KR960034413A (ko) * | 1995-03-24 | 1996-10-22 | 권계홍 | 아폽토시스 조절 유전자 |
| US5994315A (en) * | 1995-06-07 | 1999-11-30 | East Carolina University | Low adenosine agent, composition, kit and method for treatment of airway disease |
| FR2749021B1 (fr) | 1996-05-23 | 2001-10-26 | Agronomique Inst Nat Rech | Lignees de cellules aviaires immortalisees |
| FR2749022B1 (fr) | 1996-05-23 | 2001-06-01 | Rhone Merieux | Cellules aviaires immortelles |
| US5776905A (en) * | 1996-08-08 | 1998-07-07 | The Board Of Trustees Of The Leland Stamford Junior University | Apoptotic regression of intimal vascular lesions |
| US6977244B2 (en) * | 1996-10-04 | 2005-12-20 | Board Of Regents, The University Of Texas Systems | Inhibition of Bcl-2 protein expression by liposomal antisense oligodeoxynucleotides |
| GB9711919D0 (en) | 1997-06-09 | 1997-08-06 | Ciba Geigy Ag | Oligonucleotide derivatives |
| US7285288B1 (en) | 1997-10-03 | 2007-10-23 | Board Of Regents, The University Of Texas System | Inhibition of Bcl-2 protein expression by liposomal antisense oligodeoxynucleotides |
| US7704962B1 (en) | 1997-10-03 | 2010-04-27 | Board Of Regents, The University Of Texas System | Small oligonucleotides with anti-tumor activity |
| NZ513077A (en) † | 1999-01-14 | 2004-03-26 | Bolder Biotechnology Inc | Methods for making proteins containing free cysteine residues |
| NZ517215A (en) | 1999-08-25 | 2004-01-30 | Immunex Corp | Compositions and methods for improved cell culture |
| US7795232B1 (en) | 2000-08-25 | 2010-09-14 | Genta Incorporated | Methods of treatment of a bcl-2 disorder using bcl-2 antisense oligomers |
| WO2003106974A2 (en) * | 2002-06-18 | 2003-12-24 | Irm Llc | Diagnosis and treatment of chemoresistant tumors |
-
1993
- 1993-04-02 EP EP93907972A patent/EP0633934A1/de not_active Withdrawn
- 1993-04-02 WO PCT/GB1993/000686 patent/WO1993020200A1/en not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9320200A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO1993020200A1 (en) | 1993-10-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO1993020200A1 (en) | Modified cells and method of treatment | |
| Niu et al. | BCL6 controls the expression of the B7-1/CD80 costimulatory receptor in germinal center B cells | |
| Calabretta et al. | Normal and leukemic hematopoietic cells manifest differential sensitivity to inhibitory effects of c-myb antisense oligodeoxynucleotides: an in vitro study relevant to bone marrow purging. | |
| Caracciolo et al. | Lineage-specific requirement of c-abl function in normal hematopoiesis | |
| Spiekermann et al. | Constitutive activation of STAT3 and STAT5 is induced by leukemic fusion proteins with protein tyrosine kinase activity and is sufficient for transformation of hematopoietic precursor cells | |
| Arima et al. | IL-2-induced signal transduction involves the activation of nuclear NF-kappa B expression | |
| AU2001229254B2 (en) | Pharmaceutical compositions and methods of treatment based on VEGF antisense oligonucleotides | |
| US7862816B2 (en) | Polypeptide compounds for inhibiting angiogenesis and tumor growth | |
| US5652222A (en) | Selective inhibition of leukemic cell proliferation by bcr-abl antisense oligonucleotides | |
| AU2001229254A1 (en) | Pharmaceutical compositions and methods of treatment based on VEGF antisense oligonucleotides | |
| Rosolen et al. | Antisense inhibition of single copy N-myc expression results in decreased cell growth without reduction of c-myc protein in a neuroepithelioma cell line | |
| EP0861267A1 (de) | Induktion und resistenz gegen tumorwachstum mittels loeslichem igf-1 | |
| WO1998014615A1 (en) | Antisense oligonucleotide modulation of mdr p-glycoprotein gene expression | |
| Rosini et al. | NGF withdrawal induces apoptosis in CESS B cell line through p38 MAPK activation and Bcl-2 phosphorylation | |
| US7381410B2 (en) | Polypeptide compounds for inhibiting angiogenesis and tumor growth | |
| Condorelli et al. | Ectopic TAL-1/SCL expression in phenotypically normal or leukemic myeloid precursors: proliferative and antiapoptotic effects coupled with a differentiation blockade | |
| Luger et al. | A functional analysis of protooncogene Vav's role in adult human hematopoiesis | |
| Melotti et al. | Induction of hematopoietic commitment and erythromyeloid differentiation in embryonal stem cells constitutively expressing c-myb | |
| US6815180B1 (en) | Human cervical cancer 1 protooncogene and protein encoded therein | |
| EP0694068B1 (de) | Mit chemotherapeutische zusammensetzungenassoziierten genetischen suppressor-elementen | |
| Elefanty et al. | bcr-abl-Induced cell lines can switch from mast cell to erythroid or myeloid differentiation in vitro | |
| CA2332179C (en) | Uses of dna-pk | |
| Villeval et al. | Autocrine stimulation by erythropoietin (Epo) requires Epo secretion | |
| US20020165174A1 (en) | Methods and compositions for antisense VEGF oligonucleotides | |
| Kang et al. | Roles of protein phosphatase 1 and 2A in an IL-6-mediated autocrine growth loop of human myeloma cells |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19941102 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE DK ES FR GB IE IT LI LU NL SE |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Withdrawal date: 19961111 |