EP0630067B1 - Arrangement for the compensation of temperature-dependent volume changes of a waveguide - Google Patents

Arrangement for the compensation of temperature-dependent volume changes of a waveguide Download PDF

Info

Publication number
EP0630067B1
EP0630067B1 EP94104291A EP94104291A EP0630067B1 EP 0630067 B1 EP0630067 B1 EP 0630067B1 EP 94104291 A EP94104291 A EP 94104291A EP 94104291 A EP94104291 A EP 94104291A EP 0630067 B1 EP0630067 B1 EP 0630067B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
frame
arrangement according
arrangement
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94104291A
Other languages
German (de)
French (fr)
Other versions
EP0630067A1 (en
Inventor
Klaus Dr. Geissler
Jürgen Damaschke
Dieter Wolk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0630067A1 publication Critical patent/EP0630067A1/en
Application granted granted Critical
Publication of EP0630067B1 publication Critical patent/EP0630067B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/30Auxiliary devices for compensation of, or protection against, temperature or moisture effects ; for improving power handling capability

Definitions

  • the invention has for its object to provide an arrangement that is able to compensate for very large temperature-dependent changes in volume of a waveguide.
  • the arrangement of the invention makes it possible to compensate for very large thermal expansions of a waveguide, so that aluminum can be used as a waveguide material for space applications.
  • the frame enclosing the waveguide according to the invention from all sides can act simultaneously on several wall areas and thus cause an elastic deformation of the waveguide.
  • a preferred application of the invented arrangement would be a frequency multiplexer / demultiplexer (OMUX) which, in a known manner, consists of a collecting waveguide to which several bandpass filters tuned to different frequencies are coupled.
  • OMUX frequency multiplexer / demultiplexer
  • a temperature-dependent change in volume of the collecting waveguide causes on the one hand a drift in the waveguide wavelength and the waveguide impedance and on the other hand a shift in the spacing between the individual bandpass filters.
  • the waveguide 1 shows a cross section through a rectangular waveguide 1 which is clamped in a frame surrounding it on all sides.
  • the frame consists of two struts 2 and 3 (e.g. U-profiles), which are screwed together 6, 7 at their ends via spacers 4 and 5.
  • the waveguide 1 is e.g. made of aluminum, which has a greater thermal expansion than the material (e.g. Invar), from which at least parts of the frame 2, 3, 4, 5 (spacers 4, 5 can also be made of aluminum).
  • Ribs 8, 9 are formed on two opposite side walls of the waveguide 1 (or fastened by screws, soldering, etc.), which are fixed with the spacers 4, 5 of the frame. These ribs 8, 9 keep the waveguide at a distance in the frame, so that the waveguide wall can expand in the frame without affecting its struts 2, 3 or spacers 4, 5.
  • the waveguide 1 and the ribs 8 and 9 located there expand relative to the frame 2, 3, 4, 5. As shown in FIG. 2, this results in pressure forces F in the ribs 8, 9, which dent the side walls of the waveguide 1.
  • the ribs 8, 9 are made of a material (e.g. aluminum) that has a larger expansion coefficient than the material of the frame 2, 3, even the waveguide broadside, which is mainly responsible for the waveguide wavelength, is compared to its normal dimension a in the unexpanded state of the waveguide reduced.
  • the waveguide 1 cools down Tensile forces in the ribs 8, 9, which bulge the side walls of the waveguide 1 beyond the normal dimension a.
  • the forces in the ribs 8, 9 thus always counteract a change in volume of the waveguide 1 so that the wavelength and impedance of the waveguide 1 remain as constant as possible.
  • spacers 10 and 11 are additionally inserted between the struts 2 and 3 of the frame and the underlying side walls of the waveguide 1, which, like the struts 8 and 9, transmit deforming forces to the other side walls of the waveguide 1, or counteract unwanted bending of the walls.
  • the waveguide whose temperature-dependent volume changes are to be compensated for, has a rectangular shape.
  • the compensation arrangement can also be applied to waveguides with any other cross-sectional shapes.
  • the waveguide If the waveguide is longer, it can be clamped in a plurality of frames of the type described above, which are distributed along its longitudinal axis.

Description

Aus der DE 41 13 302 A1 ist es bekannt, bei einem Hohlraumresonator temperaturabhängige Volumenänderungen, die Verschiebungen der Resonanzfrequenz zur Folge haben, mit Hilfe eines über einer Stirnseite des Hohlraums angebrachten Bügels zu kompensieren, der eine größere Wärmeausdehnung als der Hohlraumresonator aufweist. Der Bügel ist mit seinen beiden Enden am Rand des Hohlraumes fixiert und ist in seiner Länge so bemessen, daß in ihm nach seiner Montage eine Zugspannung auftritt. Die Zugspannung des Bügels wird über einen Klotz auf die Stirnseite übertragen, wodurch sie eine Verformung erfährt, welche von den relativen temperaturabhängigen Ausdehnungen von Bügel und Hohlraum abhängt.From DE 41 13 302 A1 it is known to compensate for temperature-dependent volume changes in a cavity resonator, which result in shifts in the resonance frequency, with the aid of a bracket attached over an end face of the cavity, which has a greater thermal expansion than the cavity resonator. The bracket is fixed with its two ends to the edge of the cavity and is dimensioned in length so that tensile stress occurs in it after its assembly. The tension of the bracket is transferred to the end face via a block, causing it to deform, which depends on the relative temperature-dependent expansion of the bracket and cavity.

Der Erfindung liegt die Aufgabe zugrunde, eine Anordnung anzugeben, die in der Lage ist, sehr große temperaturabhängige Volumenänderungen eines Hohlleiters zu kompensieren.The invention has for its object to provide an arrangement that is able to compensate for very large temperature-dependent changes in volume of a waveguide.

Erfindungsgemäß wird diese Aufgabe durch die Merkmale des Anspruchs 1 gelöst. Zweckmäßige Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.According to the invention, this object is achieved by the features of claim 1. Appropriate developments of the invention emerge from the subclaims.

Insbesondere bei Raumfahrtanwendungen gibt es sehr große Temperaturschwankungen, die sich als starke Volumenänderungen von Hohlleiterbauelementen bemerkbar machen können, je nachdem aus welchem Material sie bestehen. Um dem entgegenzutreten, kann man Materialien wie z.B. Invar, verwenden, die nur sehr geringe temperaturabhängige Ausdehnungen zeigen. Gegenüber dem gebräuchlichen Aluminium, das wohl eine starke temperaturabhängige Ausdehnung hat, besitzt Invar aber die Nachteile, daß es etwa drei mal so schwer ist wie Aluminium und erheblich schlechter spanabhebend zu bearbeiten ist. Außerdem ist die Wärmeleitfähigkeit von Invar gegenüber Aluminium sehr gering. Invar-Bauteile lassen sich daher nur mit großem Aufwand in den Satelliten-Wärmekreislauf, der Heat Pipes aus Aluminium verwendet, integrieren.Particularly in space applications, there are very large temperature fluctuations, which can manifest themselves as large volume changes in waveguide components, depending on the material they are made of. To counteract this, materials such as Invar can be used, which show only very small temperature-dependent expansions. Compared to the common aluminum, which probably has a strong temperature-dependent expansion, Invar has that Disadvantages that it is about three times as heavy as aluminum and is much worse to machine. In addition, the thermal conductivity of Invar is very low compared to aluminum. Invar components can therefore only be integrated into the satellite heat circuit using aluminum heat pipes with great effort.

Die Anordnung der Erfindung ermöglicht es, sehr große Wärmeausdehnungen eines Hohlleiters zu kompensieren, so daß durchaus Aluminium als Hohlleitermaterial für Raumfahrtanwendungen eingesetzt werden kann. Der den Hohlleiter gemäß der Erfindung von allen Seiten umschließende Rahmen kann nämlich gleichzeitig auf mehrere Wandbereiche einwirken und somit eine elastische Verformung des Hohlleiters bewirken.The arrangement of the invention makes it possible to compensate for very large thermal expansions of a waveguide, so that aluminum can be used as a waveguide material for space applications. The frame enclosing the waveguide according to the invention from all sides can act simultaneously on several wall areas and thus cause an elastic deformation of the waveguide.

Eine bevorzugte Anwendung der erfundenen Anordnung wäre ein Frequenz-Multiplexer/Demultiplexer (OMUX) der in bekannter Weise aus einem Sammelhohlleiter besteht, an den seitlich mehrere auf verschiedene Frequenzen abgestimmte Bandpaßfilter angekoppelt sind. Bei einem solchen OMUX bewirkt eine temperaturabhängige Volumenänderung des Sammelhohlleiters einerseits eine Drift der Hohlleiterwellenlänge und der Hohlleiterimpedanz und andererseits eine Verschiebung der Abstände zwischen den einzelnen Bandpaßfiltern. Diese Effekte würden zu einer Deformation der Übertragungscharakteristik des Multiplexers/Demultiplexers führen, wenn sie nicht durch die erfindungsgemäße Anordnung kompensiert würden.A preferred application of the invented arrangement would be a frequency multiplexer / demultiplexer (OMUX) which, in a known manner, consists of a collecting waveguide to which several bandpass filters tuned to different frequencies are coupled. In such an OMUX, a temperature-dependent change in volume of the collecting waveguide causes on the one hand a drift in the waveguide wavelength and the waveguide impedance and on the other hand a shift in the spacing between the individual bandpass filters. These effects would lead to a deformation of the transmission characteristics of the multiplexer / demultiplexer if they were not compensated for by the arrangement according to the invention.

Anhand eines in der Zeichnung dargestellten Ausführungsbeispiels wird nun die Erfindung näher erläutert.

  • Fig. 1 zeigt einen Querschnitt durch einen in einem Rahmen eingespannten Hohlleiter und
  • Fig. 2 zeigt einen Querschnitt durch einen verformten Hohlleiter.
The invention will now be explained in more detail with reference to an embodiment shown in the drawing.
  • Fig. 1 shows a cross section through a waveguide clamped in a frame and
  • Fig. 2 shows a cross section through a deformed waveguide.

In der Figur 1 ist ein Querschnitt durch einen Rechteckhohlleiter 1 dargestellt, der in einen ihn allseits umgebenden Rahmen eingespannt ist. Der Rahmen besteht aus zwei Streben 2 und 3 (z.B. U-Profile), die an ihren Enden über Abstandhalter 4 und 5 miteinander verschraubt 6, 7 sind. Der Hohlleiter 1 besteht z.B. aus Aluminium, das eine größere Wärmeausdehnung hat als das Material (z.B. Invar), aus dem zumindest Teile des Rahmen 2, 3, 4, 5 (Abstandhalter 4, 5 können auch aus Aluminium sein) gefertigt ist.1 shows a cross section through a rectangular waveguide 1 which is clamped in a frame surrounding it on all sides. The frame consists of two struts 2 and 3 (e.g. U-profiles), which are screwed together 6, 7 at their ends via spacers 4 and 5. The waveguide 1 is e.g. made of aluminum, which has a greater thermal expansion than the material (e.g. Invar), from which at least parts of the frame 2, 3, 4, 5 (spacers 4, 5 can also be made of aluminum).

An zwei einander gegenüberliegenden Seitenwänden des Hohlleiters 1 sind Rippen 8, 9 angeformt (oder durch Schrauben, Löten etc. befestigt), die mit den Abstandhaltern 4, 5 des Rahmens fixiert sind. Diese Rippen 8, 9 halten den Hohlleiter auf Distanz in dem Rahmen, so daß sich die Hohlleiterwandung im Rahmen ausdehnen kann, ohne seine Streben 2, 3 oder Abstandhalter 4, 5 zu tangieren.Ribs 8, 9 are formed on two opposite side walls of the waveguide 1 (or fastened by screws, soldering, etc.), which are fixed with the spacers 4, 5 of the frame. These ribs 8, 9 keep the waveguide at a distance in the frame, so that the waveguide wall can expand in the frame without affecting its struts 2, 3 or spacers 4, 5.

Bei Erwärmung dehnen sich der Hohlleiter 1 und die daran befindlichen Rippen 8 und 9 gegenüber dem Rahmen 2, 3, 4, 5 aus. Daraus resultieren, wie Fig. 2 verdeutlicht, in den Rippen 8, 9 Druckkräfte F, welche die Seitenwände des Hohlleiters 1 eindellen. Dadurch, daß die Rippen 8, 9 aus einem Material (z.B. Aluminium) bestehen, das einen größeren Ausdehnungskoeffizienten als das Material des Rahmens 2, 3 hat, wird sogar die für die Hohlleiterwellenlänge hauptsächlich verantwortliche Hohlleiterbreitseite gegenüber ihrer Normalabmessung a im nicht ausgedehnten Zustand des Hohlleiters reduziert. Umgekehrt entstehen bei Volumenverkleinerung durch Abkkühlung des Hohlleiters 1 Zugkräfte in den Rippen 8, 9, welche die Seitenwände des Hohlleiters 1 über die Normalabmessung a hinaus ausbeulen.When heated, the waveguide 1 and the ribs 8 and 9 located there expand relative to the frame 2, 3, 4, 5. As shown in FIG. 2, this results in pressure forces F in the ribs 8, 9, which dent the side walls of the waveguide 1. Because the ribs 8, 9 are made of a material (e.g. aluminum) that has a larger expansion coefficient than the material of the frame 2, 3, even the waveguide broadside, which is mainly responsible for the waveguide wavelength, is compared to its normal dimension a in the unexpanded state of the waveguide reduced. Conversely, when the volume is reduced, the waveguide 1 cools down Tensile forces in the ribs 8, 9, which bulge the side walls of the waveguide 1 beyond the normal dimension a.

Die Kräfte in den Rippen 8, 9 wirken also immer einer Volumenänderung des Hohlleiters 1 so entgegen, daß die Wellenlänge und Impedanz des Hohlleiters 1 möglichst konstant bleiben.The forces in the ribs 8, 9 thus always counteract a change in volume of the waveguide 1 so that the wavelength and impedance of the waveguide 1 remain as constant as possible.

Beim Ausführungsbeispiel in Fig. 1 sind zusätzlich zwischen den Streben 2 und 3 des Rahmens und den darunterliegenden Seitenwänden des Hohlleiters 1, Distanzscheiben 10 und 11 eingefügt, die ähnlich wie die Streben 8 und 9 verformende Kräfte auf die anderen Seitenwände des Hohlleiters 1 übertragen, bzw. ungewünschtem Ausbiegen der Wände entgegenwirken.In the embodiment in FIG. 1, spacers 10 and 11 are additionally inserted between the struts 2 and 3 of the frame and the underlying side walls of the waveguide 1, which, like the struts 8 and 9, transmit deforming forces to the other side walls of the waveguide 1, or counteract unwanted bending of the walls.

In dem beschriebenen Ausführungsbeispiel hat der Hohlleiter, dessen temperaturabhängigen Volumenänderungen kompensiert werden sollen, Rechteckform. Die Kompensationsanordnung ist aber ebenso auf Hohlleiter mit beliebigen anderen Querschnittsformen anwendbar.In the exemplary embodiment described, the waveguide, whose temperature-dependent volume changes are to be compensated for, has a rectangular shape. However, the compensation arrangement can also be applied to waveguides with any other cross-sectional shapes.

Bei einer größeren Länge des Hohlleiters kann dieser in mehrere entlang seiner Längsachse verteilt angeordnete Rahmen der vorangehend beschriebenden Art eingespannt werden.If the waveguide is longer, it can be clamped in a plurality of frames of the type described above, which are distributed along its longitudinal axis.

Claims (7)

  1. Arrangement for compensating temperature-dependent volumetric changes in a waveguide, characterized in that the waveguide (1) is clamped in at least one frame (2, 3, 4, 5) whose temperature-dependent expansion is smaller than that of the waveguide (1), in that the waveguide (1) is joined to the frame (2, 3, 4, 5) in a force-closed fashion at at least two mutually opposite points of its wall, and in that the force-closed joints between the frame (2, 3, 4, 5) and waveguide (1) are made by distance pieces (8, 9) which transmit compressive or tensile forces, resulting from a differential thermal expansion between the frame (2, 3, 4, 5) and waveguide (1), onto the waveguide wall and cause deformations there.
  2. Arrangement according to Claim 1, characterized in that the distance pieces are constructed as ribs (8, 9) which are arranged outside on the waveguide wall.
  3. Arrangement according to Claim 1, characterized in that the waveguide (1) consists of aluminium, and at least parts of the frame (2, 3, 4, 5) consist of invar.
  4. Arrangement according to Claim 1, characterized in that the waveguide (1) is clamped in a plurality of frames (2, 3, 4, 5) which are arranged distributed along its longitudinal axis and oriented transverse thereto.
  5. Arrangement according to Claim 1, characterized in that the frame (2, 3, 4, 5) comprises two struts (2, 3) which are screwed to one another at their ends via spacers (4, 5).
  6. Arrangement according to Claim 1, characterized in that stiffening elements (10, 11) are provided in the wall regions of the waveguide (1) which are not joined to the frame (2, 3, 4, 5) in a force-closed fashion.
  7. Arrangement according to one of the preceding claims, characterized by its use in a frequency multiplexer/demultiplexer, comprising a collective waveguide to which a plurality of bandpass filters tuned to different frequencies are coupled at the side.
EP94104291A 1993-06-16 1994-03-18 Arrangement for the compensation of temperature-dependent volume changes of a waveguide Expired - Lifetime EP0630067B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4319886A DE4319886C1 (en) 1993-06-16 1993-06-16 Arrangement for compensating temperature-dependent changes in volume of a waveguide
DE4319886 1993-06-16

Publications (2)

Publication Number Publication Date
EP0630067A1 EP0630067A1 (en) 1994-12-21
EP0630067B1 true EP0630067B1 (en) 1997-08-27

Family

ID=6490421

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94104291A Expired - Lifetime EP0630067B1 (en) 1993-06-16 1994-03-18 Arrangement for the compensation of temperature-dependent volume changes of a waveguide

Country Status (3)

Country Link
US (1) US5428323A (en)
EP (1) EP0630067B1 (en)
DE (2) DE4319886C1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978691A (en) * 1996-07-19 1999-11-02 Mills; Alexander Knight Device and method for noninvasive continuous determination of blood gases, pH, hemoglobin level, and oxygen content
US6694157B1 (en) 1998-02-10 2004-02-17 Daedalus I , L.L.C. Method and apparatus for determination of pH pCO2, hemoglobin, and hemoglobin oxygen saturation
US6232852B1 (en) 1999-02-16 2001-05-15 Andrew Passive Power Products, Inc. Temperature compensated high power bandpass filter
DE10031407A1 (en) * 2000-06-28 2002-01-10 Daimler Chrysler Ag Hermetic high-frequency module and method for producing it has a ceramic casing base and a ceramic casing cover with an adjusting device for positioning in a hollow conductor on the casing base.
JP2004508897A (en) * 2000-09-21 2004-03-25 エラン・ファルマ・インターナショナル・リミテッド Reshaping and injection system
EP1376748B1 (en) * 2002-06-20 2007-10-24 Com Dev Ltd. Phase stable waveguide assembly
DE10310862A1 (en) 2003-03-11 2004-09-23 Tesat-Spacecom Gmbh & Co. Kg Temperature compensation method for cylinder resonator with dual-mode application e.g. for microwave filter, by elastic deformation of cylindrical resonator wall
US7650181B2 (en) * 2005-09-14 2010-01-19 Zoll Medical Corporation Synchronization of repetitive therapeutic interventions
US7864001B2 (en) * 2006-04-14 2011-01-04 Spx Corporation Manifold combiner for multi-station broadcast sites apparatus and method
US7564327B2 (en) 2006-10-05 2009-07-21 Com Dev International Ltd. Thermal expansion compensation assemblies
FR2917904B1 (en) * 2007-06-22 2009-09-18 Thales Sa MECHANICAL TEMPERATURE COMPENSATION DEVICE FOR WAVEGUIDE WITH PHASE STABILITY
FR2945673B1 (en) * 2009-05-15 2012-04-06 Thales Sa MULTI-MEMBRANE FLEXIBLE WALL DEVICE FOR FILTERS AND MULTIPLEXERS OF THERMO-COMPENSATED TECHNOLOGY
FR2949923B1 (en) * 2009-09-04 2011-08-26 Thales Sa THERMALLY OPTIMIZED HYPERFREQUENCY CHANNEL MULTIPLEXING DEVICE AND SIGNAL REPEATING DEVICE COMPRISING AT LEAST ONE SUCH MULTIPLEXING DEVICE.
FR2954597B1 (en) * 2009-12-23 2015-01-02 Thales Sa COMPACT THERMO-ELASTIC ACTUATOR FOR WAVEGUIDE, WAVEGUIDE WITH PHASE STABILITY, AND MULTIPLEXING DEVICE COMPRISING SUCH ACTUATOR.
US9762265B2 (en) 2013-03-05 2017-09-12 Exactearth Ltd. Methods and systems for enhanced detection of electronic tracking messages
DE102015016462A1 (en) 2015-12-21 2017-06-22 Tesat-Spacecom Gmbh & Co.Kg Method for operating a selection circuit device for signals

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL62745C (en) * 1942-03-26
US3034078A (en) * 1959-06-29 1962-05-08 Nat Company Inc Temperature compensated microwave cavity
GB1018923A (en) * 1963-01-14 1966-02-02 Standard Telephones Cables Ltd Waveguide filters
US3636480A (en) * 1970-01-28 1972-01-18 Sperry Rand Corp Stable solid dielectric microwave resonator and separable waveguide means
US4057772A (en) * 1976-10-18 1977-11-08 Hughes Aircraft Company Thermally compensated microwave resonator
US4287495A (en) * 1980-03-31 1981-09-01 The Boeing Company Thermally compensated phase-stable waveguide
IT1131598B (en) * 1980-07-16 1986-06-25 Telettra Lab Telefon CAVITY FOR MICROWAVES STABLE IN TEMPERATURE
DE4113302C2 (en) * 1991-04-24 1999-10-14 Bosch Gmbh Robert Pot circle or loaded cavity resonator with temperature compensation
US5274344A (en) * 1991-05-16 1993-12-28 Siemens Aktiengesellschaft Branch separating filter

Also Published As

Publication number Publication date
EP0630067A1 (en) 1994-12-21
US5428323A (en) 1995-06-27
DE59403842D1 (en) 1997-10-02
DE4319886C1 (en) 1994-07-28

Similar Documents

Publication Publication Date Title
EP0630067B1 (en) Arrangement for the compensation of temperature-dependent volume changes of a waveguide
EP0340385A2 (en) Inflatable sealing
DE4337162C2 (en) Vibration absorber for damping structure-borne noise
DE4113302C2 (en) Pot circle or loaded cavity resonator with temperature compensation
DE60317014T2 (en) Waveguide arrangement with stable phase
DE19859028A1 (en) Frequency-stabilized waveguide arrangement
EP0477865A1 (en) High power strip guide laser
DE1906059A1 (en) Comb filter
DE2427703A1 (en) MECHANICAL RESONANCE FILTER
DE2004730A1 (en) Waveguide bandstop filter
EP0133640B1 (en) Exhibition wall
EP0430921A1 (en) Wall made of box-like panels
DE102019105941A1 (en) Resonator with temperature compensation
DE4029410A1 (en) Cavity resonator with temp. compensation - using bimetallic plate with higher heat expansion coefft. metal lying on outside
DE2502264A1 (en) GLAZING UNIT
WO1999007958A1 (en) Spacer
EP0188684B1 (en) Cantilever cross hairs, particularly for optical sighting devices
DE931784C (en) Waveguide with a rectangular cross section for the transmission of electromagnetic hollow tube waves
DE19609070C2 (en) Device for suppressing relative movements in a vehicle, aircraft, etc.
DE69830035T2 (en) Filter, duplexer and communication device
EP1301668B1 (en) Structural member
DE19609566C1 (en) Frequency diplexer especially for two closely adjacent frequency bands
DE69819962T2 (en) Surface wave arrangement
EP3185418A1 (en) Method for operating a selection switching device for signals
EP1249332A1 (en) Apparatus for cooling and calibrating an extruded plastic profile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940927

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19970205

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59403842

Country of ref document: DE

Date of ref document: 19971002

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030513

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120329

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130408

Year of fee payment: 20

Ref country code: GB

Payment date: 20130321

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140317