JPS58161981A - Manufacture of silicon nitride-clad ceramic base material - Google Patents

Manufacture of silicon nitride-clad ceramic base material

Info

Publication number
JPS58161981A
JPS58161981A JP4208882A JP4208882A JPS58161981A JP S58161981 A JPS58161981 A JP S58161981A JP 4208882 A JP4208882 A JP 4208882A JP 4208882 A JP4208882 A JP 4208882A JP S58161981 A JPS58161981 A JP S58161981A
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon
dense
base material
nitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4208882A
Other languages
Japanese (ja)
Inventor
多禾夫 太田
上羽 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4208882A priority Critical patent/JPS58161981A/en
Publication of JPS58161981A publication Critical patent/JPS58161981A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発−の技術分野〕 本発明は、電化珪素被覆したセラミックス基材の製造方
法に関する。 〔発明の技術的W景とその間照点〕 輩化珪嵩の成形体は、七の耐熱温度が1900
[Technical Field of the Invention] The present invention relates to a method of manufacturing a ceramic substrate coated with electrified silicon. [Technical landscape of the invention and its points of interest] The molded body of Kaihua silicon has a heat resistance temperature of 1900°C.

〔0〕と
^く、比軟的容易に且つ女−に製造することができ、し
かも耐熱電撃性および化学的安定性に菖−(toさらに
、治−金属に潟れ―い上に強度および硬度が大きく、A
−絶縁性も良い等の優れた%注を有するので、旙−性ガ
ス輔送バイブ、半導体浴部用ルツボ、結晶育成用容器お
よび高龜用慎械部品婦に広くその用途が見出されている
〇 一般に、窒化珪素成形体は次の(1) 、 (2)に示
す方法によって製造されている。 (1)電化珪素(steN4)  の粉末にMgO1A
JL Os + G 1tOH等の焼結助剤を数〔う〕
配合し−これを常圧或いは加圧雰吐気下1700〜20
00(”O)の1aLMで焼結するQ又は、上記配合の
ものを黒鉛の皺の中に充填した彼、圧力200〜400
 (&、9/cd)、1700〜tsoo(’O’lの
温度条件でホラ1ドブレスする。 (2)金属珪素の粉末で予め所望形状の成形体を作成し
、次いでこの成形体を@巣、水素とアンモニア戚りは窒
素と水素と01合ガス中で約1400 (’O)″の温
度で加熱処理して上記成形体の金属珪素を窒化する(反
応焼結法)。 ところが、上記第1の方法によって得られた窒化珪素成
形体は、前述したような各横の焼結助剤を不純物として
3゛有するので、ゲルマニウムやシリコンの半導体溶解
用ルツボ等のようにs器の高純匿が要求される用途には
不適当である。また、第2の方法によって得られた窒化
珪素成形体位、その相対wj度<m−密&3.1811
7−に対する相、封蝋)が85〜60〔う〕と低く多孔
構造であるなめ、溶解金属用ルツボ中腐蝕性ガス輸送パ
イプ等のように緻密性を要求逼れる用途には不適当で6
る。また、窒化珪素成形体の不純物を除去するためには
、通常該成形体をIIII軸直の塩化水素や塩素等がガ
ス或いは湿式て洗浄する^純度処理が行われているが、
この場合上記成形体の内部まで高純度処理されるために
は、該成形体が多孔411遺であることが不可決となる
。したがって、第1の方法で得られた材料の高純度化は
画一である。 そこで雄近、上述した問題を解決して電化珪素本来の特
性を保持した電化珪素成形体管得るために、セラミック
スの表面を緻密な窒化珪素層で被檄する方法が提案され
てりる。この場合、上記窒化珪素Jllri、800〜
1400(’O)の温度に加熱された多孔質値化珪素成
形体の表面に4塩化i1嵩(St(J4)、或いは水素
化珪素(sta4)、ii素およびアンモニアの3成分
混合ガスを接触させ、七の反応生成物であるSl。 N4  を沈着せしめる化学蒸着法(CVD法)によっ
て形成される。かくして得られた緻密質窒化珪素層は、
それ自体に不純物を含むことがなく非常にm1llLい
ものとなる。 しかしながら、この種の方法にTo′)ては次のような
間亀があった。すなわち、前配緻W負−化珪素層がα証
或いはβ瓜の結晶相から形成された場合には、セラミッ
クスのf!面と錬緻管賞窒化珪素層との結合力が弱く、
その結果緻密質−化珪素層がセラミックスlI面から剥
離する虞れがある◇また、形成された緻密質窒化珪素層
が非晶質からなる場合には、セラミツ1ス表面との結合
力は強いが、実用に供した録属−を受は易鱒轡の問題が
生じる0例えば、シリコン半導体の溶解用ルツボとして
使用した場合、緻密am化珪素がシリコン融液に侵蝕さ
れ、ルツボの機械的強度が劣化すると言う欠点があった
0〔発明の目的〕 本発明の目的は、窒化珪素を被覆したセラ建ツクス基材
を製造するに際し、緻密質窒化珪素層とセフィックス表
面との結合力を強くする仁とがで亀、且つ耐蝕性の向上
をもはか多得る窒化蓋素被優セラξツクス基材の製造方
法を提供することKある。 〔発明の概要〕 本軸明は、窒化珪素値復セラミックス基材を製造するに
除し、セラミックスの表面に緻9!質で非姦貿の窒化珪
素をコーティング、例えばCVD法を用いViIgを含
む非ば化性雰囲気中の1000〜1200(’0)の龜
にでセラミックス懺向に淑Wi質非晶寅窒化珪素の薄膜
を杉取したのち、咳薄膜上にIII!L密負で紹晶負の
窒化珪素をコーティング、例えば上記とlI!IJ休の
CVD法を用い1200〜1500C”0)の温度で上
記窒化珪素薄膜上に砿密實結晶質窒化珪素の薄膜を形成
するようにした方法である。 本侘明においては、セラミックスが基体となるが、その
樵−は用途に合わせて適訳すればよい〇一般に、電化珪
素、窒化アルミニウム、2歇化珪素、酸化アルミニウム
、酸化ジルコニウム、カーボン或いは電化−素等の焼結
体、又は石英Wラス等が好ましいが、上記各種焼結体は
必ずしも緻密体でなく、多孔質から形成されて−てもか
まわな一〇 また、CVD法においては、密閉栴遺の反応炉内に上記
のセラミックス基体のうち次層のものを収納し、該セラ
ミックスを適当な手設でまず1000〜1200(’O
’3に加熱し、ここに4塩化珪素、或いは水嵩化珪素、
窒素およびアン午ニアを含む反応ガス′t−流し込む0
これにより、反応生成物として51mN4が生成されこ
のS 1 s N4がセラミックス#!面に沈着して非
晶質窒化珪素層となる0ここで、加熱処理f!度がxo
oo(’c)g−hでは反応が速やかに過材せず、12
00(”O)を越えると結晶質窒化珪素を形成しセラミ
ックスとの結合力が弱くなる。 なお、形成する非晶質窒化硅素の厚みは特別限定されな
りが、1000〜10〔μ凰〕の範囲におることが好ま
しい。 次いで、上記反応容器内でセラミックスの加熱a度を1
200〜1500〔℃〕、好ましくは1300〜145
0(’O)の範囲まで昇温し、上記反応ガスを譚し込む
。こ訃により、反46生成物として811N4が生成さ
れ、この5isNaがセラミックス表面に沫矯して結晶
質窒化珪素層となる。ここで、刀Ω熱処理一度が120
0じ0〕以下でti非非晶奮化珪累を形成し、耐蝕性の
劣化を招く。さらに、加熱処址温膨が1500(’O)
を鰹えるとホイスカー戚φは砿小な結晶の縦梁が六山緻
鴇栴造に生成を抑制することが1離となり、これを実用
に供した場合クラック帖生の原因とな9強度の劣化を生
じる。 〔発明の効果〕 本発明によれは、セラミックスの表面に緻密質非晶IX
窒化珪素層を形成しているので、該窒化珪素層と七フォ
ックスとの結合力は十分太き一〇さらに、該電化珪素層
の表面に績密質結晶買置化珪素層を形成しているので、
各窒化珪素層間の結合力が極めて大きく、これによシ緻
密貴結晶貴窒化珪素層とセラミックスとの結合力を十分
大きくすることができる。したがって、セラミックスと
上記各窒化珪素層との剥−の虞れがなくなり、耐熱術撃
性の向上をはかヤ得る。 しかも、全体の表Ifiが17itv!i賀結晶質窒化
珪素層となるので、耐蝕性の向上をはか夛得る等の効果
を奏する。 〔発明の実施例〕 以下、本発1を通用した謝1乃第6の実施例について説
明する0 く実施例1〉 壕ず、第1図に示す如き長さL−50(關〕、mW=3
0(m)、岸さD=6〔■〕の窒化珪素焼結板(セラミ
ックス)1を用意した0この窒化珪素焼結板10片面に
平滑な愚鉛板(図示せず)を圧接して、これらをCVD
反応炉内に収納した。次いで、一度1150(1))で
水素化ii 嵩、アンモニアおよび窒素の3ji!分系
反応ガス(容積比で水素化珪lA=アンモニア二電嵩=
3:4:8)を上記反応炉内に60分間遍流した。これ
により窒化珪素焼結板1のWM記黒鉛板を圧接していな
い他i![]K%第2図に示す如く約joo〔μ屑〕の
厚みの緻密な鵬1f)窒化珪素層2が形成された。次い
で、温度1350〔°0〕で前記3成分糸反応ガスを同
様の容量比で6時間通流した0これによシ、l1lE3
図に示す如く第1の窒化珪素層2上に約700〔μm〕
の厚みの島2の窒化珪′lA層3が形成された。 かくして得られた輩化珪素被機セラミック基材の嵌面−
−5iL部を周知の方法により元素分析したところ、S
IHNm でおることが−緒さnた0さらに、X脚回折
したところα型であること、すなわちag2の窒化珪素
層3が結晶質であることが確Mきれた。また、前記工程
の前半部に相fi−jル1inl 150 (’O) 
KオffルCVDを別途行い、形成された緻密質部を元
素分析したところ、Sl、N4であることが確認された
。さらに、こn t−x m回折したところ、結晶相の
回折線は見られなかった0つt9、第1の窒化珪素層2
が非晶質であることが確認された。 次に、上述した方法により作成した窒化珪累被横セラミ
ックス基材を50枚準備し、熱衛撃賦−を行った0熱衝
撃1c験は、各成形体を1000(’0 ) K急熱し
た後、大気中に引き出する舊う急熱−急冷サイクルを5
0回行うもので、このときに緻密質部(窒化珪素層2.
3)とセラミツクス1との界thvtおける破損・剥離
の状−を装嵌する方法を用いた。そして、その結果を第
1次に示した。なお、比較のために、従来のCVD法に
よるgvB實結晶質層を形成したものについても1W1
1様の試験を行い、その結果を併記した。 第  1  表 この表からも、実施例基材の特性教書効果が明らかであ
る。 〈実施例2〉 実施例1と同様にして、焼き上)寸法外極80〔簡〕、
内径70〔關〕、深さSO(簡〕、肉厚5〔■〕′の焼
MN化珪木ルツボを用意した。 このルツボを加熱炉°内に入れ1150(’O)に昇温
し、塩化木本1(%)+m嵩99〔%〕のガスを同炉内
に適法しつつ5時間加熱する条件で^gt処埴した。次
−で、実施例1と同様にCVD法を用い、前記ルツボの
内壁面に緻密質非晶質電化珪素層を200〔μ屡〕の厚
みで形成し、さらにこのli!面に緻密質結晶質窒化珪
素層を700〔μ罵〕の厚みで形成した。 かくして得られたルツボ51−を再度弗硝酸(容積比で
弗酸:@m中1:3)で1分間洗浄した僕、金属シリコ
ン単結晶の引色上げに供したところ、いずれも好結果を
示した。一方、比較例として上記と同様にルツボの内1
1面にCVD法による瀕密實非晶質値化珪素層のみを9
00〔岸馬〕の厚みで形成したもの5憐を、上記方法に
よシ洗浄した後金慶シリコン単結晶の引籾上げに供した
ところ、そのうち4個は耐蝕性が恐く液洩れを起こした
。さらに、上記と同様にしてルツボの内−面に緻密質結
晶質窒化珪素層のみを900〔μ凰〕の厚みで形成した
もの5個を洗浄した恢金属シリコン単結晶の引き上げに
供したところ、七のうち4個はり2ツクが人シ液洩れを
生じた。 く実施例3〉 実施例1の窒化珪素焼結板と同寸法の酸化アルミニウム
焼結機を用意した。次いで、実施例1と同様にして上記
酸化アルミニウム焼結&費面に緻密質非晶質窒化珪素層
を200〔μ肩〕の厚みで形成し、この窒化珪素層表面
に700〔μ罵〕の厚みで#ik−質結晶lX窒化珪素
層を形成した基材を20枚準備し、熱衝撃試験を行った
。熱衝撃試験は、各セラミックス基材を250(’O)
に急熱した後大気中に引き出すと言う急熱−急冷サイク
ルを50回行うもので、実施例1と同様rc@察する方
法を用いた。その結果を第2表に示した。なお、比較の
ために従来のCVD法による緻密賀紬晶質層を形成した
ものについても同様の試験を行い、その結果も併記した
。 纂   2   表 〈実施例4〉 実施例1の窒化珪素焼結板と同寸法の窒化硼素焼結板を
用意した。次いで、実施例1と一様にして上記電化硼素
焼結板表面に緻密質結晶質窒化珪素層を200〔μm〕
の厚みで形成し、この窒化珪素層表面に700〔μ藩〕
の厚みで緻密質結晶質窒化珪素層を形成した基材を20
枚fJP儂し、熱衝撃試験を行った。熱衝撃試験は、各
セラミックス基材を1000(”O)K、!熱した後大
気中に引き出すと言う急熱−急冷サイクルを50回行う
もので、実施例1と同様に観察する方法を用いた。その
結果を第3表に示し・た。 なお、比較のために従来のCVD法による緻密質結晶質
層を形成したものについても一様の試験を行い、その結
果も併記した。 第 3 懺 〈実施例5〉 実施例2と同様にしてtsI上や寸法外径80〔■〕、
内極70〔謳〕、深さ80CM〕、肉厚5〔■〕の焼結
カーボンルツボを用意した。 このルツボを加熱炉内に入fL1150(’O’)C昇
温し、塩化水車l〔シ〕十窒素99〔繁〕のガスを同炉
内に通遁しつつ5時間加熱する条件で高純贋処理した。 次いで、実施例2と一同様にCVD法を椰い、前記ルツ
ボの内壁面に緻密質非晶質窒化珪素1−を200〔μ烏
〕の厚みで形成し、さらにこの&面に緻密質結晶質窒化
珪素層を700〔μ諷〕の厚みで形成した。 かくして得られたルツボ5個を再度弗硝酸($11i比
で弗鐵:栖咳中1:3)で1分間洗浄した後、金属シリ
コン単結晶の引動上げに供したと仁ろ、iずれも好結果
を示した。一方、比軟ψIJとして上記と同様にルツボ
の内壁面KCVD法による緻密質非晶質窒化珪素層のみ
を900〔μ凰〕の厚みで形成したもの5個を、上記方
法によ)洗浄した後金属シリコン単結晶の引きよけに供
したとζろ、そのうち4個は耐蝕性が悪く液洩れを起こ
した。さらに、上記と同様にしてルツボの内嫌面に緻密
質結晶質窒化珪素層のみを900〔μ島〕の厚みで形成
したもの6個を洗浄した後金属シリコン単結晶の引動上
げに供したところ、七のうち4個はクラックが人や箪洩
れを生じた。 〈実施例6〉 実施例2とM様にして外径80〔■〕、内径70(II
B)、l1ilさat O(III)、肉厚5〔■〕の
石英ルツボを用意した◎このルツボを加熱炉内に入t’
L11SO(’O)K外電し、塩化本fil〔う〕◆−
素99〔う〕のガスを同炉内に通流し996時間加熱す
る条件で高純度処塩した0次いで、実施例2と一様KC
VD法を用い、曽配ルツボO内壁向に緻密質非晶質電化
i!素層を200(x鵬〕の厚みで形成し、さらにこO
狭山に緻密質結晶質窒化珪素層を700〔#+1110
厚みで形成した。 かくして得られたルツボ5IIを再阪弗硝酸(容積比で
弗#t:硝鐵中1=3)で1分間洗浄した後、金属シリ
コン単結晶0!H上けに供したとξろ、−ずれも好結果
を示した。一方、比lIR例として上記と同様にルツボ
の内壁面K CVD法による緻密質非晶質窒化珪素層の
みを900〔声島〕の厚みで形成したもの5個を、上記
方法によJjfIF、浄した後金属シリ;ン単曽105
111上げに供したところ、そのうち4側は耐蝕性が悪
く箪洩れを起こした。名らに、上記と同様にしてルツボ
の内11thiK緻密質結晶質窒化珪素層のみを9Go
Cμ農〕の厚みで形成したもO!s個を洗紗した後金属
シリコン単結晶の引き上げに供したところ、そのうち4
個はクラックが入p献洩れを生じた。 なお、本発明は上述した各11v施例に限定されるもの
ではなく、その豪旨を逸脱しない範囲で、極々変形して
実施することかできる。例えは、前記セラ建ツクスとし
ては、実施例で用いたもの以外Kil化アルixウム、
2酸化珪素、或いは酸化ジルコニウム等の焼結体を用い
てもよい。 また、窒化珪素層を形成する手段は必ずしもCVD法F
C@るものではなく、最初に非晶質のものを、その後結
晶質のものをコーティングできる方法でおればよい。さ
らに、加熱処理時の温度や処理時間等は、仕様に応じて
適宜定めればよiのは勿論のことである。 4、 i!u m O@本な説明 第1図乃至第3図はそれぞれ本鈍明の一実施例方法に係
わる電化珪”素被棲ゼン建ツクス基材の製造工種を示す
斜視図である。 1・・・窒化珪素焼結板(セラミッタス)、!1.。 出願人代理人 弁理士 鈴  江  武  彦第1図 第2図 第3図
[0], it can be produced relatively easily and easily, and has excellent heat shock resistance and chemical stability. High hardness, A
- Since it has excellent properties such as good insulation properties, it is widely used in gas transporting vibrators, crucibles for semiconductor baths, containers for crystal growth, and high-temperature mechanical parts. Generally, silicon nitride molded bodies are manufactured by the methods shown in (1) and (2) below. (1) MgO1A in electrified silicon (steN4) powder
JL Os + G A few sintering aids such as tOH
Blend - under normal pressure or pressurized atmosphere, 1700 to 20
Q sintered at 1aLM of 00 ("O) or filled with the above composition into the wrinkles of graphite, pressure 200-400
(&, 9/cd), 1700 ~ tsoo ('O'l). , hydrogen and ammonia are heat-treated in a mixture of nitrogen, hydrogen, and 01 gas at a temperature of about 1400 ('O)'' to nitride the metallic silicon of the molded body (reactive sintering method). The silicon nitride molded body obtained by method 1 has 3 ゜ of the sintering aid on each side as an impurity as described above, so it cannot be used as a high-purity container in an S-type container, such as a crucible for melting germanium or silicon semiconductors. In addition, the silicon nitride molded body obtained by the second method has a relative wj degree < m-density &3.1811
It has a porous structure with a low phase and sealing wax) of 85 to 60 [u], making it unsuitable for applications that require high density, such as corrosive gas transport pipes in crucibles for molten metal.
Ru. In addition, in order to remove impurities from a silicon nitride molded body, a purity treatment is usually performed in which the molded body is cleaned with hydrogen chloride, chlorine, etc. perpendicular to the III axis using a gas or wet method.
In this case, in order to perform high-purity treatment to the inside of the molded body, it is essential that the molded body has 411 pores. Therefore, the high purity of the material obtained by the first method is uniform. Therefore, in order to solve the above-mentioned problems and obtain an electrified silicon molded tube that retains the original characteristics of electrified silicon, a method has been proposed in which the surface of the ceramic is covered with a dense silicon nitride layer. In this case, the silicon nitride Jllri, 800~
A 3-component mixed gas of 1 bulk tetrachloride (St (J4), or silicon hydride (sta4), 2 hydrogen, and ammonia) was brought into contact with the surface of the porous valued silicon molded body heated to a temperature of 1400 ('O). The dense silicon nitride layer thus obtained is formed by a chemical vapor deposition method (CVD method) in which Sl.
It does not contain any impurities and is extremely thin. However, this type of method has the following drawbacks. That is, when the pre-articulated W negative silicon layer is formed from the α- or β-melon crystal phase, the f! The bonding force between the surface and the silicon nitride layer is weak,
As a result, there is a risk that the dense silicon nitride layer may peel off from the ceramic lI surface.In addition, if the formed dense silicon nitride layer is amorphous, the bonding force with the ceramic lI surface is strong. However, when the material is put into practical use, problems arise.For example, when used as a crucible for melting silicon semiconductors, the densified atomized silicon is corroded by the silicon melt, and the mechanical strength of the crucible deteriorates. [Objective of the Invention] The object of the present invention is to strengthen the bonding force between the dense silicon nitride layer and the Cefix surface when producing a ceramic base material coated with silicon nitride. It is an object of the present invention to provide a method for producing a ceramic base material coated with nitrogen nitride, which has excellent corrosion resistance and improved corrosion resistance. [Summary of the Invention] This invention produces a silicon nitride value-reduced ceramic base material, and the surface of the ceramic has a density of 9! Coating with high quality, non-contaminated silicon nitride, for example, using the CVD method, coating the ceramics with high quality amorphous silicon nitride at a temperature of 1000 to 1200 ('0) in a non-containing atmosphere containing ViIg. After removing the thin film, place III on the cough thin film! L-density negative Shao crystal negative silicon nitride coating, such as the above and lI! This is a method in which a thin film of dense crystalline silicon nitride is formed on the silicon nitride thin film at a temperature of 1200 to 1500 C''0) using IJ's CVD method. However, you can translate it appropriately depending on the purpose. In general, electrified silicon, aluminum nitride, silicon dispersion, aluminum oxide, zirconium oxide, carbon, sintered body of electrified element, etc., or quartz W The various sintered bodies mentioned above are preferably made of glass or the like, but the various sintered bodies mentioned above are not necessarily dense bodies, and may be formed from porous bodies.In addition, in the CVD method, the above-mentioned ceramic substrates are placed in a closed reactor. The next layer is stored, and the ceramic is heated to 1000 to 1200 ('O
'3, and then silicon tetrachloride or water volumized silicon,
Reactant gas containing nitrogen and ammonia
As a result, 51 mN4 is generated as a reaction product, and this S 1 s N4 is ceramic #! The heat treatment f! degree is xo
In oo('c)gh, the reaction is rapid and does not overfill, and 12
If it exceeds 00 ("O), crystalline silicon nitride will be formed and the bonding force with ceramics will be weakened. The thickness of the amorphous silicon nitride to be formed is not particularly limited, but it is between 1000 and 10 μm. Next, the ceramic is heated to 1 degree in the reaction vessel.
200-1500 [℃], preferably 1300-145
The temperature is raised to a range of 0 ('O), and the above reaction gas is introduced. Due to this, 811N4 is produced as an anti-46 product, and this 5isNa permeates the ceramic surface to form a crystalline silicon nitride layer. Here, the sword Ω heat treatment once is 120
0] or less, Ti amorphous silica is formed, leading to deterioration of corrosion resistance. Furthermore, the thermal expansion after heating is 1500 ('O)
When bonito is cooked, the whiskers are suppressed by the formation of vertical beams of small crystals in the six-dimensional structure. Causes deterioration. [Effects of the Invention] According to the present invention, dense amorphous IX is formed on the surface of ceramics.
Since a silicon nitride layer is formed, the bonding force between the silicon nitride layer and the seven foxes is sufficiently strong.Furthermore, a dense crystalline silicon layer is formed on the surface of the electrified silicon layer. So,
The bonding force between each silicon nitride layer is extremely large, and this makes it possible to sufficiently increase the bonding force between the dense noble crystal noble silicon nitride layer and the ceramic. Therefore, there is no risk of peeling between the ceramic and each of the silicon nitride layers, and the heat attack resistance can be improved. Moreover, the entire table Ifi is 17 itv! Since it becomes a crystalline silicon nitride layer, it has effects such as improved corrosion resistance. [Embodiments of the Invention] Hereinafter, the first to sixth embodiments that apply the present invention 1 will be explained. =3
A sintered silicon nitride plate (ceramics) 1 with a diameter of 0 (m) and a height D = 6 [■] was prepared. A smooth lead plate (not shown) was pressed onto one side of the sintered silicon nitride plate 10. , CVD these
It was placed in a reactor. Then hydrogenation ii bulk, ammonia and nitrogen 3ji! once at 1150(1))! Separate reaction gas (volume ratio of silica hydride lA = ammonia dielectric volume =
3:4:8) was uniformly flowed into the reactor for 60 minutes. As a result, the WM graphite plate of the silicon nitride sintered plate 1 is not pressure-welded. []K% As shown in FIG. 2, a dense silicon nitride layer 2 with a thickness of about 1 f) was formed. Next, at a temperature of 1350 °0, the three-component yarn reaction gas was passed through at the same volume ratio for 6 hours.
As shown in the figure, about 700 [μm] on the first silicon nitride layer 2.
An island 2 of silicon nitride'lA layer 3 having a thickness of 2 was formed. Fitting surface of the thus obtained hardened silicon-covered ceramic base material
Elemental analysis of the -5iL portion by a well-known method revealed that S
Furthermore, X-leg diffraction confirmed that it was α-type, that is, the silicon nitride layer 3 of ag2 was crystalline. In addition, in the first half of the process, phase fi-j le 1inl 150 ('O)
When K off CVD was performed separately and the formed dense part was subjected to elemental analysis, it was confirmed that it was Sl and N4. Furthermore, when this nt-x m diffraction was performed, no diffraction line of the crystal phase was observed.
was confirmed to be amorphous. Next, 50 sheets of silicon nitride laminated horizontal ceramic substrates prepared by the method described above were prepared, and a 0 thermal shock 1c test was performed in which each molded body was rapidly heated to 1000 ('0) K. After that, the rapid heating-quick cooling cycle is carried out for 5 times.
This is done 0 times, and at this time, the dense part (silicon nitride layer 2.
3) A method of fixing damage and peeling at the interface between ceramics 1 and ceramics 1 was used. The results are shown in the first diagram. For comparison, the gvB crystalline layer formed by the conventional CVD method also showed 1W1.
A similar test was conducted and the results are also listed. Table 1 From this table as well, the characteristic effects of the example base materials are clear. <Example 2> Baked in the same manner as in Example 1) with outer diameter of 80 [simplified],
A burnt MN silica crucible with an inner diameter of 70°, a depth of SO (simple), and a wall thickness of 5° was prepared. This crucible was placed in a heating furnace and heated to 1150° (O). Chlorinated wood 1 (%) + m volume 99 [%] of gas was properly placed in the same furnace and treated under the conditions of heating for 5 hours.Next, using the CVD method in the same manner as in Example 1, A dense amorphous electrified silicon layer with a thickness of 200 μm was formed on the inner wall surface of the crucible, and a dense crystalline silicon nitride layer was further formed with a thickness of 700 μm on the li! surface. The thus obtained crucible 51- was washed again with hydrofluoric acid (1:3 in volume ratio of hydrofluoric acid:@m) for 1 minute and used to improve the color of a metallic silicon single crystal, with good results in both cases. On the other hand, as a comparative example, one of the crucibles was
On one side, only 9 layers of nearly dense amorphous silicon are formed using the CVD method.
When 5 pieces formed with a thickness of 0.00 [Kishuma] were cleaned using the above method and then subjected to rice pulling for Kinkei silicon single crystals, 4 of them leaked due to poor corrosion resistance. . Furthermore, when 5 pieces of a crucible in which only a dense crystalline silicon nitride layer was formed to a thickness of 900 μm on the inner surface of the crucible in the same manner as above were used for pulling a cleaned metal silicon single crystal. Four of the seven beams and two leaked fluid. Example 3 An aluminum oxide sintering machine having the same dimensions as the silicon nitride sintered plate of Example 1 was prepared. Next, in the same manner as in Example 1, a dense amorphous silicon nitride layer with a thickness of 200 μm was formed on the aluminum oxide sintering process, and a layer of 700 μm thick was formed on the surface of this silicon nitride layer. A thermal shock test was conducted on 20 substrates each having a #ik-quality crystalline IX silicon nitride layer formed thereon. The thermal shock test was conducted on each ceramic substrate at 250 ('O)
A rapid heating-quenching cycle was performed 50 times, in which the sample was rapidly heated to a temperature of 100% and then taken out into the atmosphere, using the same rc@ detection method as in Example 1. The results are shown in Table 2. For comparison, a similar test was conducted on a sample in which a dense crystalline layer was formed by the conventional CVD method, and the results are also shown. Summary 2 Table <Example 4> A boron nitride sintered plate having the same dimensions as the silicon nitride sintered plate of Example 1 was prepared. Next, in the same manner as in Example 1, a dense crystalline silicon nitride layer of 200 [μm] was formed on the surface of the electrified boron sintered plate.
700 μm on the surface of this silicon nitride layer.
A base material on which a dense crystalline silicon nitride layer was formed with a thickness of 20
I conducted a thermal shock test on the sheet fJP. The thermal shock test involved heating each ceramic substrate to 1000 (O)K and then performing a rapid heating-quenching cycle 50 times, using the same observation method as in Example 1. The results are shown in Table 3.For comparison, a uniform test was also conducted on a material in which a dense crystalline layer was formed by the conventional CVD method, and the results are also listed. Print <Example 5> Same as Example 2, on tsI and outside diameter 80 [■],
A sintered carbon crucible with an inner pole of 70 cm, a depth of 80 cm, and a wall thickness of 5 cm was prepared. This crucible was placed in a heating furnace and heated to fL1150 ('O')C, and the gas of chloride water turbine 1 [shi] 10 nitrogen 99 [many] was passed into the furnace and heated for 5 hours to achieve high purity. The counterfeit was processed. Next, using the same CVD method as in Example 2, dense amorphous silicon nitride 1- is formed on the inner wall surface of the crucible to a thickness of 200 μm, and dense crystals are further formed on the & surface. A silicon nitride layer with a thickness of 700 μm was formed. Five of the crucibles thus obtained were washed again with fluoronitric acid (1:3 in the ratio of 1:3) for 1 minute, and then used for pulling the metal silicon single crystal. It showed good results. On the other hand, five specific soft ψIJs were prepared by forming only a dense amorphous silicon nitride layer with a thickness of 900 μm on the inner wall surface of the crucible by the KCVD method in the same manner as above, and after cleaning them by the above method). When used to protect metal silicon single crystals, four of them had poor corrosion resistance and leaked. Furthermore, six pieces of dense crystalline silicon nitride layers with a thickness of 900 [μ islands] formed on the inner surface of the crucible in the same manner as above were cleaned and then used for pulling up metal silicon single crystals. In four out of seven cases, cracks caused people to leak. <Example 6> Example 2 and Mr. M have an outer diameter of 80 [■] and an inner diameter of 70 (II
B) A quartz crucible with a wall thickness of 5 [■] was prepared. ◎Put this crucible into a heating furnace.
L11SO('O)K was sent out and the chloride book fil [u]◆-
Then, Example 2 and uniform KC
Using the VD method, dense amorphous electrification i! A base layer is formed with a thickness of 200 (x), and further
700 [#+1110] dense crystalline silicon nitride layer on Sayama
It was formed with a thickness. After washing the thus obtained crucible 5II with resaka fluorinitrate (volume ratio 弗#t: nitratetsuchu 1 = 3) for 1 minute, metal silicon single crystal 0! Good results were obtained for H, ξ, -. On the other hand, as a comparative IR example, five crucibles in which only a dense amorphous silicon nitride layer was formed by the CVD method to a thickness of 900 [Koejima] on the inner wall surface of the crucible were subjected to JjfIF and cleaning by the above method. After that, metal silicon 105
When subjected to 111 tests, four of them had poor corrosion resistance and leaked. In the same manner as above, only the 11thiK dense crystalline silicon nitride layer in the crucible was heated to 9Go.
It was formed with a thickness of Cμ! When s pieces were washed and subjected to pulling of metal silicon single crystals, 4 of them were
In some cases, cracks occurred and leakage occurred. It should be noted that the present invention is not limited to the above-mentioned 11V embodiments, but can be implemented with considerable modification without departing from the spirit of the invention. For example, as the ceramic structure, other than those used in the examples, oxidized aluminum,
A sintered body of silicon dioxide, zirconium oxide, or the like may also be used. Furthermore, the means for forming the silicon nitride layer is not necessarily the CVD method.
Rather than coating the material with C@, it is sufficient to use a method that allows coating the amorphous material first and then the crystalline material. Furthermore, it goes without saying that the temperature, treatment time, etc. during the heat treatment may be determined as appropriate depending on the specifications. 4.i! Figures 1 to 3 are perspective views showing the manufacturing process of an electrified silicone-coated base material according to an embodiment of the present invention. 1.・Silicon nitride sintered plate (Ceramittas), !1. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)  セラミックスの表面に緻w質で非晶質の電化
珪素をコーティングしたのち、上記非晶質の窒化珪素の
表面に緻密質で結晶質の電化珪素をコーティングするこ
とを特徴とする窒化珪素被榎セラミックス基材の製造方
法。
(1) A silicon nitride characterized in that the surface of the ceramic is coated with dense, amorphous electrified silicon, and then the surface of the amorphous silicon nitride is coated with dense, crystalline electrified silicon. A method for producing a ceramic base material.
(2)前記各窒化珪素をコーティングする手段として、
CVD法を用いたことを特徴とする特許請求の範囲第(
1)項記載の窒化珪素被後セラミツタス基材の製造方法
(2) As a means for coating each silicon nitride,
Claim No. 1, characterized in that the CVD method is used (
1) A method for manufacturing a silicon nitride-coated ceramitus base material.
(3)前記非晶質の窒化珪素をコーティングする際の処
理温度を1000〜1200(’O)に、前記結晶質の
窒化珪素をコーティングする際の処mii*を1200
〜1500(’0)にそれぞれ設定したことを特徴とす
る’WffM求の範囲第(1)項又は第(2)項記載の
窒1ヒ珪素普憤セラミツゲス基材の製造方法。
(3) The treatment temperature when coating the amorphous silicon nitride is 1000 to 1200 ('O), and the treatment mii* when coating the crystalline silicon nitride is 1200
1500 ('0), respectively. A method for producing a nitride-1-arsenic fused ceramic base material as described in item (1) or item (2) of the desired range of 'WffM.
JP4208882A 1982-03-17 1982-03-17 Manufacture of silicon nitride-clad ceramic base material Pending JPS58161981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4208882A JPS58161981A (en) 1982-03-17 1982-03-17 Manufacture of silicon nitride-clad ceramic base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4208882A JPS58161981A (en) 1982-03-17 1982-03-17 Manufacture of silicon nitride-clad ceramic base material

Publications (1)

Publication Number Publication Date
JPS58161981A true JPS58161981A (en) 1983-09-26

Family

ID=12626262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4208882A Pending JPS58161981A (en) 1982-03-17 1982-03-17 Manufacture of silicon nitride-clad ceramic base material

Country Status (1)

Country Link
JP (1) JPS58161981A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295291A (en) * 1985-06-24 1986-12-26 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Method of flatening ceramic substrate surface
JPH02243579A (en) * 1989-03-15 1990-09-27 Mitsui Eng & Shipbuild Co Ltd Formation of cvd-silicon nitride coating film on sintered material of silicon nitride
US5489422A (en) * 1992-03-09 1996-02-06 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh Process for coating carbon fiber reinforced carbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295291A (en) * 1985-06-24 1986-12-26 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Method of flatening ceramic substrate surface
JPH0513110B2 (en) * 1985-06-24 1993-02-19 Intaanashonaru Bijinesu Mashiinzu Corp
JPH02243579A (en) * 1989-03-15 1990-09-27 Mitsui Eng & Shipbuild Co Ltd Formation of cvd-silicon nitride coating film on sintered material of silicon nitride
US5489422A (en) * 1992-03-09 1996-02-06 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh Process for coating carbon fiber reinforced carbon

Similar Documents

Publication Publication Date Title
KR101213928B1 (en) Crucible for the crystallization of silicon
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
UA81278C2 (en) Vessel for holding a silicon and method for its making
JPS63139059A (en) Material resistant to metal and salt melt, manufacture and use
US3385723A (en) Carbon article coated with beta silicon carbide
JP2003268529A (en) MoSi2-Si3N4 COMPOSITE COATING LAYER AND MANUFACTURING METHOD
JPS58161981A (en) Manufacture of silicon nitride-clad ceramic base material
JPS61236604A (en) Synthesizing method for beta-si3n4
JP2009274905A (en) Crucible for melting silicon
JPH031271B2 (en)
JPS6236089A (en) Manufacture of ceramic product
TW200538584A (en) Corrosion-resistant member and process of producing the same
JPH01133916A (en) Production of high-density graphite film
JPH1067584A (en) Reaction vessel
JPH04168277A (en) Thin film forming device and formation of thin film
JP2002356340A (en) Quarts glass having plasma corrosion resistance, production method therefor and member and apparatus using the same
JPS62261120A (en) Structural material with sic film
JPH01145400A (en) Jig for heating silicon wafer
JPS58115011A (en) Amorphous silicone nitride having high hardnes and high purity and its preparation
JP2776713B2 (en) Mixed cleaning gas composition
JPH0154432B2 (en)
JPS62259430A (en) Structural material with sic film
JPS61219787A (en) Crucible for producing single crystal for high-purity semiconductor
JPH0532462A (en) Production of joint-formed silicon carbide formed article
JPS61201768A (en) Ceramics-metal composite material having oxidation-resistant coating layer and its manufacture