EP0630425A1 - Process for coating carbon fibre reinforced carbon and product therewith obtained - Google Patents

Process for coating carbon fibre reinforced carbon and product therewith obtained

Info

Publication number
EP0630425A1
EP0630425A1 EP93906488A EP93906488A EP0630425A1 EP 0630425 A1 EP0630425 A1 EP 0630425A1 EP 93906488 A EP93906488 A EP 93906488A EP 93906488 A EP93906488 A EP 93906488A EP 0630425 A1 EP0630425 A1 EP 0630425A1
Authority
EP
European Patent Office
Prior art keywords
carbon
layer
protective layer
reinforced carbon
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93906488A
Other languages
German (de)
French (fr)
Inventor
Cornelia Strobel-Simon
Milan Hrovat
Heinrich Porth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Nukem GmbH
Original Assignee
Nukem GmbH
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nukem GmbH, MTU Motoren und Turbinen Union Muenchen GmbH filed Critical Nukem GmbH
Publication of EP0630425A1 publication Critical patent/EP0630425A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • C04B41/526Multiple coating or impregnation with materials having the same composition but different characteristics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/902High modulus filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/4927Cylinder, cylinder head or engine valve sleeve making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/4927Cylinder, cylinder head or engine valve sleeve making
    • Y10T29/49272Cylinder, cylinder head or engine valve sleeve making with liner, coating, or sleeve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention relates to a method for coating carbon fiber reinforced carbon (CFC) with at least one layer.
  • CFC carbon fiber reinforced carbon
  • Carbon fiber reinforced carbon is characterized by high strength and very good toughness. A wide use of this material is, however, currently severely restricted due to a lack of oxidation resistance. In particular, use above 400'C without protective gas is hardly possible.
  • the present invention addresses the problem of providing a method for the coating of carbon fiber reinforced carbon having at least one layer so as to provide that a high oxidation resistance is also possible at higher temperatures, ie above 400 * C, but especially about 1.500'C .
  • the problem is solved according to the invention in that an adhesive layer made of amorphous SiN x is applied to the carbon fiber-reinforced carbon (CFC), to which in turn the layer resistant to oxidation at a temperature T OO'C is applied as a protective layer made of silicon compounds.
  • Crystalline S ' ⁇ N can be applied as a protective layer.
  • amorphous SiN or SiO 2 or a combination of these with kri ⁇ stallinem Si3N4 can be applied advantageously, so that by the inventive method, a carbon-fiber-Ko len ⁇ material is provided, which even at high temperatures, about 1500 * C, even over 1700 ' C is resistant to oxidation, ie it is suitable to be used in particular in aerospace technology. Consequently, components such as outlet cone in turbines, turbine housings, hot gas guide parts, combustion chambers, guide vanes or others can be produced from the carbon fiber-reinforced carbon refined according to the invention.
  • Amorphous silicon nitride is deposited as the adhesive layer in order to advantageously adapt the different coefficients of expansion of the carbon fiber-reinforced carbon and the protective layer to one another, since their coefficients of expansion have deviations that are too great from one another, so that there is otherwise the risk of cracks or flaking of the protective layer.
  • a micro-multipolar plasma such as DECR plasma (D stributed electron cyclotron resonance) can be used to deposit the adhesive layer made of amorphous SiN x .
  • the carbon fiber reinforced carbon is cleaned before the adhesive layer is applied. This can be done by bombardment by noble gas ions such as argon ions of a plasma preferably at a temperature above 200 * C and preferably at a pressure lower
  • the application of the adhesive layer is facilitated by cleaning.
  • a microwave-excited plasma is preferably used for cleaning.
  • the carbon fiber-reinforced carbon should have an electrical potential (BIAS) of at least 20 V, preferably from 60 V to 150 V.
  • the protective layer containing silicon nitride should be applied under or essentially avoiding stable diimides.
  • dichlorosilane and ammonia in a ratio of 1: 2 to 1: 8, 20, preferably 1: 5, are used as process gases, hydrogen being used as the carrier gas.
  • the crystalline silicon nitride layer is deposited at a pressure of less than 5 hPa and 25, preferably at a temperature between 1000'C and 1100'C.
  • the invention relates to a carbon fiber reinforced carbon, in particular determined as a material for use in aerospace engineering, the carbon fiber reinforced carbon being distinguished in that the carbon fiber reinforced carbon has an outer protective layer which has a high resistance to oxidation is coated from crystalline silicon nitride, an adhesive layer being arranged between the protective layer and the carbon fiber reinforced carbon, the expansion coefficient of which lies between that of the protective layer and that of the carbon fiber reinforced carbon.
  • An outlet cone of a turbine made of carbon-fiber-reinforced carbon (CFC) was introduced into a plant for plasma-assisted chemical vapor deposition (PECVD plant), in which the workpiece was a multi-multipolar-distributed plasma at a pressure of 5 x 10 'hPa exposed to a temperature of 500 * C to be shot with argon ions over a period of 10 minutes.
  • the workpiece was at a BIAS potential of 60 V. The workpiece was cleaned by this process step.
  • the workpiece provided with the adhesion promoter layer was then introduced into a CVD system in order to apply a crystalline Si3N4 protective layer.
  • SiH2Cl2 and NH3 were also used as process gases. Since in the reaction of dichlorosilane and ammonia, diimide, Si (NH) 2 »is initially formed, from which silicon nitride is formed in two further stages by the release of ammonia, care must be taken to ensure that the reaction is complete in preferably -S ⁇ 3N4 and not diimides be deposited.
  • the adhesion promoters is introduced mediate layer having workpiece into the reaction chamber, in order then in the CVD process at a temperature of 1050 * C and a process pressure of 2.5 hPa, the process gases of dichlorosilane and ammonia in a ratio of 1: 5 to introduce. H2 used as carrier gas. With these parameters, a deposition rate of 1 ⁇ m min "can be achieved.
  • the workpiece is then exposed to the process gases for the deposition of the silicon nitride protective layer in the reaction space for 60 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

On propose un procédé visant à rendre stable à l'oxydation du carbone renforcé par fibres de carbone. Selon ce procédé, une couche de SiNx amorphe ayant un pouvoir adhésif, est appliquée sur le carbone renforcé par fibres de carbone. Cette couche est elle-même recouverte d'une couche résistant à l'oxydation et servant de revêtement protecteur, à une température T, T étant > 400 °C, réalisée de préférence en Si3N4.A method is proposed to make oxidation of carbon reinforced with carbon fibers stable. According to this process, an amorphous SiNx layer having an adhesive power is applied to the carbon reinforced with carbon fibers. This layer is itself covered with a layer resistant to oxidation and serving as a protective coating, at a temperature T, T being> 400 ° C., preferably made of Si3N4.

Description

Verfahren zum Beschichten von kohlenstoffaserverstärktem Process for coating carbon fiber reinforced
Kohlenstoffcarbon
Die Erfindung bezieht sich auf ein Verfahren zum Beschichten von kohlenstoffaserverstärktem Kohlenstoff (CFC) mit zumindest einer Schicht.The invention relates to a method for coating carbon fiber reinforced carbon (CFC) with at least one layer.
Kohlenstoffaserverstärkter Kohlenstoff zeichnet sich durch hohe Festigkeit bei sehr guter Zähigkeit aus. Ein breiter Einsatz dieses Materials ist jedoch zur Zeit wegen mangelnder Oxidationsbeständig¬ keit stark eingeschränkt. Insbesondere ist ein Einsatz über 400'C ohne Schutzgas kaum möglich.Carbon fiber reinforced carbon is characterized by high strength and very good toughness. A wide use of this material is, however, currently severely restricted due to a lack of oxidation resistance. In particular, use above 400'C without protective gas is hardly possible.
Aufgrund der erwähnten Festigkeitseigenschaften bei geringem Gewicht wäre jedoch insbesondere ein Einsatz in der Luft- und Raumfahrt¬ technik von Vorteil.Due to the mentioned strength properties with low weight, however, use in aerospace technology would be particularly advantageous.
Der vorliegenden Erfindung liegt daher das Problem zugrunde, ein Verfahren zum Beschichten von kohlenstoffaserverstärktem Kohlenstoff mit zumindest einer Schicht derart zur Verfügung zu stellen, daß eine hohe Oxidationsbeständigkeit auch bei höheren Temperaturen, also über 400*C, insbesondere aber auch über 1.500'C möglich ist. Das Problem wird erfindungsgemäß dadurch gelöst, daß auf dem kohlen¬ stoffaserverstärkten Kohlenstoff (CFC) eine Haftmittlerschicht aus amorphem SiNx aufgebracht wird, auf die ihrerseits die bei einer Temperatur T OO'C oxidationsbeständige Schicht als Schutzschicht aus Siliziumverbindungen aufgetragen wird.Therefore, the present invention addresses the problem of providing a method for the coating of carbon fiber reinforced carbon having at least one layer so as to provide that a high oxidation resistance is also possible at higher temperatures, ie above 400 * C, but especially about 1.500'C . The problem is solved according to the invention in that an adhesive layer made of amorphous SiN x is applied to the carbon fiber-reinforced carbon (CFC), to which in turn the layer resistant to oxidation at a temperature T OO'C is applied as a protective layer made of silicon compounds.
Dabei kann als Schutzschicht kristallines S '^N aufgetragen werden. Auch amorphes SiN oder Siθ2 oder eine Kombination dieser mit kri¬ stallinem Si3N4 können vorteilhaft aufgetragen werden, damit durch das erfindungsgemäße Verfahren ein kohlenstoffaserverstärkter Ko len¬ stoff zur Verfügung gestellt wird, der auch bei hohen Temperaturen, über 1.500*C, sogar über 1.700'C oxidationsbeständig ist, also geeig¬ net ist, insbesondere in der Luft- und Raumfahrttechnik eingesetzt zu werden. Folglich können aus dem erfindungsgemäß veredelten kohlen¬ stoffaserverstärkten Kohlenstoff Komponenten wie Austrittskonus bei Turbinen, Turbinengehäuse, Heißgasführungsteile, Brennkammern, Leit- schaufeln oder andere hergestellt werden.Crystalline S ' ^ N can be applied as a protective layer. Also, amorphous SiN or SiO 2 or a combination of these with kri¬ stallinem Si3N4 can be applied advantageously, so that by the inventive method, a carbon-fiber-Ko len¬ material is provided, which even at high temperatures, about 1500 * C, even over 1700 ' C is resistant to oxidation, ie it is suitable to be used in particular in aerospace technology. Consequently, components such as outlet cone in turbines, turbine housings, hot gas guide parts, combustion chambers, guide vanes or others can be produced from the carbon fiber-reinforced carbon refined according to the invention.
Als Haftmittlerschicht wird amorphes Siliziumnitrid abgeschieden um vorteilhaft die unterschiedlichen Ausdehnungskoeffizienten von dem kohlenstoffaserverstärkten Kohlenstoff und der Schutzschicht einander anzupassen, da deren Ausdehnungskoeffizienten zueinander zu große Abweichungen aufweisen, so daß andernfalls die Gefahr von Rißbildungen bzw. Abplatzen der Schutzschicht erwächst. Zur Ab¬ scheidung der Haftmittlerschicht aus amorphem SiNx kann ein Mikro- Hultipolar-Plasma wie DECR-Plasma (D stributed electron cyclotron resonance) benutzt werden.Amorphous silicon nitride is deposited as the adhesive layer in order to advantageously adapt the different coefficients of expansion of the carbon fiber-reinforced carbon and the protective layer to one another, since their coefficients of expansion have deviations that are too great from one another, so that there is otherwise the risk of cracks or flaking of the protective layer. A micro-multipolar plasma such as DECR plasma (D stributed electron cyclotron resonance) can be used to deposit the adhesive layer made of amorphous SiN x .
In Ausgestaltung der Erfindung ist vorgesehen, daß vor Aufbringen der Haftmittlerschicht der kohlenstoffaserverstärkte Kohlen¬ stoff gereinigt wird. Dies kann durch ein Bombardement durch Edel- gasionen wie Argonionen eines Plasmas vorzugsweise bei einer Temperatur oberhalb 200*C und vorzugsweise bei einem Druck kleinerIn an embodiment of the invention it is provided that the carbon fiber reinforced carbon is cleaned before the adhesive layer is applied. This can be done by bombardment by noble gas ions such as argon ions of a plasma preferably at a temperature above 200 * C and preferably at a pressure lower
* 5 als 1 x lO'^hPa erfolgen.* 5 as 1 x 10 ^ hPa.
Durch das Reinigen wird das Aufbringen der Haftmittlerschicht er¬ leichtert. Vorzugsweise wird zum Reinigen ein mikrowellenangeregtes Plasma verwendet. Ferner sollte der kohlenstoffaserverstärkte 10 Kohlenstoff an ein elektrisches Potential (BIAS) von zumindest 20 V, vorzugsweise von 60 V bis 150 V anliegen.The application of the adhesive layer is facilitated by cleaning. A microwave-excited plasma is preferably used for cleaning. Furthermore, the carbon fiber-reinforced carbon should have an electrical potential (BIAS) of at least 20 V, preferably from 60 V to 150 V.
Um insbesondere sicherzustellen, daß die Schutzschicht rißfrei ist und nicht abplatzen kann, soll ein Auftragen der Siliziumnitrid ent- 15 haltenden Schutzschicht unter oder im wesentlichen unter Vermeidung stabiler Diimide erfolgen.In order to ensure in particular that the protective layer is free of cracks and cannot flake off, the protective layer containing silicon nitride should be applied under or essentially avoiding stable diimides.
Zum Abscheiden der kristallinen Si3N4~Schicht werden als Proze߬ gase Dichlorsilan und Ammoniak im Verhältnis von 1:2 bis 1:8, 20 vorzugsweise von 1:5 benutzt, wobei als Trägergas Wasserstoff dient.To deposit the crystalline Si3N4 layer, dichlorosilane and ammonia in a ratio of 1: 2 to 1: 8, 20, preferably 1: 5, are used as process gases, hydrogen being used as the carrier gas.
Nach einer weiteren Maßnahme ist vorgesehen, daß die kristalline Siliziumnitridschicht bei einem Druck von weniger als 5hPa und 25 vorzugsweise bei einer Temperatur zwischen 1.000'C und 1.100'C abgeschieden wird.According to a further measure, it is provided that the crystalline silicon nitride layer is deposited at a pressure of less than 5 hPa and 25, preferably at a temperature between 1000'C and 1100'C.
Um sicherzustellen, daß beim Abscheiden der Siliziumnitridschicht stabile Diimide nicht vorliegen, die andernfalls auch auf dem 30 kohlenstoffaserverstärkten Kohlenstoff abgeschieden würden und somitTo ensure that stable diimides are not present when the silicon nitride layer is deposited, which would otherwise also be deposited on the carbon fiber reinforced carbon and thus
* zu einer Rißbildung der Schutzschicht führen könnten, wird vor Abscheiden der Schutzschicht der verwendete Reaktionsraum in einem H2/HCI-Gasgemisch gereinigt. Schließlich bezieht sich die Erfindung auf einen kohlenstoffaser¬ verstärkten Kohlenstoff insbesondere bestimmt als Werkstoff zur Verwendung in der Luft- und Raumfahrttechnik, wobei sich der kohlen¬ stoffaserverstärkte Kohlenstoff dadurch auszeichnet, daß der kohlen- stoffaserverstärkte Kohlenstoff mit einer äußeren eine hohe Oxi¬ dationsbeständigkeit aufweisenden Schutzschicht aus kristallinem Siliziumnitrid beschichtet ist, wobei zwischen der Schutzschicht und dem kohlenstoffaserverstärkten Kohlenstoff eine Haftmittler¬ schicht angeordnet ist, deren Ausdehnungskoeffizient zwischen dem der Schutzschicht und dem des kohlenstoffaserverstärkten Kohlenstoffs liegt.* If the protective layer could crack, the reaction chamber used is cleaned in a H2 / HCl gas mixture before the protective layer is deposited. Finally, the invention relates to a carbon fiber reinforced carbon, in particular determined as a material for use in aerospace engineering, the carbon fiber reinforced carbon being distinguished in that the carbon fiber reinforced carbon has an outer protective layer which has a high resistance to oxidation is coated from crystalline silicon nitride, an adhesive layer being arranged between the protective layer and the carbon fiber reinforced carbon, the expansion coefficient of which lies between that of the protective layer and that of the carbon fiber reinforced carbon.
Die Erfindung soll nachstehend an Hand eines Beispiels erläutert werden, aus dem sich weitere Einzelheiten, Vorteile und Merkmale ergeben.The invention will be explained below using an example from which further details, advantages and features result.
Ein Austrittskonus einer Turbine aus kohlenstoffasserverstärktem Kohlenstoff (CFC) wurde in eine Anlage zur Plasma unterstützten, chemischen Gasphasenabscheidung (PECVD-Anlage) eingebracht, in der das Werkstück einem Mi rowellen-Multipolar-Distributed-Plasma bei einem Druck von 5 x lO'^hPa bei einer Temperatur von 500*C ausgesetzt wurde, um über eine Zeitdauer von 10 Minuten mit Argonionen be- schössen zu werden. Dabei lag das Werkstück an einem BIAS-Potential von 60 V. Durch diesen Verfahrensschritt wurde das Werkstück ge¬ reinigt.An outlet cone of a turbine made of carbon-fiber-reinforced carbon (CFC) was introduced into a plant for plasma-assisted chemical vapor deposition (PECVD plant), in which the workpiece was a multi-multipolar-distributed plasma at a pressure of 5 x 10 'hPa exposed to a temperature of 500 * C to be shot with argon ions over a period of 10 minutes. The workpiece was at a BIAS potential of 60 V. The workpiece was cleaned by this process step.
Sodann wurde das Werkstück, das direkt beheizt wurde, auf eine Temperatur von ca. 750'C erwärmt und Prozeßgasen S^Clg undThen the workpiece, which was directly heated, was heated to a temperature of approx. 750'C and process gases S ^ Clg and
NH3 ausgesetzt, und zwar in den Mengen 13 MLST (Standardmilliliter pro Minute) bzw. 39 MLST. Das Werkstück wurde 60 Minuten den Prozeß- gasen ausgesetzt, wobei die Leistungen eines verwendeten Mikrowellen- generators 1.000 W betrug. Unter diesen Bedingungen wurde eine Haft¬ vermittlerschicht mit einem Dickenwachstum von lμmh"1 abgeschieden.Exposed to NH3, in quantities of 13 MLST (standard milliliters per minute) or 39 MLST. The workpiece was exposed to the process gases for 60 minutes, the power of a microwave generator used being 1,000 W. Under these conditions an adhesion promoter layer with a thickness growth of 1 μm 1 was deposited.
Sodann wurde das mit der Haftvermittlerschicht versehene Werkstück in eine CVD-Anlage eingebracht, um eine kristalline Si3N4-Schutzschic.it aufzutragen. Hierbei wurden als Prozeßgase gleichfalls SiH2Cl2 und NH3 verwendet. Da bei der Reaktion von Dichlorsilan und Ammoniak zunächst Diimid, Si(NH)2» gebildet wird, aus dem in zwei weiteren Stufen durch Abgabe von Ammoniak Siliziumnitrid entsteht, ist darauf zu achten, daß eine vollständige Umsetzung in vorzugsweise -SΪ3N4 erfolgt und keine Diimide abgeschieden werden.The workpiece provided with the adhesion promoter layer was then introduced into a CVD system in order to apply a crystalline Si3N4 protective layer. SiH2Cl2 and NH3 were also used as process gases. Since in the reaction of dichlorosilane and ammonia, diimide, Si (NH) 2 »is initially formed, from which silicon nitride is formed in two further stages by the release of ammonia, care must be taken to ensure that the reaction is complete in preferably -SΪ3N4 and not diimides be deposited.
Um sicherzugehen, daß sich in dem Reaktionsraum keine stabile Diimide befinden, ist zuvor eine Reinigung mit einem H2/HC1Gasgemisch bei einer Temperatur von etwa 1.800*C durchzuführen.To ensure that there are no stable diimides in the reaction chamber, cleaning with an H2 / HC1 gas mixture at a temperature of around 1,800 ° C is necessary.
Nach der Reinigung wird in den Reaktionsraum das die Haftver¬ mittlungsschicht aufweisende Werkstück eingebracht, um sodann im CVD-Prozeß bei einer Temperatur von 1.050*C und einem Prozeßdruck von 2,5 hPa die Prozeßgase Dichlorsilan und Ammoniak im Verhältnis von 1:5 einzubringen. Als Trägergas H2 verwendet. Bei diesen Para¬ metern kann eine Abscheiderate von 1 μm min" erreicht werden. Das Werkstück ist sodann 60 Minuten in dem Reaktionsraum den Pro- zeßgasen zum Abscheiden der Siliziumnitrid-Schutzschicht ausgesetzt. After purification, the the adhesion promoters is introduced mediate layer having workpiece into the reaction chamber, in order then in the CVD process at a temperature of 1050 * C and a process pressure of 2.5 hPa, the process gases of dichlorosilane and ammonia in a ratio of 1: 5 to introduce. H2 used as carrier gas. With these parameters, a deposition rate of 1 μm min "can be achieved. The workpiece is then exposed to the process gases for the deposition of the silicon nitride protective layer in the reaction space for 60 minutes.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Verfahren zum Beschichten von kohlenstoffaserverstärktem Kohlen- stoff mit zumindest einer Schicht, dadurch gekennzeichnet, daß auf dem kohlenstoffaserverstärktem Kohlenstoff eine Haftmittler¬ schicht aus amorphem SiNx aufgebracht wird, auf die ihrerseits die bei einer Temperatur T>400'C oxidationsbeständige Schicht als Schutzschicht aus Siliziumverbindungen aufgetragen wird.1. A method for coating carbon fiber-reinforced carbon with at least one layer, characterized in that an adhesive layer made of amorphous SiN x is applied to the carbon fiber-reinforced carbon, to which in turn the layer resistant to oxidation at a temperature T>400'C as a protective layer is applied from silicon compounds.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Schutz¬ schicht kristallines Sι*3N4 aufgetragen wird.2. The method according to claim 1, characterized in that crystalline Sι * 3N4 is applied as a protective layer.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Schutzschicht amorphes SiNx oder Siθ oder eine Kombination die¬ ser mit kristallinem Si3 4 aufgetragen wird.3. The method according to claim 1, characterized in that as a protective layer amorphous SiN x or Siθ or a combination die¬ ser with crystalline Si3 4 is applied.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch ge¬ kennzeichnet, daß vor Aufbringen der Haftmittlerschicht der kohlenstoffaserversatärkte Kohlenstoff gereinigt wird.4. The method according to any one of claims 1 to 3, characterized ge indicates that the carbon fiber is carbon cleaned before application of the adhesive layer.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der kohlen¬ stoffverstärkte Kohlenstoff mit einem aus Edelgas onen nie i Argonionen bestehenden Plasma vorzugsweise bei einer Temperatur oberhalb 200"C und vorzugsweise einem Druck 1 x 102mbar gereinigt wird.5. The method according to claim 4, characterized in that the carbon-reinforced carbon with one of noble gas never Plasma consisting of argon ions is preferably cleaned at a temperature above 200 ° C. and preferably a pressure of 1 × 10 2 mbar.
5 6. Verfahren nach zumindest einem der vorhergehenden Ansprüche,6. The method according to at least one of the preceding claims,
• dadurch gekennzeichnet, daß als Plasma ein mikrowellenangeregtes Plasma verwendet wird.• characterized in that a microwave-excited plasma is used as plasma.
7. Verfahren nach zumindest einem der vorhergehenden Ansprüche, 10 dadurch gekennzeichnet, daß der kohlenstoffaserverstärkte7. The method according to at least one of the preceding claims, 10 characterized in that the carbon fiber reinforced
Kohlenstoff an einem elektrischen Potential (BIAS) von mindestens 20 V, vorzugsweise von zumindest 60 V bis 150 V anliegt.Carbon is present at an electrical potential (BIAS) of at least 20 V, preferably of at least 60 V to 150 V.
8. Verfahren nach zumindest einem der vorhergehenden Ansprüche, 15 dadurch gekennzeichnet, daß das Abscheiden der Haftmittler¬ schicht mit einem Mikrowellen-Multipolarplas a (DECR-Plasma) erfolgt.8. The method according to at least one of the preceding claims, 15 characterized in that the deposition of the adhesive layer is carried out with a microwave multipolar plasma a (DECR plasma).
9. Verfahren nach zumindest einem der vorhergehenden Ansprüche, 20 dadurch gekennzeichnet, daß die kristallines Siliziumnitrid enthaltende Schutzschicht unter oder im wesentlichen unter Vermeidung stabiler Diimide abgeschieden wird.9. The method according to at least one of the preceding claims, 20 characterized in that the protective layer containing crystalline silicon nitride is deposited under or substantially avoiding stable diimides.
10. Verfahren nach zumindest einem der vorhergehenden Ansprüche, 25 dadurch gekennzeichnet, daß das Abscheiden der Schutzschicht nach dem CVD-Verfahren bei Unterdruck erfolgt.10. The method according to at least one of the preceding claims, 25 characterized in that the protective layer is deposited by the CVD process under reduced pressure.
11. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zum Abscheiden der kristallinen11. The method according to at least one of the preceding claims, characterized in that for the deposition of the crystalline
30 Sι'3N4-Schicht als Prozeßgase Dichlorsilan und Ammoniak im30 Sι ' 3N4 layer as process gases dichlorosilane and ammonia in
Verhältnis von 1:2 bis 1:8, vorzugsweise 1:5 benutzt werden, wobei als Trägergas Wasserstoff dient.Ratio of 1: 2 to 1: 8, preferably 1: 5 are used, hydrogen being used as the carrier gas.
12. Verfahren nach zumindest einem der vorhergehenden Ansprüche,12. The method according to at least one of the preceding claims,
35 dadurch gekennzeichnet, daß die kristalline Si3N4-Schic.it bei einem Druck von weniger als 5 hPa und vorzugsweise bei einer Temperatur von 1.000'C bis 1.100'C abgeschieden wird.35 characterized in that the crystalline Si3N4-chic.it is deposited at a pressure of less than 5 hPa and preferably at a temperature of 1,000'C to 1,100'C.
13. Verfahren nacϊϊ zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Abscheiden der Schutzschicht auf dem kohlenstoffaserverstärkten Kohlenstoff in einem Reaktions¬ raum erfolgt, der vor Abscheiden der Schutzschicht mit einem H2/HC1-Gasgemisch gereinigt wird.13. The method according to at least one of the preceding claims, characterized in that the protective layer is deposited on the carbon-fiber-reinforced carbon in a reaction chamber which is cleaned with a H2 / HC1 gas mixture before the protective layer is deposited.
14. Kohlenstoffaserverstärkter Kohlenstoff, insbesondere zur Verwen¬ dung als Werkstoff für die Luft und Raumfahrttechnik, dadurch gekennzeichnet, daß der kohlenstoffaserverstärkte Kohlenstoff eine außenseitige kristalline Si3N4-Schic.1t aufweist, die auf einer auf den kohlenstoffaserverstärkten Kohlenstoff aufgetragenen Haft¬ mittlerschicht unter Ausschluß von stabilen Dünnden aufgetragen ist. 14. Carbon fiber-reinforced carbon, in particular for use as a material for aerospace technology, characterized in that the carbon-fiber-reinforced carbon has an outside crystalline Si3N4 layer which is applied to the carbon-fiber-reinforced carbon adhesive layer with the exclusion of stable ones Is applied.
EP93906488A 1992-03-09 1993-03-06 Process for coating carbon fibre reinforced carbon and product therewith obtained Withdrawn EP0630425A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4207380 1992-03-09
DE4207380 1992-03-09
PCT/EP1993/000508 WO1993018203A1 (en) 1992-03-09 1993-03-06 Process for coating carbon fibre reinforced carbon

Publications (1)

Publication Number Publication Date
EP0630425A1 true EP0630425A1 (en) 1994-12-28

Family

ID=6453558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93906488A Withdrawn EP0630425A1 (en) 1992-03-09 1993-03-06 Process for coating carbon fibre reinforced carbon and product therewith obtained

Country Status (4)

Country Link
US (1) US5489422A (en)
EP (1) EP0630425A1 (en)
JP (1) JPH07504713A (en)
WO (1) WO1993018203A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682676A (en) * 1994-09-22 1997-11-04 Yamaha Hatsudoki Kabushiki Kaisha Method for surface treatment of work having plural cylinders with different axial alignments
DE102017204258B4 (en) 2017-03-14 2023-08-17 Schunk Kohlenstofftechnik Gmbh Method of making a porous body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161981A (en) * 1982-03-17 1983-09-26 株式会社東芝 Manufacture of silicon nitride-clad ceramic base material
US4515860A (en) * 1982-09-10 1985-05-07 Dart Industries Inc. Self protecting carbon bodies and method for making same
US4534842A (en) * 1983-06-15 1985-08-13 Centre National De La Recherche Scientifique (Cnrs) Process and device for producing a homogeneous large-volume plasma of high density and of low electronic temperature
JPS6333575A (en) * 1986-07-28 1988-02-13 Nippon Soken Inc Electron cyclotron plasma cvd device
ES2006119A6 (en) * 1988-03-24 1989-04-01 Union Explosivos Rio Tinto Process for the preparation of silicon nitride.
DE3920450A1 (en) * 1989-06-22 1991-01-10 Schunk Kohlenstofftechnik Gmbh Producing oxidn. and thermo-shock resistant coating on carbon bodies - by forming layers of silicon carbide or nitride followed by glassy layer of silicon oxide opt. with silicon
US5254397A (en) * 1989-12-27 1993-10-19 Sumitomo Electric Industries, Ltd. Carbon fiber-reinforced composite material having a gradient carbide coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9318203A1 *

Also Published As

Publication number Publication date
JPH07504713A (en) 1995-05-25
WO1993018203A1 (en) 1993-09-16
US5489422A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
US4425407A (en) CVD SiC pretreatment for carbon-carbon composites
US4472476A (en) Composite silicon carbide/silicon nitride coatings for carbon-carbon materials
US4487799A (en) Pyrolytic graphite pretreatment for carbon-carbon composites
EP0129686B1 (en) Superconducting fibre
US4610896A (en) Method for repairing a multilayer coating on a carbon-carbon composite
SK11662001A3 (en) Tungsten carbide coatings and method for producing the same
US4560589A (en) Method for providing a coating layer of silicon carbide on substrate surface
DE1157143T1 (en) MEDIUM TEMPERATURE CVD PROCESS
KR20190042537A (en) Chemical vapor deposition silicon carbide bulk with improved etching characteristics
DE69417451T2 (en) METHOD FOR APPLYING A DIAMOND FILM TO A LOW-PLATED NICKEL LAYER
GB2236540A (en) Boron nitride coated fibres
DE69620577T2 (en) CHEMICAL DEPOSITION OF MULLITE LAYERS AND MULLITE POWDERS FROM THE GAS PHASE
Honjo et al. Influence of carbide formation on the strength of carbon fibres on which silicon and titanium have been deposited
CA2067145C (en) Process for forming crack-free pyrolytic boron nitride on a carbon structure and article
CN114105662A (en) Multilayer interface coating, preparation method and ceramic matrix composite preparation method
EP0630425A1 (en) Process for coating carbon fibre reinforced carbon and product therewith obtained
DE3534563A1 (en) CERAMIC COMPOSITIONS MADE BY DISPERSION TOE AND METHOD FOR THE PRODUCTION THEREOF
WO1992002662A2 (en) Process for forming crack-free pyrolytic boron nitride on a carbon structure and article
CN108752012B (en) Preparation method of boron nitride/silicon nitride composite interface layer on fiber surface
Thamm et al. Preparation of boron nitride thin films by microwave PECVD and their analytical characterisation
Patel et al. Studies on non-oxide coating on carbon fibers using plasma enhanced chemical vapor deposition technique
DE19503976C1 (en) Single crystal epitaxial silicon carbide layer prodn
DE19506579C2 (en) Process for the production of TiN layers and the layer produced by this process
EP1123560A2 (en) Method for producing a wafer support in a high-temperature cvd reactor
GB2161151A (en) Composite SiC/Si3N4 coating for carbon-carbon materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE DK FR GB IE IT LU MC NL PT SE

17Q First examination report despatched

Effective date: 19950427

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19960504