EP0630421B1 - Apparatus for coating the surface of steel strip - Google Patents

Apparatus for coating the surface of steel strip Download PDF

Info

Publication number
EP0630421B1
EP0630421B1 EP93905164A EP93905164A EP0630421B1 EP 0630421 B1 EP0630421 B1 EP 0630421B1 EP 93905164 A EP93905164 A EP 93905164A EP 93905164 A EP93905164 A EP 93905164A EP 0630421 B1 EP0630421 B1 EP 0630421B1
Authority
EP
European Patent Office
Prior art keywords
container
coating
coating material
channel
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93905164A
Other languages
German (de)
French (fr)
Other versions
EP0630421A1 (en
Inventor
Vladimir A. Paramonov
Anatolij I. Tychinin
Anatolij I. Moroz
Boris L. Birger
Klaus Frommann
Werner Haupt
Walter Ottersbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
SKB MGD INSTITUTE OF PHYSICS
Ip Bardin Central Research Institute For Iron And Steel Industry
Original Assignee
Mannesmann AG
SKB MGD INSTITUTE OF PHYSICS
Ip Bardin Central Research Institute For Iron And Steel Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6454312&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0630421(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mannesmann AG, SKB MGD INSTITUTE OF PHYSICS, Ip Bardin Central Research Institute For Iron And Steel Industry filed Critical Mannesmann AG
Publication of EP0630421A1 publication Critical patent/EP0630421A1/en
Application granted granted Critical
Publication of EP0630421B1 publication Critical patent/EP0630421B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0036Crucibles
    • C23C2/00361Crucibles characterised by structures including means for immersing or extracting the substrate through confining wall area
    • C23C2/00362Details related to seals, e.g. magnetic means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes

Definitions

  • the invention relates to a device for coating the surface of steel strip with a metallic coating, in which the material is passed without a reversal of direction through a container which holds the molten coating material and which has a passage channel enclosed by an electric field below the molten pool level, in the opening region of which in the opening region Melt generates an electromagnetic force of equal or greater magnitude proportional to the product of the cross-sectional area of the inlet opening and the metallostatic pressure, vectorially opposed to the metallostatic pressure, and in which the length of stay of the strip in the melt can be controlled independently of the throughput speed of the strip.
  • Plants for coating the surface of strip material are known as so-called hot-dip galvanizing or dip-coating coatings, in which the strip to be coated is introduced obliquely under protective gas from above into the container holding the coating medium and is deflected around a deflection roller within the weld pool.
  • the diverted good usually leaves the molten bath container in a vertical direction by means of suitable devices, where the coating material, for example zinc, adhering to the strip surface is adjusted and evened out in thickness.
  • Such devices e.g. B. in the form of nozzle knives, hold back excess coating material, so that a uniformly thick smooth surface is generated.
  • the known systems have disadvantages.
  • the belt deflection in the melted coating material can lead to unstable belt running and slipping of the belt on the roll and impair the quality of the coated belt.
  • the roller journals and bearings stored in the bathroom wear out quickly and have to be changed frequently, which always leads to downtimes of the entire system.
  • the wear of the pins and bearings can lead to vibrations of the belt and to a change in the distance between the belt and stripping nozzles, which adversely affects the uniformity of the coating over the belt length and width.
  • the deflection of the belt within the container requires a container with a large volume with a correspondingly large amount of coating material. On the one hand, this makes it very difficult to control the dwell time of the strip in the bath, and on the other hand, filling and emptying the container to change the coating material is very time-consuming.
  • Plants for coating strand-like material are also known, in which the material is passed through the molten coating material in a horizontal or vertical direction (FR-A 22 29 782 and EP-B1-00 60 225).
  • Systems of this type in which the strand-like material to be coated is passed through or into the molten coating material in areas below the surface of the molten bath, require corresponding seals which prevent the coating material from leaking out of the coating container.
  • the device described there consists of a container filled with molten coating material with a bottom through opening for the material to be coated, which is sealed by an electromagnetic pump.
  • an immersion body immersed in the molten coating material which also interacts with an electromagnetic pump, the effective height of the molten coating material is regulated and thus the contact time of the continuous strand-like material with the molten coating material is set.
  • the electromagnetic pump immersed in the melt with the immersion body is intended to prevent contact of the surface of the strand-like material to be coated with heavily soiled oxides. Even with short contact with the melt, a qualitatively perfect coating was achieved.
  • the contact time, the intensity of the contact and the temperature of the material to be coated and the molten coating material also determine the formation and the thickness of the intermetallic intermediate layer formed. This is of great importance for the layer adhesion and the layer quality, especially the formability of the coating.
  • the known institutions do not take this into account. Thus, it is not possible with prior art systems to influence the formation of the intermediate layer by means of short-term controlled temperatures of the melt and the material to be coated and short-term changes in the contact times of the material to be coated with the molten coating material.
  • the known systems are very expensive to build, with the melt having relatively high levels of contamination by oxides, by iron or in the case of zinc by light and heavy hard zinc, which affect the coating quality.
  • the present invention is based on the object of improving the conventional coil coating process in order to specifically achieve favorable intermediate layers for good adhesion and good formability of the coating.
  • the surface quality, the layer thickness tolerances and the mechanical properties of the material to be coated should be improved and the contamination of the melt by oxides, iron and hard zinc should be minimized.
  • the coating material to be applied should adhere firmly even to non-optimal surfaces of the steel strip. A significant reduction in energy consumption, production costs, maintenance costs and investment costs is just as possible as a quick change of the coating material.
  • a device for coating continuously cast material e.g. Copper wire is known, the material being passed vertically from below through a coating container without reversing the direction.
  • the coating container is connected to a melting furnace via a connecting pipe.
  • a diving bell is provided in the melting furnace, by means of which the melting bath level in the melting furnace can be adjusted. With this immersion bell, the molten pool level in the coating container can also be adjusted indirectly.
  • a device according to the invention is proposed, both of which, during the passage of the strand-like material, the molten coating material is held in a movement directed against the surface of the strand-like material and is circulated with the exclusion of atmospheric oxygen. It has been shown that particularly good coating results can be achieved if, according to the proposal of the invention, the molten coating material is kept in motion in the contact area with the surface of the material to be coated, by circulating the coating material in a closed system without contact of the melt with the Oxygen in the air is always fed fresh coating material to the belt. The bath movement also minimizes the size of the hard zinc particles.
  • An advantage of the device according to the invention is that the temperatures of the molten coating material and / or the strand-like material can be set at short notice. In this way, the optimal conditions for forming the intermediate layer and for adhering the coating material can be set as required.
  • the molten coating material is cleaned of impurities during the circulation. In this way it can be ensured that the impurities, which deteriorate the coating quality, do not come into contact with the material to be coated in the first place.
  • the device is characterized in that a pre-melting container is assigned to the coating container holding the molten coating material, between which and the coating container the melt can be circulated with the exclusion of atmospheric oxygen and the volume of the coating container is many times smaller than that of the pre-melting container, preferably in a ratio of 1:10 .
  • Such a system of separate coating container and pre-melting container makes it possible to always have fresh, contaminants such.
  • B. hard zinc to bring free melt through a suitable distribution system as directly as possible to the surface of the material to be coated, it being possible via the feed paths and with the relatively small coating container to regulate the temperature of the melt briefly within a narrow tolerance range.
  • the pre-melting container is suitable for melting the coating material in the form of blocks; in the small volume coating container the level of the molten coating material can be raised and lowered very quickly by pumps.
  • the premelting container is arranged laterally below the coating container.
  • the coating container be divided into two, an inner container with the through-opening for the strand-like material and an outer container at least partially surrounding the inner container, the container walls of which are higher than those of the inner container, the outer container and the Inner containers are each separately connected to the pre-melting container via supply and discharge channels for the molten coating material.
  • An adjustment of the liquid column of the molten coating material can be carried out effectively in that the known immersion body, which surrounds the strand-like material with an electromagnetic seal, can be raised and lowered in the inner container. With the aid of this immersion body, the molten coating material is displaced to the desired bath level, the electromagnetic seal keeping the section of the strand-like material to be coated that passes through the immersion body free of coating material.
  • the coating material displaced by the immersion body runs over the container walls of the inner container into the outer container and from there back to the pre-melting container.
  • the pre-smear container itself is divided into an open and a closed container part, the feed channel to the inner container of the treatment container being connected to the closed container part and the discharge channel of the outer container being connected to the open container part of the pre-melting container.
  • a magnetic pump is provided in the area of the closed container part of the premelting container, which surrounds the feed channel. With the help of this magnetic pump, which can be raised and lowered in the longitudinal direction of the feed channel, the molten material can be removed Feed the coating material from the closed container part of the pre-melting container into the inner container of the treatment container.
  • the open container part of the premelting container is assigned a loading device with which the coating material, for example in block form, can be introduced into the melt, so that the supply of coating material can always be supplemented.
  • a return stop for the molten coating material is provided below the through-opening provided for the strand-like material within the channel surrounding the strand-like material, between which and the through-opening a discharge channel leads to the open container part of the pre-melting container is.
  • This backstop is provided so that in the event of leakages or the need to quickly drain the treatment container, no melt can get into the feed part of the strand-like material to be coated. Melt that penetrates the through opening can be collected at the backstop and returned to the storage container via the discharge channel.
  • the backstop can be closed mechanically, preferably by a slide closure, the slide plate of which is designed as a scissor knife for severing the strand-like material.
  • the backstop designed in this way can be used to shear off the belt and at the same time close the passage opening.
  • the direction of flow of the strand-like material to be coated can be from bottom to top, but also from top to bottom.
  • 1 denotes the coating container in which the coating material (melt 2) made of liquid zinc is received.
  • the coating container 1 has a through channel 3 on the bottom, through which the band 4 can be passed vertically from bottom to top through the coating material.
  • the band 4 is coming out of the furnace (not shown), through the so-called furnace trunk by means of the rollers 6, 7, 8, 9 and 10.
  • the furnace trunk is operated under protective gas, ie it is sealed off from the atmospheric oxygen between the furnace and the coating container 1.
  • the rollers 9 and 10 ensure that the tape 4 is guided through the slot-shaped through-channel 3 into the treatment container 1 without contact.
  • the channel 3 itself is surrounded by a coil 11, in which an electromagnetic field is generated, which in turn generates an electromagnetic force that prevents the melt 2 from flowing out of the container 1.
  • the pre-melting container 12 In addition to the coating container, the pre-melting container 12 according to the invention is set up, which holds a much larger volume of liquid zinc than the coating container 1.
  • the pre-melting container is connected to the coating container 1 via feed channels 13 and discharge channels 14; the liquid metal is pumped from the prelubrication container 12 into the coating container 1 by means of the pump 15.
  • the supply and discharge lines are provided with heating devices 16 with which the temperature of the melt 2 can be adjusted.
  • a conventional nozzle knife 17 is arranged above the coating container 1, which ensures a uniform coating thickness of the zinc material, but is not the subject of the present invention.
  • the coating container 1 in which the zinc bath 2 is arranged can be seen in an enlarged illustration in FIG.
  • the lower through opening 3 is electromagnetically sealed, as can be seen at 11.
  • the belt is introduced through the furnace trunk 5 into the coating container 1 under protective gas, the rollers 7 and 8 being designed as S-rollers for applying the necessary tension to the belt, which rollers are also heated and / or cooled.
  • the channel 3 in the container 1 can be closed by means of a combined scissor / slide system 18 after the band 4 has been cut.
  • the slider 19 is provided with a scissor knife 20 which can be moved with the slider 19 by a piston-cylinder unit 21 (in the plane of the drawing from right to left), cuts the band 4 and at the same time closes the channel 3.
  • the guide roller 9 arranged thereon is moved to the side, so that the belt finds an abutment on the edge 22 of the opening 3.
  • FIG. 3 the same parts are labeled identically.
  • only one heated or cooled deflection roller 7 is provided.
  • the guide roller 9 is displaceable transversely to the belt in order to deflect the belt 4 laterally out of the pass plane through the channel 3.
  • This has the meaning that the zinc from the coating container 1 can run undisturbed via the collecting channel 23 arranged below the channel 3 when the coating container 1 is to be emptied.
  • the liquid zinc can be returned to the premelting boiler 12 via the outlet 24 by means of suitable pumps.
  • the closure unit is provided in combination with the scissors for shearing off the band, which can be actuated in emergencies.
  • both the coating container 1 and the pre-melting container can be heated inductively or by electrical resistance heating, as is indicated at 24 and 25.
  • FIG. 1 Another particularly favorable embodiment of the device according to the invention is shown in FIG.
  • the coating container is designated 1 and the pre-melting container 12.
  • the coating container 1 is divided into an inner container 25 and an outer container 26, the container wall 27 of the inner container 25 being lower than the outer container wall 28 of the outer container 26.
  • the through channel 3 for the band 4 is provided, which is sealed in the manner already described by the coil 11 of the electromagnetic seal.
  • the feed channels 29 are connected, by means of which the zinc is pumped out of the prelubrication container 12 into the inner container 25 of the coating container 1, as will be described in more detail later.
  • the outer container 26 is also connected in the bottom part to discharge channels 30, which are also guided into the pre-smear container 12.
  • an immersion body 31 can be lowered and raised in the inner container 25 of the coating container 1 by means of a spindle drive 33, inside which a magnet-hydrodynamic seal encompassing the band 4 is provided.
  • the immersion body 31 displaces the coating material 2 in the inner container 25 at the desired height h, the magnetic hydrodynamic seal 34 preventing the coating material 2 from penetrating into the immersion body 34.
  • the electromagnetic pump 35 is used to convey the coating material 2 from the pre-greasing container 12. With it, the coating material 2 is conveyed through the feed channel 29 directly into the inner container 25, two feed channels 29 advantageously being arranged on both sides of the belt in such a way that a uniform flow of the coating material 2 on both sides of the hinge. Excess coating material is pumped over the container wall 27 of the inner container 25 after the wetting of the belt surface and runs into the outer container 26. From there it passes back into the pre-lubricating container 12 via the drainage channels 30.
  • the pre-smear container 12 is also divided into two container parts, of which one container part 36 is closed and the other container part 37 is open at the top. Both container parts 36, 37 are separated from one another by a wall 38 which is open in the bottom region of the container.
  • the closed container part 36 is closed by a cup-shaped cover which dips into the covering material 2 and in which the electromagnetic pump 35 is arranged, which encompasses the feed channel 29.
  • the drain channel 30 opens into the open container part from the outer container 26.
  • the open-top container part allows the molten coating material 2 to be loaded with blocks 40 of solid coating material, which is supplied via a loading device 41.
  • the premelting container 12 can be heated inductively.
  • a backstop for molten coating material is provided below the feed-through opening 3, as indicated at 43, which could pass through the feed-through opening 3 in the event of leakages.
  • the backstop 43 is connected to a discharge duct 44, which in turn is connected to the discharge duct 30 from the outer container 26.
  • the inner container 25 is closed on the bottom by the magnethydrodynamic seal.
  • the magnetic field is directed downward so that no melt can penetrate into the immersion body.
  • the desired column of coating material in the inner container 25 can be set very easily and, above all, very quickly.
  • the intensive wetting of the strip surface with the melt allows the layer to be formed in the shortest possible time and enables the thickness of the intermetallic layer to be adjusted in a controlled manner.
  • the closed, airtight circulation system of the melt 2 and the belt 4 under protective gas excludes the contact of the melt with the atmospheric oxygen and thus reliably prevents oxidation. Since there are no deflecting agents and other metal parts in the weld pool, the formation of light and heavy hard zinc is reduced.
  • the pre-melting container 12 with its open part 37 and its closed part 38 acts with the partition 38 like a communicating tube and enables the continuous supply of block-shaped coating material for melting. Hard zinc contaminations of the melting surface can be removed in the open part 37 of the premelt container 12, penetration of the contaminants into the closed part 36 of the premelt container 12 is excluded.
  • the invention advantageously enables an optimal coating of strand-like material by means of a molten coating material in the shortest possible contact time with the best adhesive properties.
  • the thickness of the intermetallic layer can be easily regulated, and contamination of the melt by iron and oxides is largely avoided.
  • the energy expenditure for operating a system is considerably reduced and the quality of the coated material is improved. Downtimes of the system are considerably reduced due to the absence of wear parts (deflection rollers in the melt), so that the economy of the system increases significantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Glass Compositions (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Package Closures (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The invention is directed to a process and apparatus for coating the surface of elongated materials, in particular steel strips, with a metallic coating. The material is guided in one direction through a tank holding the molten coating material. The tank has a through-duct surrounded by an electric field below the surface of the molten bath. An electromagnetic force is generated in the region where the through-duct opens into the melt, which electromagnetic force is equal to or greater than the metallostatic pressure, directed oppositely thereto vectorially and quantitatively proportional to the product of the cross-sectional area of the inlet opening and the metallostatic pressure, and in which the dwell of the strip in the melt can be controlled independently of the rate of feed of the strip. The molten is constantly moved against the surface of the elongated material while the elongated material passes through it; and the molten material is circulated in a closed system, without contact to oxygen in the atmosphere.

Description

Die Erfindung betrifft eine Vorrichtung zum Beschichten der Oberfläche von Stahlband mit einem metallischen überzug, bei dem das Gut ohne Richtungsumkehr durch einen das geschmolzene Überzugsmaterial aufnehmenden Behälter hindurchgeführt wird, der unterhalb des Schmelzbadspiegels einen von einem elektrischen Feld umschlossenen Durchführskanal aufweist, in dessen öffnungsbereich in der Schmelze eine betragsmäßig dem Produkt aus der Querschnittfläche der Eintrittsöffnung und dem metallostatischen Druck proportionale, vektoriell dem metallostatischen Druck entgegengerichtete gleichgroße oder größere elektromagnetische Kraft erzeugt wird und bei dem die Verweildauer des Bandes in der Schmelze unabhängig von der Durchlaufgeschwindigkeit des Bandes steuerbar ist.The invention relates to a device for coating the surface of steel strip with a metallic coating, in which the material is passed without a reversal of direction through a container which holds the molten coating material and which has a passage channel enclosed by an electric field below the molten pool level, in the opening region of which in the opening region Melt generates an electromagnetic force of equal or greater magnitude proportional to the product of the cross-sectional area of the inlet opening and the metallostatic pressure, vectorially opposed to the metallostatic pressure, and in which the length of stay of the strip in the melt can be controlled independently of the throughput speed of the strip.

Es sind Anlagen zum Beschichten der Oberfläche von Bandmaterial als sogenannte Feuerverzinkungs- oder Tauchbeschichtungsantagen bekannt, bei denen das zu beschichtende Band, unter Schutzgas schräg von oben in den das Beschichtungsmedium aufnehmenden Behälter eingeführt und innerhalb des Schmelzbades um eine Umlenkrolle umgelenkt wird. Das umgelenkte Gut verläßt den Schmelzbadbehälter gewöhnlich in vertikaler Richtung durch geeignete Vorrichtungen, wo das an der Bandoberfläche anhaftende überzugsmaterial, beispielsweise Zink, in der Dicke eingestellt und vergleichmäßigt wird. Solche Vorrichtungen, z. B. in Form von Düsenmessern, halten überschüssiges Beschichtungsmaterial zurück, so daß eine gleichmäßig dicke glatte Oberfläche erzeugt wird.Plants for coating the surface of strip material are known as so-called hot-dip galvanizing or dip-coating coatings, in which the strip to be coated is introduced obliquely under protective gas from above into the container holding the coating medium and is deflected around a deflection roller within the weld pool. The diverted good usually leaves the molten bath container in a vertical direction by means of suitable devices, where the coating material, for example zinc, adhering to the strip surface is adjusted and evened out in thickness. Such devices, e.g. B. in the form of nozzle knives, hold back excess coating material, so that a uniformly thick smooth surface is generated.

Die bekannten Anlagen sind mit Nachteilen behaftet. Die Bandumlenkung im geschmolzenen Überzugsmaterial kann zu unruhigem Bandlauf und Rutschen des Bandes an der Rolle führen und die Qualität des beschichteten Bandes beeinträchtigen. Die im Bad gelagerten Rollenzapfen und Lager verschleißen schnell und müssen häufig gewechselt werden, was stets zu Stillstandszeiten der gesamten Anlage führt. Der Verschleiß der Zapfen und Lager kann zu Vibrationen des Bandes führen sowie zur Änderung des Abstandes zwischen Band und Abstreifdüsen, wodurch die Gleichmäßigkeit der Beschichtung über die Bandlänge und -breite nachteilig beeinflußt wird. Die Umlenkung des Bandes innerhalb des Behälters erfordert einen volumenmäßig großen Behälter mit entsprechend großer Menge an Überzugsmaterial. Das macht einerseits die Steuerung der Verweilzeit des Bandes im Bad sehr schwierig und andererseits das Füllen und Entleeren des Behälters zum Wechsel des Beschichtungsmaterials sehr zeitaufwendig.The known systems have disadvantages. The belt deflection in the melted coating material can lead to unstable belt running and slipping of the belt on the roll and impair the quality of the coated belt. The roller journals and bearings stored in the bathroom wear out quickly and have to be changed frequently, which always leads to downtimes of the entire system. The wear of the pins and bearings can lead to vibrations of the belt and to a change in the distance between the belt and stripping nozzles, which adversely affects the uniformity of the coating over the belt length and width. The deflection of the belt within the container requires a container with a large volume with a correspondingly large amount of coating material. On the one hand, this makes it very difficult to control the dwell time of the strip in the bath, and on the other hand, filling and emptying the container to change the coating material is very time-consuming.

Es sind auch Anlagen zum Beschichten von strangförmigem Gut bekannt, bei denen das Gut in horizontaler oder vertikaler Richtung durch das geschmolzene Überzugsmaterial hindurchgeführt wird (FR-A 22 29 782 und EP-B1-00 60 225). Solche Anlagen, bei denen das zu beschichtende strangförmige Gut durch bzw. in das schmelzflüssige Überzugsmaterial in Bereichen unterhalb der Schmelzbadoberfläche geführt wird, erfordern entsprechende Abdichtungen, die verhindern, daß das Überzugsmaterial aus dem Beschichtungsbehälter ausläuft.Plants for coating strand-like material are also known, in which the material is passed through the molten coating material in a horizontal or vertical direction (FR-A 22 29 782 and EP-B1-00 60 225). Systems of this type, in which the strand-like material to be coated is passed through or into the molten coating material in areas below the surface of the molten bath, require corresponding seals which prevent the coating material from leaking out of the coating container.

Ein Vorschlag zum Abdichten des Behandlungsbehälters bei in vertikaler Richtung von unten nach oben den Behälter durchlaufendem strangförmigen Gut ist dem sowjetischen Urheberschein Nr.: 960311 zu entnehmen. Die dort beschriebene Vorrichtung besteht aus einem mit schmelzflüssigen Überzugsmaterial gefüllten Behälter mit einer bodenseitigen Durchführungsöffnung für das zu beschichtende Gut, die durch eine Elektromagnetpumpe abgedichtet ist. Mit Hilfe eines in das schmelzflüssige Überzugsmaterial eintauchenden Tauchkörper, der gleichfalls mit einer Elektromagnetpumpe zusammenwirkt, wird die wirksame Höhe des schmelzförmigen Überzugsmaterials geregelt und damit die Kontaktzeit des durchlaufenden strangförmigen Gutes mit dem schmelzflüssigen Überzugsmaterial eingestellt. Die mit dem Tauchkörper in die Schmelze eingetauchte Elektromagnetpumpe soll den Kontakt der Oberfläche des zu beschichtenden strangförmigen Gutes mit stark verschmutzten Oxiden verhindern. Selbst bei kurzem Kontakt mit der Schmelze wurde eine qualitativ einwandfreie Beschichtung erreicht.A suggestion for sealing the treatment container in the case of strand-like material passing through the container in the vertical direction from bottom to top can be found in the Soviet copyright certificate no .: 960311. The device described there consists of a container filled with molten coating material with a bottom through opening for the material to be coated, which is sealed by an electromagnetic pump. With the help of an immersion body immersed in the molten coating material, which also interacts with an electromagnetic pump, the effective height of the molten coating material is regulated and thus the contact time of the continuous strand-like material with the molten coating material is set. The electromagnetic pump immersed in the melt with the immersion body is intended to prevent contact of the surface of the strand-like material to be coated with heavily soiled oxides. Even with short contact with the melt, a qualitatively perfect coating was achieved.

Die Kontaktdauer, die Intensität des Kontaktes und die Temperatur des zu beschichtenden Gutes und des schmelzflüssigen Überzugsmaterials bestimmen auch die Ausbildung und die Dicke der entstehenden intermetallischen Zwischenschicht. Diese ist für die Schichthaftung und die Schichtqualität, besonders die Umformbarkeit der Beschichtung von großer Bedeutung. Die bekannten Einrichtungen nehmen darauf keine Rücksicht. So ist es mit Rnlagen des Standes der Technik nicht möglich, die Bildung der Zwischenschicht durch kurzfristig geregelte Temperaturen von Schmelze und zu beschichtendem Gut und kurzfristige Veränderung der Kontaktzeiten des zu beschichtenden Gutes mit dem schmelzflüssigen Überzugsmaterial zu beeinflussen. Außerdem sind die bekannten Anlagen sehr bauaufwendig, wobei die Schmelze relativ hohe Verschmutzungen durch Oxide, durch Eisen oder im Fall von Zink durch leichtes und schweres Hartzink aufweisen kann, die die Beschichtungsqualität beeinträchtigen.The contact time, the intensity of the contact and the temperature of the material to be coated and the molten coating material also determine the formation and the thickness of the intermetallic intermediate layer formed. This is of great importance for the layer adhesion and the layer quality, especially the formability of the coating. The known institutions do not take this into account. Thus, it is not possible with prior art systems to influence the formation of the intermediate layer by means of short-term controlled temperatures of the melt and the material to be coated and short-term changes in the contact times of the material to be coated with the molten coating material. In addition, the known systems are very expensive to build, with the melt having relatively high levels of contamination by oxides, by iron or in the case of zinc by light and heavy hard zinc, which affect the coating quality.

Der vorliegenden Erfindung liegt ausgehend von den beschriebenen Nachteilen und Problemen des Standes der Technik die Aufgabe zugrunde, das herkömmliche Bandbeschichtungsverfahren zu verbessern, um gezielt günstige Zwischenschichten für ein gutes Anhaften nd eine gute Umformbarkeit der Beschichtung zu erreichen. Gleichzeitig sollen die Oberflächenqualität, die Schichtdickentoleranzen und die mechanischen Eigenschaften des zu beschichtenden Gutes verbessert sowie die Verunreinigung der Schmelze durch Oxide, Eisen und Hartzink minimiert werden. Dabei soll das aufzubringende Überzugsmaterial auch bei nicht optimalen Oberflächen des Stahlbandes fest haften. Eine erhebliche Reduzierung des Energieaufwandes, der Produktionskosten, der Instandhaltungskosten und der Investitionskosten ist ebenso möglich, wie ein schneller Wechsel des Beschichtungsmaterials.On the basis of the disadvantages and problems of the prior art described, the present invention is based on the object of improving the conventional coil coating process in order to specifically achieve favorable intermediate layers for good adhesion and good formability of the coating. At the same time, the surface quality, the layer thickness tolerances and the mechanical properties of the material to be coated should be improved and the contamination of the melt by oxides, iron and hard zinc should be minimized. The coating material to be applied should adhere firmly even to non-optimal surfaces of the steel strip. A significant reduction in energy consumption, production costs, maintenance costs and investment costs is just as possible as a quick change of the coating material.

Aus der US-PS 3,538,884 ist eine Vorrichtung zum Beschichten von stranggegossenem Material z.B. Kupferdraht bekannt, wobei das Material senkrecht von unten ohne Richtungsumkehr durch einen Beschichtungsbehälter hindurchgeführt wird. Der Beschichtungsbehälter ist mit einem Schmelzofen über ein Verbindungsrohr verbunden. Im Schmelzofen ist eine Tauchglocke vorgesehen, mit deren Hilfe der Schmelzbadspiegel im Schmelzofen einstellbar ist. Mittels dieser Tauchglocke kann damit auch indirekt der Schmelzbadspiegel im Beschichtungsbehälter eingestellt werden.From US-PS 3,538,884 a device for coating continuously cast material e.g. Copper wire is known, the material being passed vertically from below through a coating container without reversing the direction. The coating container is connected to a melting furnace via a connecting pipe. A diving bell is provided in the melting furnace, by means of which the melting bath level in the melting furnace can be adjusted. With this immersion bell, the molten pool level in the coating container can also be adjusted indirectly.

Zur Lösung der Aufgabe wird erfindungsgemäß eine Vorrichtung gemäß Anspruch 1 vorgeschlagen, beider während des Durchlaufes des strangförmigen Gutes das schmelzflüssige Überzugsmaterial in einer gegen die Oberfläche des strangförmigen Gutes gerichteten Bewegung gehalten und unter Abschluß von Luftsauerstoff umgewälzt wird. Es hat sich gezeigt, daß besonders gute Beschichtungsergebnisse erreichbar sind, wenn nach dem Vorschlag der Erfindung das schmelzflüssige Überzugsmaterial im Kontaktbereich mit der Oberfläche des zu beschichtenden Gutes in Bewegung gehalten wird, wobei durch Umwälzen des Überzugsmaterials in einem abgeschlossenen System ohne Kontakt der Schmelze mit dem Sauerstoff der Luft stets frisches überzugsmaterial dem Band zugeführt wird. Durch die Badbewegung wird außerdem die Größe der Hartzinkpartikel minimiert.To achieve the object, a device according to the invention is proposed, both of which, during the passage of the strand-like material, the molten coating material is held in a movement directed against the surface of the strand-like material and is circulated with the exclusion of atmospheric oxygen. It has been shown that particularly good coating results can be achieved if, according to the proposal of the invention, the molten coating material is kept in motion in the contact area with the surface of the material to be coated, by circulating the coating material in a closed system without contact of the melt with the Oxygen in the air is always fed fresh coating material to the belt. The bath movement also minimizes the size of the hard zinc particles.

Bevorzugte Ausführungsformen der Vorrichtung sind in den Ansprüchen 2 bis 10 beansprucht.Preferred embodiments of the device are claimed in claims 2 to 10.

Ein Vorteil der erfindungsgemäßen Vorrichtung ergibt sich, daß die Temperaturen des schmelzflüssigen Überzugsmaterials und/oder des strangförmigen Gutes kurzfristig einstellbar sind. Auf diese Weise lassen sich die optimalen Verhältnisse zur Bildung der Zwischenschicht und zum Anhaften des Überzugsmaterials bedarfsgerecht einstellen.An advantage of the device according to the invention is that the temperatures of the molten coating material and / or the strand-like material can be set at short notice. In this way, the optimal conditions for forming the intermediate layer and for adhering the coating material can be set as required.

In einer günstigen Ausgestattung der Erfindung ist vorgesehen, daß das schmelzflüssige Überzugsmaterial während des Umwälzens von verunreinigungen gereinigt wird. So läßt sich sicherstellen, daß die die Beschichtungsqualität verschlechternden Verunreinigungen gar nicht erst mit dem zu beschichtenden Gut in Kontakt kommen.In a favorable embodiment of the invention it is provided that the molten coating material is cleaned of impurities during the circulation. In this way it can be ensured that the impurities, which deteriorate the coating quality, do not come into contact with the material to be coated in the first place.

Die Vorrichtung ist dadurch gekennzeichnet, daß dem das schmelzflüssige Überzugsmaterial aufnehmenden Beschichtungsbehälter ein Vorschmelzbehälter zugeordnet ist, zwischen dem und dem Beschichtungsbehälter die Schmelze unter Abschluß von Luftsauerstoff umwälzbar und der Beschichtungsbehälter volumenmäßig um ein Vielfaches kleiner als der Vorschmelzbehälter ausgebildet ist, vorzugsweise im Verhältnis 1 : 10.The device is characterized in that a pre-melting container is assigned to the coating container holding the molten coating material, between which and the coating container the melt can be circulated with the exclusion of atmospheric oxygen and the volume of the coating container is many times smaller than that of the pre-melting container, preferably in a ratio of 1:10 .

Ein solches System aus getrenntem Beschichtungsbehälter und Vorschmelzbehälter ermöglicht es, stets frische, von Verunreinigungen wie z. B. Hartzink, freie Schmelze durch ein geeignetes Verteilersystem möglichst direkt an die Oberfläche des zu beschichtenden Gutes heranzuführen, wobei es über die Zuführwege und bei dem relativ kleinen Beschichtungsbehälter möglich ist, die Temperatur der Schmelze innerhalb eines engen Toleranzbereiches kurzzeitig zu regeln. Der Vorschmelzbehälter ist zum Einschmelzen des Überzugsmaterial in Form von Blöcken geeignet; in dem volumenmäßig kleinen Beschichtungsbehälter läßt sich der Spiegel des schmelzflüssigen Überzugsmaterials durch Pumpen sehr schnell erhöhen und absenken.Such a system of separate coating container and pre-melting container makes it possible to always have fresh, contaminants such. B. hard zinc to bring free melt through a suitable distribution system as directly as possible to the surface of the material to be coated, it being possible via the feed paths and with the relatively small coating container to regulate the temperature of the melt briefly within a narrow tolerance range. The pre-melting container is suitable for melting the coating material in the form of blocks; in the small volume coating container the level of the molten coating material can be raised and lowered very quickly by pumps.

In einer anderen günstigen Ausgestaltung der Erfindung ist vorgesehen, daß der Vorschmelzbehälter seitlich unterhalb des Beschichtungsbehälters angeordnet ist.In another advantageous embodiment of the invention, it is provided that the premelting container is arranged laterally below the coating container.

Wenn nach einem weiteren Merkmal der Erfindung vorgesehen ist, daß zum Umwälzen des schmelzflüssigen Uberzugsmaterials bekannte elektromagnetische Pumpen vorgesehen sind und die Rückführung des schmelzflüssigen Überzugsmaterials vom Behandlungsbehälter in den Vorschmelzbehälter mit Hilfe der Schwerkraft erfolgt, so ist eine besonders günstige Anlage geschaffen, die es ermöglicht, den Beschichtungsbehälter sehr schnell zu füllen und zu entleeren, wenn dies erforderlich werden sollte.If, according to a further feature of the invention, it is provided that known electromagnetic pumps are provided for circulating the molten coating material and that the molten coating material is returned from the treatment container to the premelting container with the aid of gravity, a particularly favorable system is created which enables Filling and emptying the coating container very quickly if necessary.

In einer bevorzugten Ausgestaltung der erfindungsgemäßen Vorrichtung wird vorgeschlagen, daß der Beschichtungsbehälter zweigeteilt ist in einen Innenbehälter mit der bodenseitig angeordneten Durchführöffnung für das strangförmige Gut und einen den Innenbehälter mindestens teilweise umgebenden Außenbehälter, dessen Behälterwände höher als die des Innenbehälters sind, wobei der Außenbehälter und der Innenbehälter je gesondert über Zu- und Abfuhrkanäle für das schmelzflüssige Überzugsmaterial mit dem Vorschmelzbehälter verbunden sind. Eine derartig ausgestaltete Anlage ermöglicht eine günstige Verbindung zwischen dem Vorschmelzbehälter und dem Beschichtungsbehälter einerseits und eine exakte Regelung der Beschichtung im Beschichtungsbehälter andererseits, dessen Volumen an schmelzflüssigem Überzugsmaterial auf ein notwendiges Minimum beschränkt wird. Da das ganze System unter Abschluß von Luftsauerstoff betrieben wird, sind besonders gute Beschichtungsergebnisse zu erwarten.In a preferred embodiment of the device according to the invention, it is proposed that the coating container be divided into two, an inner container with the through-opening for the strand-like material and an outer container at least partially surrounding the inner container, the container walls of which are higher than those of the inner container, the outer container and the Inner containers are each separately connected to the pre-melting container via supply and discharge channels for the molten coating material. Such a system enables a favorable connection between the premelting container and the coating container on the one hand and an exact regulation of the coating in the coating container on the other hand, the volume of molten coating material is limited to a necessary minimum. Since the entire system is operated in the absence of atmospheric oxygen, particularly good coating results can be expected.

Eine Einstellung der Flüssigkeitssäule des schmelzflüssigen Überzugsmaterials läßt sich wirksam dadurch vornehmen, daß der an sich bekannte, das strangförmige Gut mit einer elektromagnetischen Dichtung umgreifender Tauchkörper in dem Innenbehälter heb- und senkbar geführt ist. Mit Hilfe dieses Tauchkörpers wird das schmelzflüssige überzugsmaterial bis auf die gewünschte Badspiegelhöhe verdrängt, wobei die elektromagnetische Dichtung den den Tauchkörper durchlaufenden Abschnitt des zu beschichtenden strangförmigen Gutes frei von Überzugsmaterial hält. Das vom Tauchkörper verdrängte Überzugsmaterial läuft über die Behälterwände des Innenbehälters in den Außenbehälter und von dort zurück zum Vorschmelzbehälter.An adjustment of the liquid column of the molten coating material can be carried out effectively in that the known immersion body, which surrounds the strand-like material with an electromagnetic seal, can be raised and lowered in the inner container. With the aid of this immersion body, the molten coating material is displaced to the desired bath level, the electromagnetic seal keeping the section of the strand-like material to be coated that passes through the immersion body free of coating material. The coating material displaced by the immersion body runs over the container walls of the inner container into the outer container and from there back to the pre-melting container.

Der Vorschmetzbehälter selbst ist nach einem weiteren Merkmal der Erfindung in einen offenen und einen geschlossenen Behälterteil aufgeteilt, wobei der Zufuhrkanal zum Innenbehälter des Behandlungsbehälters mit dem geschlossenen Behälterteil und der Abfuhrkanal des Außenbehälters mit dem offenen Behälterteil des Vorschmelzbehälters verbunden ist. Ruf diese Weise wird sichergestellt, daß mit der Zufuhr von frischem schmelzflüssigem Überzugsmaterial kein Luftsauerstoff in das abgeschlossene System gelangt, welcher die Schmelze verunreinigen könnte. Die Mündung des mit dem Außenbehälter verbundenen Abfuhrkanals ist in das schmelzflüssige Überzugsmaterial im offenen Behälterteil eingetaucht, so daß auch hier kein Sauerstoff eindringen kann.According to a further feature of the invention, the pre-smear container itself is divided into an open and a closed container part, the feed channel to the inner container of the treatment container being connected to the closed container part and the discharge channel of the outer container being connected to the open container part of the pre-melting container. This way it is ensured that with the supply of fresh molten coating material no atmospheric oxygen gets into the closed system which could contaminate the melt. The mouth of the discharge channel connected to the outer container is immersed in the molten coating material in the open part of the container, so that no oxygen can penetrate here either.

Zum Fördern des schmelzflüssigen Überzugsmaterials durch den Zufuhrkanal zum Innenbehälter ist im Bereich des geschlossenen Behälterteils des Vorschmelzbehälters eine Magnetpumpe vorgesehen, die den Zuführkanal umgibt. Mit Hilfe dieser Magnetpumpe, die in Längsrichtung des Zuführkanals heb- und senkbar ist, läßt sich das schmelzflüssige Überzugsmaterial aus dem geschlossenen Behälterteil des Vorschmelzbehälters in den Innenbehälter des Behandlungsbehälters fördern.To convey the molten coating material through the feed channel to the inner container, a magnetic pump is provided in the area of the closed container part of the premelting container, which surrounds the feed channel. With the help of this magnetic pump, which can be raised and lowered in the longitudinal direction of the feed channel, the molten material can be removed Feed the coating material from the closed container part of the pre-melting container into the inner container of the treatment container.

Dem offenen Behälterteil des Vorschmelzbehälters ist eine Beschickungsvorrichtung zugeordnet, mit der das Überzugsmaterial, beispielsweise in Blockform, in die Schmelze eingegeben werden kann, so daß sich der Vorrat an Überzugsmaterial stets ergänzen läßt.The open container part of the premelting container is assigned a loading device with which the coating material, for example in block form, can be introduced into the melt, so that the supply of coating material can always be supplemented.

In einer weiteren günstigen Ausgestattung der erfindungsgemäßen Vorrichtung ist vorgesehen, daß unterhalb der im Innenbehälter vorgesehenen Durchführöffnung für das strangförmige Gut innerhalb des das strangförmige Gut umgebenden Kanals eine Rücklaufsperre für das schmelzflüssige Überzugsmaterial vorgesehen, zwischen der und der Durchführöffnung ein Abführkanal zum offenen Behälterteil des Vorschmelzbehälters geführt ist. Diese Rücklaufsperre ist vorhanden, um im Fall von Leckagen oder der Notwendigkeit des schnellen Ablassens des Behandlungsbehälters keine Schmelze in den Zuführteil des zu beschichtenden strangförmigen Gutes gelangen kann. Schmelze, die die Durchführöffnung durchdringt, kann an der Rücklaufsperre aufgefangen und über den Abfuhrkanal in den Vorratsbehälter zurückgeführt werden.In a further advantageous embodiment of the device according to the invention it is provided that a return stop for the molten coating material is provided below the through-opening provided for the strand-like material within the channel surrounding the strand-like material, between which and the through-opening a discharge channel leads to the open container part of the pre-melting container is. This backstop is provided so that in the event of leakages or the need to quickly drain the treatment container, no melt can get into the feed part of the strand-like material to be coated. Melt that penetrates the through opening can be collected at the backstop and returned to the storage container via the discharge channel.

In einer weiteren Ausgestaltung der Erfindung ist vorgesehen, daß die Rücklaufsperre mechanisch verschließbar ist, vorzugsweise durch einen Schieberverschluß, dessen Schieberplatte als Scherenmesser zum Durchtrennen des strangförmigen Gutes ausgebildet ist. In einem Notfall kann mit dieser so ausgebildeten Rücklaufsperre das Band abgeschert und gleichzeitig die Durchlaßöffnung verschlossen werden.In a further embodiment of the invention, it is provided that the backstop can be closed mechanically, preferably by a slide closure, the slide plate of which is designed as a scissor knife for severing the strand-like material. In an emergency, the backstop designed in this way can be used to shear off the belt and at the same time close the passage opening.

Im Rahmen der Erfindung ist es natürlich denkbar, einem Beschichtungsbehälter mehrere Vorschmelzbehälter zuzuordnen und diese mit verschiedenen Überzugsmaterialien zu versehen. Grundsätzlich kann die Durchlaufrichtung des zu beschichtenden strangförmigen Gutes von unten nach oben, aber auch von oben nach unten erfolgen.Within the scope of the invention it is of course conceivable to assign a plurality of premelting containers to one coating container and to provide them with different coating materials. In principle, the direction of flow of the strand-like material to be coated can be from bottom to top, but also from top to bottom.

Zur Erläuterung der Erfindung wird auf die Ausführungsbeispiele verwiesen, die in der Zeichnung dargestellt sind und nachfolgend beschrieben werden. Es zeigt:

Fig. 1
einen Querschnitt durch eine erfindungsgemäße Vorrichtung zum Beschichten von Stahlband,
Fig. 2
die mechanische Abdichtung des Beschichtungsbehälters für Notfälle,
Fig. 3
eine Vorrichtung zum Schnellentleeren der Schmelze und
Fig. 4
eine weitere bevorzugte Vorrichtung zum Beschichten von Bandmaterial.
To explain the invention, reference is made to the exemplary embodiments which are illustrated in the drawing and are described below. It shows:
Fig. 1
3 shows a cross section through an inventive device for coating steel strip,
Fig. 2
the mechanical sealing of the coating container for emergencies,
Fig. 3
a device for rapid emptying of the melt and
Fig. 4
another preferred device for coating strip material.

In Figur 1 ist mit 1 der Beschichtungsbehälter bezeichnet, in dem das Überzugsmaterial (Schmelze 2) aus flüssigem Zink aufgenommen ist. Der Beschichtungsbehälter 1 hat bodenseitig eine Durchführkanal 3, durch die das Band 4 von unten nach oben vertikal durch das Überzugsmaterial hindurchleitbar ist. Das Band 4 wird aus dem (nicht dargestellten) Ofen kommend, durch den sogenannten Ofenrüssel mittels der Rollen 6, 7, 8, 9 und 10 hindurchgeführt. Der Ofenrüssel wird unter Schutzgas betrieben, d. h. er ist zwischen Ofen und Beschichtungsbehälter 1 vom Luftsauerstoff abgeschlossen.In FIG. 1, 1 denotes the coating container in which the coating material (melt 2) made of liquid zinc is received. The coating container 1 has a through channel 3 on the bottom, through which the band 4 can be passed vertically from bottom to top through the coating material. The band 4 is coming out of the furnace (not shown), through the so-called furnace trunk by means of the rollers 6, 7, 8, 9 and 10. The furnace trunk is operated under protective gas, ie it is sealed off from the atmospheric oxygen between the furnace and the coating container 1.

Die Rollen 9 und 10 stellen sicher, daß das Band 4 berührungsfrei durch die schlitzförmige Durchführkanal 3 in den Behandlungsbehälter 1 geführt wird. Der Kanal 3 selbst ist von einer Spule 11 umgeben, in der ein elektromagnetisches Feld erzeugt wird, welches seinerseits eine elektromagnetische Kraft erzeugt, die ein Ausfließen der Schmelze 2 aus dem Behälter 1 verhindert.The rollers 9 and 10 ensure that the tape 4 is guided through the slot-shaped through-channel 3 into the treatment container 1 without contact. The channel 3 itself is surrounded by a coil 11, in which an electromagnetic field is generated, which in turn generates an electromagnetic force that prevents the melt 2 from flowing out of the container 1.

Neben dem Beschichtungsbehälter ist der erfindungsgemäße Vorschmelzbehälter 12 aufgestellt, der ein wesentlich größeres Volumen an flüssigem Zink aufnimmt, als der Beschichtungsbehälter 1. Der Vorschmelzbehälter ist über Zuführkanäle 13 und Abführkanäle 14 mit dem Beschichtungsbehälter 1 verbunden; das flüssige Metall wird mittels der Pumpe 15 vom Vorschmetzbehätter 12 in den Beschichtungsbehälter 1 gepumpt. Die Zu- und Ableitungen sind mit Heizeinrichtungen 16 versehen, mit denen die Temperatur der Schmelze 2 einstellbar ist. In Figur 1 ist weiterhin erkennbar, daß oberhalb des Beschichtungsbehälters 1 ein herkömmliches Düsenmesser 17 angeordnet ist, welches für eine gleichmäßige Beschichtungsdicke des Zinkmaterials sorgt, aber nicht Gegenstand der vorliegenden Erfindung ist.In addition to the coating container, the pre-melting container 12 according to the invention is set up, which holds a much larger volume of liquid zinc than the coating container 1. The pre-melting container is connected to the coating container 1 via feed channels 13 and discharge channels 14; the liquid metal is pumped from the prelubrication container 12 into the coating container 1 by means of the pump 15. The supply and discharge lines are provided with heating devices 16 with which the temperature of the melt 2 can be adjusted. In Figure 1 it can also be seen that a conventional nozzle knife 17 is arranged above the coating container 1, which ensures a uniform coating thickness of the zinc material, but is not the subject of the present invention.

In Figur 2 ist in vergrößerter Darstellung der Beschichtungsbehälter 1 erkennbar, in dem das Zinkbad 2 angeordnet ist. Die untere Durchführöffnung 3 ist elektromagnetisch abgedichtet, wie dies bei 11 erkennbar ist. Das Band wird durch den Ofenrüssel 5 unter Schutzgas in den Beschichtungsbehälter 1 eingeführt, wobei zur Aufbringung des nötigen Zuges auf das Band die Rollen 7 und 8 als S-Rollen ausgeführt sind, die darüber hinaus beheizt und/oder gekühlt sind.The coating container 1 in which the zinc bath 2 is arranged can be seen in an enlarged illustration in FIG. The lower through opening 3 is electromagnetically sealed, as can be seen at 11. The belt is introduced through the furnace trunk 5 into the coating container 1 under protective gas, the rollers 7 and 8 being designed as S-rollers for applying the necessary tension to the belt, which rollers are also heated and / or cooled.

im Notfall, d. h. wenn die elektromagnetische Abdichtung, beispielsweise infolge Stromausfall außer Funktion geraten sollte, kann mittels eines kombinierten Scheren/Schieber-Systems 18 der Kanal 3 im Behälter 1 verschlossen werden, nachdem das Band 4 durchtrennt wurde. Zu diesem Zweck ist der Schieber 19 mit einem Scherenmesser 20 versehen, welches mit dem Schieber 19 durch eine Kolben-Zylinder-Einheit 21 (in der Zeichnungsebene von rechts nach links) bewegbar, das Band 4 durchtrennt und gleichzeitig den Kanal 3 verschließt. Gleichzeitig mit dem Schieber 19 wird die an diesem angeordnete Führungsrolle 9 zur Seite bewegt, so daß das Band ein Widerlager an der Kante 22 der öffnung 3 findet.in an emergency, d. H. If the electromagnetic seal should become inoperative, for example as a result of a power failure, the channel 3 in the container 1 can be closed by means of a combined scissor / slide system 18 after the band 4 has been cut. For this purpose, the slider 19 is provided with a scissor knife 20 which can be moved with the slider 19 by a piston-cylinder unit 21 (in the plane of the drawing from right to left), cuts the band 4 and at the same time closes the channel 3. Simultaneously with the slide 19, the guide roller 9 arranged thereon is moved to the side, so that the belt finds an abutment on the edge 22 of the opening 3.

In Figur 3 sind gleiche Teile gleich bezeichnet. In diesem Ausführungsbeispiel ist nur eine beheizte oder gekühlte Umlenkrolle 7 vorgesehen. Die Führungsrolle 9 ist quer zum Band verschiebbar, um das Band 4 seitlich aus der Durchlaufebene durch den Kanal 3 auszulenken. Dies hat den Sinn, daß über die unterhalb des Kanals 3 angeordnete Auffangrinne 23 das Zink aus dem Beschichtungsbehälter 1 ungestört ablaufen kann, wenn der Beschichtungsbehälter 1 geleert werden soll. Über den ablauf 24 kann das flüssige Zink mittels geeigneter Pumpen in den Vorschmelzkessel 12 zurückgeleitet werden. Auch in diesem Ausführungsbeispiel ist die Verschlußeinheit in Kombination mit der Schere zum Abscheren des Bandes vorgesehen, die in Notfällen betätigt werden kann.In FIG. 3, the same parts are labeled identically. In this exemplary embodiment, only one heated or cooled deflection roller 7 is provided. The guide roller 9 is displaceable transversely to the belt in order to deflect the belt 4 laterally out of the pass plane through the channel 3. This has the meaning that the zinc from the coating container 1 can run undisturbed via the collecting channel 23 arranged below the channel 3 when the coating container 1 is to be emptied. The liquid zinc can be returned to the premelting boiler 12 via the outlet 24 by means of suitable pumps. In this exemplary embodiment too, the closure unit is provided in combination with the scissors for shearing off the band, which can be actuated in emergencies.

Unter Bezugnahme auf Figur 1 sei darauf hingewiesen, daß sowohl der Beschichtungsbehälter 1, wie auch der Vorschmelzbehälter induktiv oder durch elektrische Widerstandserwärmung beheizt werden können, wie dies bei 24 und 25 angedeutet ist.With reference to FIG. 1, it should be pointed out that both the coating container 1 and the pre-melting container can be heated inductively or by electrical resistance heating, as is indicated at 24 and 25.

Eine andere besonders günstige Ausgestaltung der erfindungsgemäßen Vorrichtung ist in Figur 4 dargestellt. In Übereinstimmung mit Zeichnungsfigur 1 ist der Beschichtungsbehälter mit 1 und der Vorschmelzbehalter mit 12 bezeichnet. Der Beschichtungsbehälter 1 ist aufgeteilt in einen Innenbehälter 25 und einen Außenbehälter 26, wobei die Behälterwand 27 des Innenbehälters 25 niedriger als die äußere Behälterwand 28 des Außenbehälters 26 ist. An der Bodenseite des Innenbehälters 25 ist der Durchführkanal 3 für das Band 4 vorgesehen, der in der bereits beschriebenen Weise von der Spule 11 der elektromagnetischen Dichtung abgedichtet wird. Ebenfalls bodenseitig des Innenbehälters 25 sind die Zuführkanäle 29 angeschlossen, mit denen das Zink aus dem Vorschmetzbehälter 12 in den Innenbehälter 25 des Beschichtungsbehälters 1 gepumpt wird, wie später noch näher beschrieben wird.Another particularly favorable embodiment of the device according to the invention is shown in FIG. In accordance with drawing figure 1, the coating container is designated 1 and the pre-melting container 12. The coating container 1 is divided into an inner container 25 and an outer container 26, the container wall 27 of the inner container 25 being lower than the outer container wall 28 of the outer container 26. On the bottom side of the inner container 25, the through channel 3 for the band 4 is provided, which is sealed in the manner already described by the coil 11 of the electromagnetic seal. Also on the bottom side of the inner container 25, the feed channels 29 are connected, by means of which the zinc is pumped out of the prelubrication container 12 into the inner container 25 of the coating container 1, as will be described in more detail later.

Der Außenbehätter 26 ist gleichfalls im Bodenteil mit Abführkanälen 30 verbunden, die ebenfalls in den Vorschmetzbehälter 12 geführt sind.The outer container 26 is also connected in the bottom part to discharge channels 30, which are also guided into the pre-smear container 12.

Zur Einstellung der Schmelzbadspiegelhöhe h ist im Innenbehälter 25 des Beschichtungsbehälters 1 ein Tauchkörper 31 senkbar mittels eines Spindeltriebs 33 heb- und senkbargeführt, in dessen Inneren eine das Band 4 umgreifende magnethydrodynamische Dichtung vorgesehen ist. Der Tauchkörper 31 verdrängt das Überzugsmaterial 2 im Innenbehälter 25 in der gewünschten Höhe h, wobei die magnethydrodynamische Dichtung 34 ein Eindringen des Überzugsmaterials 2 in den Tauchkörper 34 verhindert.In order to adjust the molten pool level h, an immersion body 31 can be lowered and raised in the inner container 25 of the coating container 1 by means of a spindle drive 33, inside which a magnet-hydrodynamic seal encompassing the band 4 is provided. The immersion body 31 displaces the coating material 2 in the inner container 25 at the desired height h, the magnetic hydrodynamic seal 34 preventing the coating material 2 from penetrating into the immersion body 34.

Zum Fördern des Überzugsmaterials 2 aus dem Vorschmetzbehälter 12 dient die elektromagnetische Pumpe 35. Mit ihr wird das Überzugsmaterial 2 durch den Zuführkanal 29 direkt in den Innenbehälter 25 gefördert, wobei zwei Zuführkanäle 29 günstigerweise beidseitig des Bandes so angeordnet sind, daß eine gleichmäßige Strömung des Überzugsmaterials 2 auf beide Bandseiten erfolgt. Überschüssiges Überzugsmaterial wird nach dem Benetzen der Bandoberfläche über die Behälterwand 27 des Innenbehältes 25 hinweggepumpt und läuft in den Außenbehälter 26. Von dort gelangt es über die Abflußkanäle 30 zurück in den Vorschmetzbehälter 12.The electromagnetic pump 35 is used to convey the coating material 2 from the pre-greasing container 12. With it, the coating material 2 is conveyed through the feed channel 29 directly into the inner container 25, two feed channels 29 advantageously being arranged on both sides of the belt in such a way that a uniform flow of the coating material 2 on both sides of the hinge. Excess coating material is pumped over the container wall 27 of the inner container 25 after the wetting of the belt surface and runs into the outer container 26. From there it passes back into the pre-lubricating container 12 via the drainage channels 30.

Der Vorschmetzbehälter 12 ist ebenfalls in zwei Behälterteile aufgeteilt, von denen der eine Behälterteil 36 geschlossen und der andere Behälterteil 37 nach oben geöffnet ist. Beide Behälterteile 36, 37 sind durch eine im Bodenbereich des Behälters offene Wand 38 voneinander getrennt. Der geschlossene Behälterteil 36 ist durch einen in das Überzugsmaterial 2 eintauchenden topfförmigen Deckel verschlossen, in dem die elektromagnetische Pumpe 35 angeordnet ist, die den Zuführkanal 29 umgreift.The pre-smear container 12 is also divided into two container parts, of which one container part 36 is closed and the other container part 37 is open at the top. Both container parts 36, 37 are separated from one another by a wall 38 which is open in the bottom region of the container. The closed container part 36 is closed by a cup-shaped cover which dips into the covering material 2 and in which the electromagnetic pump 35 is arranged, which encompasses the feed channel 29.

In den offenen Behälterteil mündet bei 39 der Ablaufkanal 30 aus dem Außenbehälter 26. Gleichzeitig gestattet der oben offene Behälterteil die Beschickung des schmelzflüssigen Überzugsmaterials 2 mit Blöcken 40 festen Überzugsmaterials, das über eine Beschickungsvorrichtung 41 zugeführt wird. Wie bei 42 angedeutet, ist der Vorschmelzbehälter 12 induktiv beheizbar.At 39, the drain channel 30 opens into the open container part from the outer container 26. At the same time, the open-top container part allows the molten coating material 2 to be loaded with blocks 40 of solid coating material, which is supplied via a loading device 41. As indicated at 42, the premelting container 12 can be heated inductively.

Unterhalb der Durchführöffnung 3 ist, wie bei 43 angedeutet, eine Rücklaufsperre für schmelzflüssiges Überzugsmaterial vorgesehen, welches die Durchführöffnung 3 im Fall von Leckagen durchlaufen könnte.Below the feed-through opening 3, as indicated at 43, a backstop for molten coating material is provided, which could pass through the feed-through opening 3 in the event of leakages.

Die Rücklaufsperre 43 steht mit einem Abführkanal 44 in Verbindung, der seinerseits an den Ablaufkanal 30 vom Außenbehälter 26 angeschlossen ist.The backstop 43 is connected to a discharge duct 44, which in turn is connected to the discharge duct 30 from the outer container 26.

Es wird darauf hingewiesen, daß die gesamte Anlage unter Schutzgas betrieben wird, so daß - mit Ausnahme des offenen Teils des Vorschmelzbehälters 12 - die gesamte Anlage vom Luftsauerstoff abgeschlossen ist.It is pointed out that the entire system is operated under protective gas, so that - with the exception of the open part of the premelting container 12 - the entire system is sealed off from atmospheric oxygen.

Mit der erfindungsgemäßen Vorrichtung gemäß Figur 4 ist eine ständige und intensive Umwälzung des Uberzugsmaterials im Gegenstrom zum Bandlauf erreichbar. Die Schmelze 2 wird aus dem geschlossenen Teil 36 des Vorschmelzbehälters 12 durch die Zuführkanäle 29 in den unteren Teil des Innenbehälters 25 gepumpt, wo es intensiv in Kontakt mit der Oberfläche des zu beschichtenden Bandes 4 gebracht wird. Die Schmelze 2 strömt weiter in den oberen Teil des Innenbehälters 25 und fließt dort über seine Behälterwände 27 in den Außenbehälter 26. Von dort wird die Schmelze über die Rückführkanäle 30 zurück in den offenen Teil 37 des Vorschmelzbehälters 12 geführt. Der Innenbehälter 25 ist, wie beim Ausführungsbeispiel nach Figur 1, am Boden durch die magnethydrodynamische Dichtung verschlossen. In der magnethydrodynamischen Dichtung 34 im Bereich des Tauchkörpers 31 ist das Magnetfeld nach unten gerichtet, damit keine Schmelze in den Tauchkörper eindringen kann. Auf diese Weise läßt sich die gewünschte Säule Überzugsmaterial im Innenbehälter 25 sehr einfach und vor allem sehr schnell einstellen. Die intensive Benetzung der Bandoberfläche mit der Schmelze gestattet die Schichtbildung in kürzester Zeit und ermöglicht eine kontrollierte Einstellung der Dicke der intermetallischen Schicht.With the device according to the invention according to FIG. 4, a constant and intensive circulation of the coating material in countercurrent to the belt run can be achieved. The melt 2 is pumped from the closed part 36 of the premelting container 12 through the feed channels 29 into the lower part of the inner container 25, where it is brought into intensive contact with the surface of the strip 4 to be coated. The melt 2 flows further into the upper part of the inner container 25 and flows there via its container walls 27 into the outer container 26. From there, the melt is fed back via the return channels 30 into the open part 37 of the premelt container 12. As in the exemplary embodiment according to FIG. 1, the inner container 25 is closed on the bottom by the magnethydrodynamic seal. In the magnetic hydrodynamic seal 34 in the area of the immersion body 31, the magnetic field is directed downward so that no melt can penetrate into the immersion body. In this way, the desired column of coating material in the inner container 25 can be set very easily and, above all, very quickly. The intensive wetting of the strip surface with the melt allows the layer to be formed in the shortest possible time and enables the thickness of the intermetallic layer to be adjusted in a controlled manner.

Das geschlossene, luftdichte Umwälzsystem der Schmelze 2 und des Bandes 4 unter Schutzgas schließt den Kontakt der Schmelze mit dem atmosphärischen Sauerstoff aus und verhindert somit sicher eine Oxidation. Da keine Umlenkmittel und andere Metallteile im Schmelzbad vorhanden sind, verringert sich die Bildung von leichtem und schwerem Hartzink. Der Vorschmelzbehälter 12 mit seinem offenen Teil 37 und seinem geschlossenen Teil 38 wirkt mit der Trennwand 38 wie eine kommunizierende Röhre und ermöglicht die ununterbrochene Zufuhr von blockförmigem Überzugsmaterial zum Einschmelzen. Hartzinkverunreinigungen der Schmelzoberfläche können im offenen Teil 37 des Vorschmelzbehälters 12 entfernt werden, ein Eindringen der Verunreinigungen in den geschlossenen Teil 36 des Vorschmelzbehälters 12 ist ausgeschlossen.The closed, airtight circulation system of the melt 2 and the belt 4 under protective gas excludes the contact of the melt with the atmospheric oxygen and thus reliably prevents oxidation. Since there are no deflecting agents and other metal parts in the weld pool, the formation of light and heavy hard zinc is reduced. The pre-melting container 12 with its open part 37 and its closed part 38 acts with the partition 38 like a communicating tube and enables the continuous supply of block-shaped coating material for melting. Hard zinc contaminations of the melting surface can be removed in the open part 37 of the premelt container 12, penetration of the contaminants into the closed part 36 of the premelt container 12 is excluded.

Die Erfindung ermöglicht in vorteilhafter Weise eine optimale Beschichtung von strangförmigem gut mittels schmelzflüssigem Überzugsmaterials in kürzester Kontaktzeit mit besten Hafteigenschaften. Dabei kann die Dicke der intermetallischen Schicht leicht geregelt werden, Verunreinigungen der Schmelze durch Eisen und Oxide werden weitgehend vermieden. Der Energieaufwand zum Betreiben einer Anlage wird erheblich verringert und die Qualität des beschichteten Materials wird verbessert. Stillstandszeiten der Anlage werden wegen Fehlens von Verschleißteilen (Umlenkrollen in der Schmelze) erheblich verkürzt, so daß die Wirtschaftlichkeit der Anlage deutlich steigt.The invention advantageously enables an optimal coating of strand-like material by means of a molten coating material in the shortest possible contact time with the best adhesive properties. The thickness of the intermetallic layer can be easily regulated, and contamination of the melt by iron and oxides is largely avoided. The energy expenditure for operating a system is considerably reduced and the quality of the coated material is improved. Downtimes of the system are considerably reduced due to the absence of wear parts (deflection rollers in the melt), so that the economy of the system increases significantly.

Claims (10)

  1. An apparatus for coating the surface of steel strip with a metallic coating, in which the product is guided without a reversal of direction vertically through a coating container (1) holding the molten coating material (2), which container has on its base beneath the level of the melt bath a lead-in channel (3) surrounded by an electric field, in the opening region of which channel an electromagnetic closure means (11) is provided which produces in the melt an electromagnetic force of equal size or greater, which is proportional in terms of quantity to the product of the cross-sectional surface area of the channel opening and the metallostatic pressure and is opposed vectorially to the metallostatic pressure and in which the dwell time of the strip in the melt can be controlled independent of the speed of passage of the strip, wherein a pre-melting container (12) is associated with the coating container (1) holding the molten coating material (2), the volume of the coating container (1) is designed to be many times smaller than the pre-melting container (12) and the coating container (1) for replenishing and/or emptying is connected to the pre-melting container (12) via feed (13, 29) and discharge (14, 30) channels, with the molten coating material (2) between the pre-melting container (12) and the coating container (1) being able to be circulated with the exclusion of atmospheric oxygen.
  2. An apparatus according to Claim 1, characterised in that the pre-melting container (12) is arranged laterally beneath the coating container (1) and known electromagnetic pumps (15, 35) are provided for circulating the molten coating material (2).
  3. An apparatus according to one or more of the preceding Claims, characterised in that the coating container (1) is divided into two, into an inner container (25) with the lead-in channel (3) for the billet-shaped product (4) arranged on the base and an outer container (26) at least partly surrounding the inner container (26), the container walls (28) of which are higher than those (27) of the inner container (25), the outer container (26) and the inner container (25) being connected separately to the pre-melting container (12) via feed and discharge channels (29, 30) for the molten coating material (2).
  4. An apparatus according to Claim 3, characterised in that in order to set the effective melt bath level height (h) a known immersion element (31) surrounding the billet-shaped product (4) with a magnetohydrodynamic seal (34) is guided in the inner container (25) so as to be able to be raised and lowered (32, 33).
  5. An apparatus according to Claims 1 to 4, characterised in that the pre-melting container (12) is divided into an open (37) and a closed (36) container part, the feed channel (29) to the inner container (25) of the coating container (1) being connected to the closed container part (36) and the discharge channel (30) of the outer container (26) is connected to the open container part (37) of the pre-melting container (12).
  6. An apparatus according to Claim 5, characterised in that the feed channel (29) to the inner container (25) in the region of the closed container part (36) of the pre-melting container (12) is surrounded by a magnetic pump (35) or the like.
  7. An apparatus according to Claims 5 and 6, characterised in that a feed device (41) for the coating material (40) is arranged above the open container part (37) of the pre-melting container (12).
  8. An apparatus according to one or more of the preceding claims, characterised in that beneath the lead-in channel (3) for the billet-shaped product (4) provided in the inner container (25) there is provided a runback barrier (43) for the molten coating material (2), between which and the lead-in channel (3) a discharge channel (44) passes to the open container part (37) of the pre-melting container (12).
  9. An apparatus according to Claim 8, characterised in that the runback barrier (43) has a mechanical closure.
  10. An apparatus according to Claims 8 and 9, characterised in that a slide gate (19) is provided in order to close the runback barrier (43), the slide plate (21) of which gate is designed as a shear blade for severing the billet-shaped product (4).
EP93905164A 1992-03-13 1993-03-04 Apparatus for coating the surface of steel strip Expired - Lifetime EP0630421B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4208578 1992-03-13
DE4208578A DE4208578A1 (en) 1992-03-13 1992-03-13 METHOD FOR COATING THE SURFACE OF STRAND-SHAPED GOODS
PCT/DE1993/000207 WO1993018198A1 (en) 1992-03-13 1993-03-04 Process for coating the surface of elongated materials

Publications (2)

Publication Number Publication Date
EP0630421A1 EP0630421A1 (en) 1994-12-28
EP0630421B1 true EP0630421B1 (en) 1997-05-14

Family

ID=6454312

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93905164A Expired - Lifetime EP0630421B1 (en) 1992-03-13 1993-03-04 Apparatus for coating the surface of steel strip

Country Status (13)

Country Link
US (1) US5702528A (en)
EP (1) EP0630421B1 (en)
JP (1) JP2814306B2 (en)
KR (1) KR100276043B1 (en)
AT (1) ATE153080T1 (en)
AU (1) AU674303B2 (en)
BR (1) BR9306075A (en)
CA (1) CA2131912C (en)
DE (2) DE4208578A1 (en)
ES (1) ES2101303T3 (en)
FI (1) FI100890B (en)
RU (1) RU2093602C1 (en)
WO (1) WO1993018198A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006909A1 (en) 2008-01-28 2009-07-30 Sms Demag Ag Hot dip coating of coldly/warmly rolled steel strip with zinc, zinc-aluminum alloy/aluminum, by vertically guiding the strip towards top by a coating vessel with liquid coating boiler that is equipped on the under side on ceramic channel
CN101218367B (en) * 2005-06-25 2010-05-19 Sms西马格股份公司 Device for the hot-dip coating of a metal strip

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700555B1 (en) * 1993-01-20 1995-03-31 Delot Process Sa Method for dimensioning a galvanizing enclosure provided with a device for magnetic wiping of galvanized metallurgical products.
DE4319569C1 (en) * 1993-06-08 1994-06-16 Mannesmann Ag Method and appts. for prodn. of a semi-finished prod. - with smooth-rolling of the deposited metal ensures a small thickness tolerance
CA2131059C (en) * 1993-09-08 2001-10-30 William A. Carter Hot dip coating method and apparatus
DE4344939C1 (en) * 1993-12-23 1995-02-09 Mannesmann Ag Method for the control, suitable for the process, of an installation for coating strip-shaped material
DE4426705C1 (en) * 1994-07-20 1995-09-07 Mannesmann Ag Inversion casting installation with a crystalliser
IN191638B (en) * 1994-07-28 2003-12-06 Bhp Steel Jla Pty Ltd
US6106620A (en) * 1995-07-26 2000-08-22 Bhp Steel (Jla) Pty Ltd. Electro-magnetic plugging means for hot dip coating pot
US5681527A (en) * 1996-01-11 1997-10-28 Mitsubishi Jukogyo Kabushiki Kaisha Molten metal holding apparatus
CN1050157C (en) * 1996-05-27 2000-03-08 宝山钢铁(集团)公司 Reversal-fixation method for continuous production of composite plate stripe
DE19628512C1 (en) * 1996-07-05 1997-09-04 Mannesmann Ag Metal strip hot dip coating unit
CA2225537C (en) * 1996-12-27 2001-05-15 Mitsubishi Heavy Industries, Ltd. Hot dip coating apparatus and method
US6037011A (en) * 1997-11-04 2000-03-14 Inland Steel Company Hot dip coating employing a plug of chilled coating metal
DE10052096A1 (en) * 2000-10-20 2002-05-02 Sms Demag Ag Process for guiding a steel strip through a coating container comprises directing the strip, guided continuously in the inlet channel and through the melt, in a planar manner
WO2002083970A1 (en) 2001-04-10 2002-10-24 Posco Apparatus and method for holding molten metal in continuous hot dip coating of metal strip
DE10146791A1 (en) * 2001-09-20 2003-04-10 Sms Demag Ag Method and device for coating the surface of strand-like metallic material
FI20020130A (en) * 2002-01-24 2003-07-25 Bondmet Oy Method and apparatus for coating a metal surface with a thin metal containing layer
FI20021465A (en) * 2002-01-24 2003-07-25 Raimo Johannes Vartiainen Process and apparatus for coating a metal surface with a thin layer containing metal
RU2237743C2 (en) 2002-09-26 2004-10-10 Закрытое акционерное общество "Межотраслевое юридическое агентство "Юрпромконсалтинг" Method for processing of surface of elongated article, line and apparatus for effectuating the same
DE10253234A1 (en) * 2002-11-15 2004-05-27 Sms Demag Ag Process for hot dip coating a metal strand, especially a steel strand, involves using two flaps formed as guide plates arranged on both sides of the metal strand and below the liquid channel
DE10316137A1 (en) * 2003-04-09 2004-10-28 Sms Demag Ag Method and device for hot-dip coating a metal strand
DE10343648A1 (en) * 2003-06-27 2005-01-13 Sms Demag Ag Device for hot dip coating of a metal strand and process for hot dip coating
EP1700869A1 (en) 2005-03-11 2006-09-13 3M Innovative Properties Company Recovery of fluorinated surfactants from a basic anion exchange resin having quaternary ammonium groups
DE102005033288A1 (en) * 2005-07-01 2007-01-04 Sms Demag Ag Method and apparatus for hot dip coating a metal strip
DE102005030766A1 (en) * 2005-07-01 2007-01-04 Sms Demag Ag Device for the hot dip coating of a metal strand
US7980582B2 (en) * 2006-08-09 2011-07-19 Atc Leasing Company Llc Front tow extended saddle
US10233518B2 (en) * 2006-08-30 2019-03-19 Bluescope Steel Limited Metal-coated steel strip
DE102007055346A1 (en) * 2007-11-19 2009-05-20 Sms Demag Ag Casting machine with a device for application to a casting belt
RU2463378C2 (en) * 2008-02-08 2012-10-10 Сименс Фаи Металз Текнолоджиз Сас Plant for galvanisation by submersion of steel strip
WO2009098363A1 (en) 2008-02-08 2009-08-13 Siemens Vai Metals Technologies Sas Plant for the hardened galvanisation of a steel strip
JP5791518B2 (en) 2008-11-14 2015-10-07 シーメンス ヴェ メタルス テクノロジーズ エスアーエスSiemens VAI Metals Technologies SAS Method and apparatus for controlling a process of introducing a plurality of metals into a cavity for melting the metals
US8381172B2 (en) * 2008-12-02 2013-02-19 Nokia Corporation Method, apparatus, mobile terminal and computer program product for employing a form engine as a script engine
KR101192513B1 (en) * 2010-03-15 2012-10-17 연세대학교 산학협력단 Method and device for galvanizing steel strip
WO2012087574A1 (en) 2010-12-20 2012-06-28 Neptune Research, Inc. Systems, methods, and devices for applying fluid composites to a carrier sheet
KR20140031871A (en) * 2011-03-30 2014-03-13 타타 스틸 네덜란드 테크날러지 베.뷔. Apparatus for coating a moving strip material with a metallic coating material
ITMI20111544A1 (en) * 2011-08-24 2013-02-25 Danieli Off Mecc PLANT FOR THE COATING WITH IMMERSION CONTINUOUSLY HOT OF METALLIC PRODUCTS, PLANS AND RELATED COATING PROCESS
RU2488644C2 (en) * 2011-10-25 2013-07-27 Александр Александрович Кулаковский Device for application of coating onto extended product
WO2013141739A1 (en) * 2012-03-23 2013-09-26 Kulakovsky Aleksandr Aleksandrovich Device for applying a coating to an extended article
TWI509118B (en) * 2013-04-26 2015-11-21 Asiatic Fiber Corp Preparation of conductive yarns
CN109321857B (en) * 2018-08-29 2023-06-02 广州倬粤动力新能源有限公司 Zinc wire processing method and equipment
EP3827903A1 (en) * 2019-11-29 2021-06-02 Cockerill Maintenance & Ingenierie S.A. Device and method for manufacturing a coated metal strip with improved appearance
CN113528999B (en) * 2021-06-28 2023-03-24 重庆江电电力设备有限公司 Hot galvanizing system for strip steel
US11946145B2 (en) * 2022-01-05 2024-04-02 Commercial Metals Company Gate system, canopy mount, and roller for a kettle or trough used for galvanizing objects

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3538884A (en) 1965-06-01 1970-11-10 Gen Electric Continuous formation of intermediates
FR2318239A1 (en) * 1975-07-18 1977-02-11 Pechiney Ugine Kuhlmann High-speed coating of wire or strip - with e.g. aluminium, without diffusion between coating and substrate
CH616351A5 (en) * 1976-07-20 1980-03-31 Battelle Memorial Institute
US4366935A (en) * 1980-06-17 1983-01-04 Maria Jacobo G Device and process for spinning or twisting and winding yarn
SU960311A1 (en) * 1980-09-29 1982-09-23 Всесоюзный научно-исследовательский институт метизной промышленности Apparatus for applying metal coatings from melt
JPS6089556A (en) * 1983-10-19 1985-05-20 Sumitomo Electric Ind Ltd Continuous hot dipping method
JPS60245774A (en) * 1984-05-18 1985-12-05 Kobe Steel Ltd Hot dipping method
JPS61199064A (en) * 1985-02-27 1986-09-03 Hitachi Cable Ltd Hot dip coating apparatus
FI882657A (en) * 1988-06-25 1989-12-07 Spetsialnoe Proektno-Konstruktorskoe/I Tekhnologicheskoe Bjuro Çenergostalproektç ANORDNING FOER AOSTADKOMMANDE AV ETT SKYDDANDE SKIKT FRAON SMAELTA METALLER.
JPH028356A (en) * 1988-06-25 1990-01-11 Kawasaki Steel Corp Method and apparatus for metal hot dipping
JPH0228356A (en) * 1988-07-18 1990-01-30 Sanyo Electric Co Ltd Surface mounting type semiconductor device and its manufacture
FR2654749B1 (en) * 1989-11-21 1994-03-25 Sollac PROCESS AND DEVICE FOR PURIFYING A HOT-TIME LIQUID METAL BATH FROM A STEEL STRIP.
FR2660325B1 (en) * 1990-03-28 1994-01-21 Sollac METHOD AND DEVICE FOR CONTINUOUSLY COATING A STEEL STRIP.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218367B (en) * 2005-06-25 2010-05-19 Sms西马格股份公司 Device for the hot-dip coating of a metal strip
DE102008006909A1 (en) 2008-01-28 2009-07-30 Sms Demag Ag Hot dip coating of coldly/warmly rolled steel strip with zinc, zinc-aluminum alloy/aluminum, by vertically guiding the strip towards top by a coating vessel with liquid coating boiler that is equipped on the under side on ceramic channel

Also Published As

Publication number Publication date
KR100276043B1 (en) 2000-12-15
FI944194A0 (en) 1994-09-12
ES2101303T3 (en) 1997-07-01
DE4208578A1 (en) 1993-09-16
JPH07509277A (en) 1995-10-12
FI100890B (en) 1998-03-13
EP0630421A1 (en) 1994-12-28
CA2131912C (en) 2004-01-13
RU2093602C1 (en) 1997-10-20
AU674303B2 (en) 1996-12-19
JP2814306B2 (en) 1998-10-22
ATE153080T1 (en) 1997-05-15
WO1993018198A1 (en) 1993-09-16
CA2131912A1 (en) 1993-09-16
RU94041744A (en) 1997-05-27
BR9306075A (en) 1998-01-13
FI944194A (en) 1994-09-12
DE59306458D1 (en) 1997-06-19
US5702528A (en) 1997-12-30
AU3625693A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
EP0630421B1 (en) Apparatus for coating the surface of steel strip
DE69707257T2 (en) Device and method for hot dip coating
DE2921124A1 (en) METHOD AND DEVICE FOR APPLYING A COATING FROM A METAL MELT
WO2003027346A1 (en) Method and device for coating the surface of elongated metal products
EP1639147B1 (en) Method for hot dip coating a metal bar and method for hot dip coating
DE69626628T2 (en) METHOD AND DEVICE FOR HOLDING METAL MELT
DE69215062T2 (en) Meniscus covering of a steel sheet
DE19509681C1 (en) Continuous prodn. of metal strip by inversion casting
EP0630420B1 (en) Process for coating elongated materials with multiple layers
DE2656524C3 (en) Process for one-sided coating of a metal strip with molten metal
EP1563113B1 (en) Method and device for hot-dip coating a metal bar
EP2807280A1 (en) Method for improving a metal coating on a steel strip
EP0036098A1 (en) Process and apparatus for the single-faced coating of a continuous strip
EP1483423B1 (en) Device for hot dip coating metal strands
EP0142010A1 (en) Process and apparatus for the electrolytical deposition of metals
DE2819142A1 (en) PROCESS AND DEVICE FOR SINGLE SIDED COATING OF A METAL STRIP WITH MELTED METAL, IN PARTICULAR FOR SINGLE SIDED HOT GALVANIZING OF STEEL STRIP
DE2705420A1 (en) Continuous coating of metal strip - with molten metal pumped through nozzles in inert gas chamber and compacted by rolling
DE4132189C1 (en) Metal strip prodn. - by feeding molten metal from tundish via casting nozzle onto cooled conveyor belt
EP1430162B1 (en) Method for hot-dip finishing
DE10145105B4 (en) Apparatus and method for metal coating steel strip
DE10201175B4 (en) Process and device for coating a strip of steel, in particular of carbon steel, with crystallizable fractions of molten steel
EP1042525A1 (en) Method for producing a strip-like metal composite by high temperature dip coating
DE10160949A1 (en) System for coating the surface of a metal strip with a molten coating material comprises a coating cell having a channel formed as a coating channel through which the metal strip is guided and through which the molten coating material flows
DE10322665A1 (en) Melt dip coating a metal strand, especially a steel strand, comprises controlling and regulating the temperature of the coating metal in the region of a guiding channel by conveying a gas through a hollow chamber in the channel
DE10330657A1 (en) Device for hot dip coating a metal strand, especially a steel strip, comprises flow deviating elements arranged in a container and/or in a guiding channel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT LU NL SE

17Q First examination report despatched

Effective date: 19950425

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 153080

Country of ref document: AT

Date of ref document: 19970515

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 59306458

Country of ref document: DE

Date of ref document: 19970619

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2101303

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20120328

Year of fee payment: 20

Ref country code: FR

Payment date: 20120403

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120322

Year of fee payment: 20

Ref country code: SE

Payment date: 20120322

Year of fee payment: 20

Ref country code: BE

Payment date: 20120329

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120327

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120329

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59306458

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59306458

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20130304

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120313

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *SKB MGD INSTITUTE OF PHYSICS

Effective date: 20130304

Owner name: *MANNESMANN A.G.

Effective date: 20130304

Owner name: I.P. *BARDIN CENTRAL RESEARCH INSTITUTE FOR IRON A

Effective date: 20130304

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 153080

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130303

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130305

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120327

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130722