EP0629138B1 - Stoffbehandlung - Google Patents

Stoffbehandlung Download PDF

Info

Publication number
EP0629138B1
EP0629138B1 EP93905105A EP93905105A EP0629138B1 EP 0629138 B1 EP0629138 B1 EP 0629138B1 EP 93905105 A EP93905105 A EP 93905105A EP 93905105 A EP93905105 A EP 93905105A EP 0629138 B1 EP0629138 B1 EP 0629138B1
Authority
EP
European Patent Office
Prior art keywords
process according
pyrolyser
plasma
stream
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93905105A
Other languages
English (en)
French (fr)
Other versions
EP0629138A4 (en
EP0629138A1 (de
Inventor
Rowan Thomas Deam
Trevor Neil Kearney
Ian Michael Ogilvy
Alan Edward Mundy
Paul Adrian Zemancheff
Athos Ivan Vit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commonwealth Scientific and Industrial Research Organization CSIRO
Snoddis Tesmar Ltd
Original Assignee
Commonwealth Scientific and Industrial Research Organization CSIRO
Snoddis Tesmar Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commonwealth Scientific and Industrial Research Organization CSIRO, Snoddis Tesmar Ltd filed Critical Commonwealth Scientific and Industrial Research Organization CSIRO
Publication of EP0629138A1 publication Critical patent/EP0629138A1/de
Publication of EP0629138A4 publication Critical patent/EP0629138A4/en
Application granted granted Critical
Publication of EP0629138B1 publication Critical patent/EP0629138B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/40Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by heating to effect chemical change, e.g. pyrolysis
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0028Liquid extinguishing substances
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/19Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B19/00Heating of coke ovens by electrical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B39/00Cooling or quenching coke
    • C10B39/04Wet quenching
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2203/00Aspects of processes for making harmful chemical substances harmless, or less harmful, by effecting chemical change in the substances
    • A62D2203/04Combined processes involving two or more non-distinct steps covered by groups A62D3/10 - A62D3/40
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2203/00Aspects of processes for making harmful chemical substances harmless, or less harmful, by effecting chemical change in the substances
    • A62D2203/10Apparatus specially adapted for treating harmful chemical agents; Details thereof

Definitions

  • This invention relates to thermal decomposition processes such as the destruction of toxic waste matter, and is concerned with both a process and apparatus. It will be convenient to hereinafter particularly describe the invention with reference to the example application to destruction of waste matter.
  • This invention relates particularly but not exclusively to treatment of waste products resulting from chemical treatment, chemical conversion and the like.
  • These products often contain highly toxic directly physiologically active or carcinogenic substances.
  • such products can include per- or polychlorinated and per- or polyfluorinated aliphatic or aromatic substances such as chlorophenols, dioxins and furans. In addition to their toxicity, these compounds often exhibit high chemical and thermal resistance.
  • Waste matter destruction is becoming a problem of great magnitude throughout the world.
  • Two methods of removing contaminated material have become established, namely land fill and high temperature combustion techniques.
  • the generally attainable temperatures for example up to 1500°C, are insufficient to destroy all the toxic substances.
  • the most thermally stable harmful substances are thus delivered into the atmosphere.
  • the combustion process can promote the formation of additional dioxins and furans which are then also delivered into the atmosphere.
  • US-A-4644877 discloses a pyrolytic waste destruction system in which waste material is fed to a plasma burner and exits via cylindrical member into a reaction vessel forming a reaction chamber. Waste products exit chamber via outlet openings for quenching in spray ring. The exit chamber is for cooling the pyrolysed waste material to form recombined products.
  • a thermal decomposition process includes the steps of forming a plasma within a pyrolyser, injecting material to be treated as a fine spray and/or a gas into said plasma, moving said material as a stream through said pyrolyser in a direction towards an exit end of the pyrolyser, maintaining said material at a high temperature during said material stream movement so that substantially complete pyrolysis of said material is achieved and recombination of unwanted by-products is substantially prevented, moving said material stream through said exit end at a temperature above that at which said recombination will occur, and subjecting said material stream to rapid quenching at or adjacent said exit end and before the temperature of that material stream falls to a level at which recombination to said unwanted by-products will occur.
  • the quenched material is subjected to an environment in which residual toxic compounds are adsorbed on a solid carrier substance so as to be thereby capable of separation from the main body of the material.
  • a solid carrier substance is particulate carbon, and it is further preferred that the carbon is formed by the treatment of the waste material in the pyrolyser.
  • the material to be treated may be in the form of a liquid which is atomised on introduction to the pyrolyser.
  • the material may be in a particulate solid form or in the form of a gas.
  • the pyrolyser includes a high energy electrothermal plasma into which the atomised material is injected so as to result in dissociation of the molecules of which the material is composed.
  • the speed at which such dissociation occurs is governed, at least in part, by the temperature of the plasma.
  • the material emerges from the plasma arc as a stream which passes through a hot zone within which the temperature of the material is maintained at a sufficiently high level to encourage continuation of the pyrolysis which is commenced within the plasma. That may be achieved in a number of ways as hereinafter described. Residence time within the hot zone may be determined as appropriate to increase the probability that there is complete dissociation of all molecules within the material stream. The longer the time for which a particular material is subjected to heating, the greater the likelihood of decomposing compounds exhibiting high thermal resistance. Generally the higher the temperature, the greater will be the speed at which decomposition is accomplished.
  • the material stream is cooled by being subjected to rapid quenching in a cooling zone after leaving the hot zone, and the speed of quenching is preferably such as to prevent, or at least minimise, recombination of the dissociated ions.
  • Residual toxic compounds which are separated from the material stream by absorption or adsorbtion on particulate carbon as previously described, may be destroyed by subjecting the particulate carbon to appropriate further treatment.
  • the aforementioned hot zone is defined by a tube (hereinafter called the flight tube) through which the material stream travels between the plasma arc and the cooling zone.
  • the material stream preferably enters that tube immediately upon emerging from the plasma arc.
  • the dimensions and construction of the flight tube can have an influence on the efficiency of the process as hereinafter discussed.
  • the pyrolysis of material such as waste material may result in production of carbon particles as soot or activated carbon, and those particles could influence downstream processing of the material.
  • the particles could block or partially block the flight tube. This will especially be the case where the material to be treated comprises mainly hydrocarbons.
  • the material comprises mainly oxygen containing organic compounds, there may not be a problem with excessive carbon particles.
  • oxygen is introduced into the plasma so as to react with carbon particles as may be formed, and thereby produce gaseous carbon compounds with the concomitant evolution of heat.
  • Such addition of oxygen may therefore lower the level of solid carbon within the material stream so as to more easily facilitate downstream processing of that material for example, facilitate passage of the material stream through the flight tube.
  • the liberated heat assists in maintaining the temperature of the material stream suitably high as it passes through the flight tube to resist recombination to form toxic compounds.
  • the need to convert solid carbon to gaseous carbon compounds by addition of oxygen to the process material may be eliminated, or at least reduced, by the dilution of the material to be processed in an inert carrier liquid which passes through the apparatus without affecting the reaction dynamics.
  • the carrier liquid will have the effect of lowering the percentage by weight of carbon particles in the stream issuing from the plasma.
  • the amount of inert carrier liquid added will be controlled to reduce the percentage by weight of carbon particles to a level that avoids blockages of equipment without the addition of any oxygen.
  • the level of carbon particles in the material stream issuing from the flight tube may be such as to cause blocking or partially blocking at the cooling zone and/or at some other part of the apparatus following the cooling zone, and that may occur notwithstanding the introduction of oxygen into the plasma as described above.
  • further oxygen is added to the stream issuing from the flight tube so as to react with the carbon particles and lower the level of particles within the material stream.
  • the reaction of the oxygen with the carbon is exothermic which assists in maintaining the temperature of the material stream suitably high until actual quenching of the stream takes place.
  • the high temperatures tend to resist recombination of ions to form toxic compounds. It is preferred that a sharp temperature gradient be effectively provided at the cooling zone.
  • the cooled material may be exposed to an alkaline environment for encouraging the adsorption of any acidic residual toxic compounds on the carrier substance, for example carbon particles.
  • toxic compounds which escape pyrolysis, or which are formed by recombination following pyrolysis can be isolated on the carbon particles, and those particles may be separated from the remainder of the processed material by any suitable means. By way of example, that separation may be achieved through filtration.
  • the separated carbon particles, with toxic compounds adsorbed thereon, may be subjected to further treatment to decompose the toxic compounds.
  • the particles may be subjected to further treatment which leads to the toxic compounds being desorbed into a liquid which is then recirculated through the process.
  • the carbon particles may be disposed of by landfill.
  • the procedure adopted in any circumstance will generally depend on the level of toxic compounds on the carbon particles.
  • a thermal decomposition apparatus includes a pyrolyser having means for generating a plasma arc and passage means for containing plasma beyond the region of said arc, material introducing means located at or adjacent the region of said arc and being operative to introduce material into said pyrolyser as a fine spray and/or as a gas, and quenching means located at or adjacent an exit end of said pyrolyser, wherein said pyrolyser is operative to maintain said introduced material at a high temperature so that substantially complete pyrolysis of said material is achieved and recombination of unwanted by-products is substantially prevented during movement of said material through said passage means to the exit end of said pyrolyser and said quenching means is operative rapidly to quench said material emerging from said exit end before the temperature of that emerging material falls to a level at which recombination to said unwanted by-products will occur, and wherein said passage means provides for control of a boundary layer of said material for ensuring a
  • the line 1 represents the path of the material to be treated as it is introduced into the pyrolyser 2.
  • the material may be introduced into the pyrolyser 2 in any suitable form, but it is preferred that it be in the form of a fine spray of liquid and/or solid particles, or a gas, or a combination of such a fine spray and a gas. It is further preferred that the material be injected into the pyrolyser 2 under pressure.
  • the stream of liquid may be atomised at or immediately preceding the point of injection into the pyrolyser 2, and any suitable nozzle or other means may be used for that purpose.
  • the liquid droplets resulting from the atomisation have a diameter of 100 micrometer or less.
  • the liquid droplets need to be sufficiently small to enable complete pyrolysis. If they are too large, the surface of the droplets may merely char under the conditions existing within the pyrolyser 2.
  • each of those particles is preferably of a suitably small size for the reason given above.
  • a particle size of 100 micrometer or less will generally be satisfactory.
  • the pyrolyser 2 includes means 3 for generating a plasma arc 4 so as to enable production of a high energy electrothermal plasma.
  • the pyrolyser 2 also includes a hot zone 6 immediately following the arc generating means 3 and which receives the material stream 5 emerging from the arc generating means 3.
  • the plasma gas 7 is argon or an argon mixture as that produces an inert plasma atmosphere in which the pyrolysis takes place.
  • the arc generating means 3 may, for example, be a plasma torch the same as or similar to that disclosed by PCT Patent Application AU89/00396.
  • the temperature within the plasma may typically be in the region 10,000°C to 15,000°C.
  • other types of plasma such as a steam plasma may also be used.
  • the direction in which the material to be treated is introduced into the plasma arc 4 may be selected according to preference or circumstances.
  • the direction may be generally parallel to the line of the arc 4, or generally transverse thereto, but the later is usually preferred.
  • the region of the pyrolyser 2 at which the material to be treated is introduced into the plasma is maintained at a suitably high temperature, for example, a temperature of 1,000°C or preferably higher.
  • the material may be injected directly into the core of the plasma arc 4, or at least close to the downstream attachment 8 of the arc 4. If direct injection is not possible, the surfaces of the torch 3 in the region of material introduction may be heated to maintain a temperature of a suitably high level.
  • FIG 2 provides a clearer indication of the preferred location of the point 9 at which material to be treated is introduced into the pyrolyser 2.
  • the particular torch 3 which is shown in Figure 2, and which forms part of the pyrolyser 2, includes a cathode 10 and two anodes 11 and 12 separated by a bank 13 of spacers.
  • the anode 11 functions as a start-up anode for initiating the arc 4, and once generated the arc 4 is then extended so that its downstream attachment 8 is at the anode 12.
  • Other forms of torches could be adopted.
  • material to be treated is injected into the torch passage 14 at or adjacent the location of the arc attachment 8.
  • the direction of that injection is generally transverse to the longitudinal axis of the passage 14 as that facilitates injection into the core of the arc 4.
  • the molecules which make-up the injected material are caused to dissociate under the influence of the high temperatures prevailing within the plasma, and the material thereby undergoes pyrolysis, or at least substantial pyrolysis.
  • the material emerges from the plasma arc 4 as a stream 5 which is directed into and through the hot zone 6.
  • the stream of material 5 is primarily a gas having associated therewith particles of solid carbon in the form of soot.
  • the hot zone 6 is formed by an elongate hollow tube which will be hereinafter referred to as the flight tube.
  • the tube 6 in effect forms an extension or continuation of the torch passage 14, and the dimensions of the tube 6 will be selected to suit particular requirements and circumstances. It is a basic function of the tube 6 to provide containment of the material stream 5 in an environment which promotes continuation of the pyrolysis process. That is, it may happen that pyrolysis of the material is not completed within the torch 3, and the function of the tube 6 is to provide an extension of the environment within which pyrolysis takes place.
  • the tube 6 extends the residence time of the material within an appropriate high temperature environment and thereby optimises the possibility that complete pyrolysis will be achieved.
  • the flight tube is slender and has a diameter to length ratio of about 2 in 25.
  • the length of the tube may be selected so as to achieve a suitable residence time of the processed material within the tube and any suitable diameter to length ratio may be adopted. The nature of the toxic compounds within the material to be treated will influence the determination of an appropriate residence time within the tube 6.
  • the temperature of the stream 5 entering the tube 6 may be above 3,500°C and the temperature of the stream exiting the tube 6 may be 1,200°C, or thereabouts.
  • the fluid flow boundary layer of the material stream which contacts the surrounding surface of the tube 6 will tend to cool because of that contact.
  • the tube 6 may be designed in such a way as to enable control of the boundary layer so that it is kept as thin as possible.
  • it is desirable that the temperature of the material stream is substantially consistent throughout that stream as it emerges from the exit end 15 of the pyrolyser 2.
  • FIG. 3 One approach to the foregoing is shown diagrammatically in Figure 3.
  • the inner surface of the flight tube 6 shown in Figure 3 is provided with a series of lips 16 which tend to deflect the boundary layer of the material stream 5 back towards the axial center of that stream.
  • the resulting turbulence inhibits the formation of a distinct cool boundary layer, and there is continual mixing of the boundary layer with the inner relatively hot body of the material stream such that a substantially consistent temperature is maintained across the width of the stream.
  • Figure 4 illustrates another approach in which the tube 6 has a lining 17 which is capable of withstanding high temperatures, and particularly temperatures above 1,000°C.
  • the lining 17 may be composed of a ceramic material. If desired, such an arrangement may be modified by introducing an external source of heat to the lining 17 at an appropriate location, such as adjacent to the exit end 15 of the pyrolyser 2.
  • the body 18 of the tube 6 which surrounds the lining 17 may be cooled by water (for example) entering at the inlet 19 and exiting at the outlet 20. Similar cooling may be desirable in other forms of the tube 6, including that shown in Figure 3.
  • the material stream 5 issuing from the torch 3 will contain carbon particles. If the level of carbon particles is relatively high, there may be a danger of the carbon blocking the tube 6.
  • a stream of oxygen may be fed into the pyrolyser 2 for converting some of the carbon particles to gaseous carbon compounds.
  • the oxygen is fed into the torch 3 at a location 21 adjacent the point 9 at which the material to be treated is introduced. Other arrangements are clearly possible.
  • the tube 6 may include a graphite lining.
  • it may be important to control the stream of oxygen entering at 21, so as to maintain an oxygen deficient atmosphere within the tube 6.
  • the ratio of oxygen to carbon may be maintained at 30% below stoichiometric levels. If such an atmosphere is not maintained some oxygen may react with the carbon of the tube lining, thereby eating away the lining.
  • An oxygen deficient atmosphere will also tend to reduce the combination of dissociated ions to form undesirable oxygen containing compounds.
  • the material stream 5 passing out of the exit end 15 of the pyrolyser 2 is subjected to quenching in a cooling zone 22.
  • the material is then, and/or subsequently, subjected to an environment as hereinafter described in which residual toxic organic compounds are adsorbed on a particulate carrier.
  • the carrier substance may be provided by the unreacted carbon particles remaining within the material stream 5.
  • the level of carbon particles in the material stream 5 passing out of the exit end 15 may, for example, be 1% by weight, or greater. Such a level of carbon may cause clogging or blocking of components of the processing apparatus which follow the pyrolyser 2. Consequently, in some circumstances it may be desirable to further reduce the carbon content by the introduction of a further stream 23 of oxygen to convert some of the remaining carbon particles to gaseous carbon products.
  • the carbon content of the material stream entering the cooling zone 22 is in the order of 0.5% by weight.
  • the introduction of the further oxygen stream 23 may have another effect. That is, the heat generated by the reaction of that oxygen with carbon may assist in maintaining the material stream 5 at a suitably high temperature right up until actual quenching takes place.
  • the temperature of the material stream 5 just prior to quenching be at least 1,500°C, and it is preferred that the temperature be in order of 1,800°C to 2,000°C.
  • the higher temperatures resist recombination of dissociated ions to form toxic compounds, for example dioxins.
  • the cooling zone 22 includes a bank of sprays 24 arranged to produce a cool barrier 25 through which the material stream 5 must pass. That is, the stream 5 is confined to a passage 26 which is completely filled at the location of the sprays 24 by the barrier 25.
  • the arrangement is such that quenching of the material stream is complete, and that as a result there is a very sudden sharp drop in the temperature of the material.
  • the passage 26 is formed as an extension of the passage through the tube 6.
  • the cooled material issuing from the cooling zone 22 may be passed into and through a scrubber 27 as shown.
  • the pH of the scrubber 27 will generally be alkaline for removing acidic compounds from the material received.
  • the carbon particles within that material may be dispersed within a body 28 of the alkaline scrubber liquor so that acidic organic compounds are encouraged to be adsorbed on the carbon particles.
  • the optimum process parameters such as pH and temperature of the scrubber, liquor which are required to achieve maximum toxic organic compound adsorption, may be determined by routine experimentation.
  • the scrubber liquor is a sodium hydroxide solution, but other types of liquor may be used.
  • the same liquor may be used in the quench sprays 24 and the scrubber sprays 29.
  • a pump 30 may operate to draw liquor from the liquor body 28 to feed the sprays 24 and 29.
  • the line 31 in Figure 1 represents the supply of liquor to the scrubber 27, and the line 32 represents the withdrawal of spent liquor from the scrubber 27.
  • the carbon particles may be separated from the scrubber liquor by means of a simple filtration process, which is indicated in Figure 1 by the block 33. That filtration may be carried out on a continuous basis or on a batch basis.
  • the toxic organic compounds adsorbed on the carbon particles may be separated from the carbon particles by a desorption process which is represented by the block 34 in Figure 1. That is, the adsorption process effected in the scrubber 27 is reversed.
  • the compounds are typically desorbed in water which can be recycled through the process as part of the material input 1.
  • the scrubber 27 has a rectangular configuration and is substantially larger than the tube which forms the cooling zone 22.
  • a plurality of scrubber sprays 29 are located in the operatively upper region of the scrubber 27 for directing scrubber liquor as a fine spray or mist. The direction of that spray or mist is preferably downwards.
  • the apparatus may include an explosion vent 35 as shown in Figure 5, to vent the system in the event of the build-up of an explosive gaseous mixture. This is an important safety feature to reduce the danger of explosion.
  • the explosion vent is of known form and construction. In the example shown, the vent 35 is located adjacent the scrubber 27.
  • the material which has remained in the gaseous form and which has not been scrubbed from the gas in the scrubber 27, may be passed to atmosphere by way of a stack 36 shown in Figure 5.
  • the stack 36 may, for example, include a number of stack sprays 37 which operate to remove any remaining traces of gaseous compounds having an affinity for an aqueous alkaline environment.
  • the stack sprays 37 are supplied with liquor by way of the pump 30.
  • the pyrolyser 2 specifically, and the entire apparatus more generally, forms a very compact unit which lends itself to on-site use.
  • the apparatus can be integrated into an existing process so that there is no nett production of toxic waste. This is a major advantage as the transportation of toxic substances is hazardous.
  • a unique characteristic of the process described is the deliberate retention of particulate carbon within the stream of material and the control of the process conditions such that the carbon particles act as a carrier substance for toxic organic compounds which have survived the pyrolysis phase of the process. That is, the organic compounds which survived the processing steps preceding the quenching process, are effectively captured by attachment or adsorption on the carbon particles. The surviving organic compounds are thereby captured in a manner which facilitates convenient disposal or alternatively subsequent processing as considered appropriate, depending on the level of toxic organic compounds. That is contrary to the accepted practice of inhibiting carbon formation in existing toxic compound destruction processes.
  • a process according to the invention is useful for the effective destruction of a wide variety of toxic products, including chlorophenols and dioxins. The process is robust and safe.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Gasification And Melting Of Waste (AREA)

Claims (35)

  1. Thermischer Zersetzungsprozeß mit den Schritten: Erzeugen eines Plasmas innerhalb einer Pyrolyseeinrichtung (1), Injizieren eines zu behandelnden Stoffes (1) als feinen Sprühnebel und/oder Gas in das Plasma, Bewegen des Stoffes als Strom (5) durch die Pyrolyseeinrichtung in Richtung auf ein Austrittsende (26) der Pyrolyseeinrichtung, Halten des Stoffes bei einer hohen Temperatur während der Bewegung des Stoffstroms, so daß eine im wesentlichen vollständige Pyrolyse des Stoffes erreicht wird und eine Rekombination unerwünschter Nebenprodukte im wesentlichen verhindert wird, Bewegen des Stoffstroms durch das Austrittsende bei einer Temperatur oberhalb derjenigen, bei der die Rekombination stattfindet, und schnelles Abschrecken (22, 24, 25) des Stoffstroms bei oder nahe dem Austrittsende (26) und bevor die Temperatur des Stoffstroms auf einen Pegel fällt, bei dem eine Rekombination zu unerwünschten Nebenprodukten stattfindet.
  2. Prozeß nach Anspruch 1, worin die Temperatur des Stoffstroms unmittelbar vor dem Abschrecken derart ist, daß CO im Stoffstrom nicht begonnen hat, sich in CO2 umzuformen.
  3. Prozeß nach Anspruch 1 oder Anspruch 2, worin das Plasma durch Verwendung eines Gases gebildet wird, das ein Edelgas ist.
  4. Prozeß nach Anspruch 3, worin das Gas Argon oder ein Argongemisch ist.
  5. Prozeß nach einem der Ansprüche 1 bis 4, worin das Plasma durch einen zwischen zwei Elektroden (10, 12) erzeugten Lichtbogen (4) erzeugt wird und der Stoff (1) in das Plasma an einer Stelle injiziert wird, die dem Anschluß (8) des Bogens an der Elektrode (12) benachbart ist, die die Anode bildet.
  6. Prozeß nach einem der Ansprüche 1 bis 4, worin das Plasma durch einen zwischen zwei Elektroden (10, 12) erzeugten Lichtbogen (4) erzeugt wird und der Stoff in den Kern des Bogens injiziert wird.
  7. Prozeß nach Anspruch 5 oder Anspruch 6, worin der Stoff in einer Richtung injiziert wird, die im wesentlichen quer zu der Richtung verläuft, in der sich der Bogen zwischen den Elektroden erstreckt.
  8. Prozeß nach einem der Ansprüche 1 bis 7, worin der Stoff in Form einer zerstäubten Flüssigkeit in die Pyrolyseeinrichtung injiziert wird.
  9. Prozeß nach Anspruch 8, worin die Größe der die zerstäubte Flüssigkeit bildenden Flüssigkeitströpfchen 100 Mikrometer oder weniger beträgt.
  10. Prozeß nach einem der Ansprüche 1 bis 7, worin der Stoff in Form fester Teilchen in die Pyrolyseeinrichtung injiziert wird.
  11. Prozeß nach Anspruch 10, worin die Größe jedes Teilchens 100 Mikrometer oder weniger beträgt.
  12. Prozeß nach einem der Ansprüche 1 bis 11, worin Sauerstoff (21) an der Stelle der Stoffinjektion oder dieser benachbart in die Pyrolyseeinrichtung eingeführt wird.
  13. Prozeß nach einem der Ansprüche 1 bis 11, worin innerhalb der Pyrolyseeinrichtung eine teilweise oxidierende Atmosphäre existiert.
  14. Prozeß nach einem der Ansprüche 1 bis 13, worin die Pyrolyseeinrichtung einen Plasmabrenner (2) und eine heiße Zone enthält, die sich zwischen dem Brenner und der Stelle erstreckt, an der das Abschrecken stattfindet.
  15. Prozeß nach Anspruch 14, worin die heiße Zone innerhalb eines Rohres (6) ausgebildet ist und eine Grenzschicht des Stoffes, die die umgebende Oberfläche des Rohres berührt, so gesteuert wird, daß der Stoff innerhalb des Stoffstroms zu der Zeit, zu der er dem Abschrecken unterzogen wird, bei einer im wesentlichen gleichmäßigen Temperatur liegt.
  16. Prozeß nach einem der Ansprüche 1 bis 13, worin die Pyrolyseeinrichtung ein Rohr (6) enthält, durch das der Stoff zum Austrittsende gelangt, und eine Grenzschicht des Stoffes, die die umgebende Oberfläche des Rohres berührt, so gesteuert wird, daß der Stoff innerhalb des Stoffstroms zu der Zeit, zu der er dem Abschrecken unterzogen wird, bei einer im wesentlichen gleichmäßigen Temperatur liegt.
  17. Prozeß nach Anspruch 15 oder Anspruch 16, worin die Grenzschicht durch Induzieren eines turbulenten Stroms in der Grenzschicht gesteuert wird.
  18. Prozeß nach Anspruch 15 oder Anspruch 16, worin die Grenzschicht gesteuert wird, indem sie einwärts in Richtung auf die Mitte des Stoffstroms abgelenkt wird.
  19. Prozeß nach Anspruch 15 oder Anspruch 16, worin die Grenzschicht gesteuert wird, indem eine geeignet hohe Temperatur in einer Wand des Rohres aufrechterhalten wird, die die umgebende Oberfläche bildet.
  20. Prozeß nach einem der vorhergehenden Ansprüche, worin der abgeschreckte Stoff einer Umgebung ausgesetzt wird, in der restliche toxische Verbindungen auf einer festen Trägersubstanz absorbiert werden und die Substanz danach vom Stoff getrennt wird.
  21. Prozeß nach Anspruch 20, worin die Trägersubstanz teilchenförmiger Kohlenstoff ist.
  22. Prozeß nach Anspruch 21, worin die Kohlenstoffteilchen durch die Pyrolyse gebildet werden.
  23. Prozeß nach Anspruch 21 oder Anspruch 22, worin die toxischen Verbindungen von der Trägersubstanz desorbiert werden.
  24. Prozeß nach einem der vorhergehenden Ansprüche, worin die Temperatur des Stoffes kurz vor einem Abschrecken mindestens 1500°C beträgt.
  25. Prozeß nach Anspruch 24, worin die Temperatur des Stoffes kurz vor einem Abschrecken bei mindestens 1800°C liegt.
  26. Thermisches Zersetzungsgerät, umfassend eine Pyrolyseeinrichtung (2) mit einer Einrichtung (10, 11, 12) zum Erzeugen eines Plasmabogens (4) und einer Durchgangseinrichtung (6) zum Aufnehmen eines Plasmas jenseits des Bereichs des Bogens, einer stoffeinführenden Einrichtung (1), die beim Bereich des Bogens oder diesem benachbart liegt und betrieben werden kann, um einen Stoff in die Pyrolyseeinrichtung als feinen Sprühnebel und/oder Gas einzuführen, und einer Abschreckeinrichtung (22, 24, 25), die bei einem Austrittsende der Pyrolyseeinrichtung oder diesem benachbart liegt, worin die Pyrolyseeinrichtung betrieben werden kann, um den eingeführten Stoff bei einer hohen Temperatur zu halten, so daß eine im wesentlichen vollständige Pyrolyse des Stoffes erreicht wird und eine Rekombination unerwünschter Nebenprodukte im wesentlichen verhindert wird während einer Bewegung des Stoffes durch die Durchgangseinrichtung (6) zum Austrittsende der Pyrolyseeinrichtung und die Abschreckeinrichtung betrieben werden kann, um den aus dem Austrittsende austretenden Stoff (5) schnell abzuschrecken, bevor die Temperatur des austretenden Stoffes auf einen Pegel fällt, bei dem eine Rekombination zu den unerwünschten Nebenprodukten stattfindet, und worin die Durchgangseinrichtung (6) für eine Steuerung einer Grenzschicht des Stoffes sorgt, um eine im wesentlichen gleichmäßige Temperatur für den Stoff über die Durchgangseinrichtung sicherzustellen.
  27. Gerät nach Anspruch 26, worin die Erzeugungseinrichtung einen Plasmabrenner mit einem Durchgang (14) enthält und die stoffeinführende Einrichtung (1) angeordnet ist, um einen Stoff in den Durchgang in einer Richtung einzuführen, die im wesentlichen quer zur Längsrichtung des Durchgangs verläuft.
  28. Gerät nach Anspruch 27, worin die Plasma enthaltende Einrichtung ein Rohr (6) enthält, das eine Fortsetzung des Plasmabrennerdurchgangs bildet.
  29. Gerät nach einem der Ansprüche 26 bis 28, worin die Erzeugungseinrichtung eine Kathode (10) und eine von der Kathode in einer beabstandeten Beziehung angeordnete Anode (12) enthält und die stoffeinführende Einrichtung (1) bei der Anode liegt.
  30. Gerät nach einem der Ansprüche 26 bis 29, worin die Abschreckeinrichtung (24, 25) am Austrittsende liegt und betreibbar ist, um eine kühle Barriere zu erzeugen, durch die der aus der Pyrolyseeinrichtung austretende Stoff gelangen muß.
  31. Gerät nach einem der Ansprüche 26 bis 30, worin die Durchgangseinrichtung eine Einrichtung (16) zum Induzieren eines turbulenten Stroms in einer Grenzschicht des Stoffstroms enthält.
  32. Gerät nach Anspruch 31, worin die einen turbulenten Strom induzierende Einrichtung eine Reihe Lippen (16) aufweist, um eine Grenzschicht des Stoffstroms in Richtung auf die axiale Mitte der Durchgangseinrichtung (6) zum Mischen des Stoffstroms abzulenken.
  33. Gerät nach einem der Ansprüche 26 bis 30, worin die Grenzschicht durch eine Einrichtung gesteuert wird, die eine geeignet hohe Temperatur in einer Wand der Durchgangseinrichtung (6) aufrechterhält.
  34. Gerät nach Anspruch 33, worin die Einrichtung zum Aufrechterhalten einer geeignet hohen Temperatur eine Stoffauskleidung aufweist.
  35. Gerät nach Anspruch 34, worin die Stoffauskleidung geheizt wird.
EP93905105A 1992-03-04 1993-03-04 Stoffbehandlung Expired - Lifetime EP0629138B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPL118892 1992-03-04
AU1188/92 1992-03-04
AU118892 1992-03-04
PCT/AU1993/000089 WO1993017759A1 (en) 1992-03-04 1993-03-04 Material processing

Publications (3)

Publication Number Publication Date
EP0629138A1 EP0629138A1 (de) 1994-12-21
EP0629138A4 EP0629138A4 (en) 1995-01-04
EP0629138B1 true EP0629138B1 (de) 2000-08-09

Family

ID=3776019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93905105A Expired - Lifetime EP0629138B1 (de) 1992-03-04 1993-03-04 Stoffbehandlung

Country Status (8)

Country Link
EP (1) EP0629138B1 (de)
CN (1) CN1036635C (de)
AT (1) ATE195261T1 (de)
DE (1) DE69329189T2 (de)
ES (1) ES2149199T3 (de)
GR (1) GR3034802T3 (de)
PT (1) PT629138E (de)
WO (1) WO1993017759A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL118322A (en) 1996-05-20 1999-09-22 Israel Atomic Energy Comm Material incineration method
DE19722649A1 (de) * 1997-05-30 1998-12-03 Buck Chem Tech Werke Mobiles modulares Entsorgungssystem
WO2000013785A1 (en) * 1998-09-02 2000-03-16 Jacobus Swanepoel Treatment of solid carbonaceous material
US6193934B1 (en) * 1998-09-22 2001-02-27 Beltran, Inc. Corona-induced chemical scrubber for the control of NOx emissions
FR2858570B1 (fr) * 2003-08-04 2006-11-17 Gerard Poulleau Procede pour la thermolyse et/ou le sechage de dechets organiques utilisant un four a billes
AU2004268209B2 (en) * 2003-08-21 2009-06-11 International Environmental Solutions Corporation Chamber support for pyrolytic waste treatment system
CA2606846C (en) 2005-05-02 2013-12-10 Shell Internationale Research Maatschappij B.V. Method and system for producing synthesis gas
CN101432400B (zh) * 2006-05-01 2012-11-14 国际壳牌研究有限公司 气化反应器及其应用
EP2016160A1 (de) * 2006-05-01 2009-01-21 Shell Internationale Research Maatschappij B.V. Vergasungsreaktor und verwendung davon
US9051522B2 (en) 2006-12-01 2015-06-09 Shell Oil Company Gasification reactor
IT1391148B1 (it) * 2008-08-06 2011-11-18 Reco 2 S R L Metodo e apparato per purificare gas
AU2009286686B2 (en) 2008-09-01 2013-08-01 Air Products And Chemicals, Inc. Self cleaning arrangement
US8960651B2 (en) 2008-12-04 2015-02-24 Shell Oil Company Vessel for cooling syngas
CA2753043A1 (en) * 2011-03-18 2012-09-18 Pyrogenesis Canada Inc. Steam plasma arc hydrolysis of ozone depleting substances
CN102284172B (zh) * 2011-06-08 2013-04-24 深圳市迈科瑞环境科技有限公司 含半挥发性有机污染物的固体废物的处理方法和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL66144A (en) * 1982-01-18 1985-06-30 Skf Steel Eng Ab Method and plant for conversion of waste material to stable final products
CA1225441A (en) * 1984-01-23 1987-08-11 Edward S. Fox Plasma pyrolysis waste destruction
DE3716231A1 (de) * 1987-05-14 1988-12-01 Krupp Gmbh Thermische aufarbeitung von schuettfaehigen feststoffen mit schwermetallverbindungen und toxischen kohlenwasserstoffen
DE3721475C1 (de) * 1987-06-30 1989-03-23 Asea Brown Boveri Anlage zur Pyrolyse von Abfallmaterial
DE3721451C1 (de) * 1987-06-30 1988-12-08 Asea Brown Boveri Verfahren zum Betreiben einer Pyrolyseanlage
CA1324823C (en) * 1988-08-08 1993-11-30 Robert Chrong-Wen Chang Method and apparatus for plasma pyrolysis of liquid waste
AT402338B (de) * 1988-08-11 1997-04-25 Grimma Masch Anlagen Gmbh Verfahren zur vernichtung toxischer abprodukte sowie plasmatischer reaktor zur durchführung des verfahrens
GB9017146D0 (en) * 1990-08-03 1990-09-19 Tioxide Group Services Ltd Destruction process
EP0592418B1 (de) * 1991-07-12 1995-05-10 MASCHINEN- UND ANLAGENBAU GRIMMA GmbH Verfahren und einrichtung zum entgiften der abgase aus müllverbrennungsanlagen

Also Published As

Publication number Publication date
ATE195261T1 (de) 2000-08-15
CN1036635C (zh) 1997-12-10
CN1081923A (zh) 1994-02-16
EP0629138A4 (en) 1995-01-04
EP0629138A1 (de) 1994-12-21
DE69329189D1 (de) 2000-09-14
WO1993017759A1 (en) 1993-09-16
DE69329189T2 (de) 2001-01-25
PT629138E (pt) 2001-01-31
ES2149199T3 (es) 2000-11-01
GR3034802T3 (en) 2001-02-28

Similar Documents

Publication Publication Date Title
EP0629138B1 (de) Stoffbehandlung
CA1225441A (en) Plasma pyrolysis waste destruction
US4582004A (en) Electric arc heater process and apparatus for the decomposition of hazardous materials
JP2755946B2 (ja) 有機廃棄物の分解方法および装置
US4481891A (en) Apparatus for rendering PCB virulence-free
US4886001A (en) Method and apparatus for plasma pyrolysis of liquid waste
KR19980702835A (ko) 분산된 용융 액적을 사용하는 공급물 처리법
AU640500B2 (en) Process for the destruction of chemical waste by means of an electric plasma flame
US5050511A (en) Process for the destruction of organic waste material
Safa et al. Liquid and solution treatment by thermal plasma: a review
US5866753A (en) Material processing
US5245113A (en) Decontamination of PCB contaminated solids
US9376334B2 (en) Method and device for treating wastes by means of injection into an immersed plasma
CA1324823C (en) Method and apparatus for plasma pyrolysis of liquid waste
US6222153B1 (en) Pulsed-plasma incineration method
AU3623093A (en) Material processing
US20200140761A1 (en) Triphase Organic Matter Pyrolysis System and its Atmospheric Pressure Water Ion Generating Device
EP0392727A1 (de) Verfahren zur Vernichtung von organischem Abfallstoff
JP4370381B2 (ja) 有害有機化合物のマイクロ波−ソルボサーマル連続処理法
JP4687075B2 (ja) Pcb含有油の無害化処理方法およびpcb含有油の無害化処理装置
JP2948581B1 (ja) 有害有機物質の無害化処理方法および重金属の無害化処理方法
RU2224178C1 (ru) Плазмохимический способ обезвреживания газообразных и жидких галогенорганических веществ и содержащих их отходов
CA1324394C (en) Process for the destruction of organic waste material
DE69031288T2 (de)
WO2024016054A1 (en) Method, device and system for destroying one or more pollutant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 19941122

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19960722

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000809

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000809

REF Corresponds to:

Ref document number: 195261

Country of ref document: AT

Date of ref document: 20000815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69329189

Country of ref document: DE

Date of ref document: 20000914

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2149199

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001109

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20001108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TQ

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIDDONS RAMSET LIMITED

Free format text: SIDDONS RAMSET LIMITED#296-298 MAROONDAH HIGHWAY#VICTORIA 3136 (AU) $ COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION#LIMESTONE AVENUE#CAMPBELL, ACT 2612 (AU) -TRANSFER TO- SIDDONS RAMSET LIMITED#296-298 MAROONDAH HIGHWAY#VICTORIA 3136 (AU) $ COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION#LIMESTONE AVENUE#CAMPBELL, ACT 2612 (AU)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20120312

Year of fee payment: 20

Ref country code: FR

Payment date: 20120319

Year of fee payment: 20

Ref country code: CH

Payment date: 20120313

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20120305

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120315

Year of fee payment: 20

Ref country code: GR

Payment date: 20120215

Year of fee payment: 20

Ref country code: GB

Payment date: 20120301

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120404

Year of fee payment: 20

Ref country code: NL

Payment date: 20120321

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120419

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69329189

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69329189

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20130304

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20130304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130305

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130303

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 20000402490

Country of ref document: GR

Effective date: 20130305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130312

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130305

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130304