EP0625629B1 - Turbine - Google Patents

Turbine Download PDF

Info

Publication number
EP0625629B1
EP0625629B1 EP19930201449 EP93201449A EP0625629B1 EP 0625629 B1 EP0625629 B1 EP 0625629B1 EP 19930201449 EP19930201449 EP 19930201449 EP 93201449 A EP93201449 A EP 93201449A EP 0625629 B1 EP0625629 B1 EP 0625629B1
Authority
EP
European Patent Office
Prior art keywords
rotor
angled channels
annular
central rotor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19930201449
Other languages
German (de)
English (en)
Other versions
EP0625629A1 (fr
Inventor
Shu Ping Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE1993604310 priority Critical patent/DE69304310T2/de
Priority to EP19930201449 priority patent/EP0625629B1/fr
Publication of EP0625629A1 publication Critical patent/EP0625629A1/fr
Application granted granted Critical
Publication of EP0625629B1 publication Critical patent/EP0625629B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/34Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/24Non-positive-displacement machines or engines, e.g. steam turbines characterised by counter-rotating rotors subjected to same working fluid stream without intermediate stator blades or the like
    • F01D1/26Non-positive-displacement machines or engines, e.g. steam turbines characterised by counter-rotating rotors subjected to same working fluid stream without intermediate stator blades or the like traversed by the working-fluid substantially axially

Definitions

  • This invention relates to an engine consisting of a combustor and a turbine and, more particularly, to a turbine used in an engine.
  • a rotary engine is known as utilizing a rotor which is enclosed in a chamber and rotated by an expanding ignited gas to convert heat energy into mechanical energy in order to perform work.
  • a plurality of rotors respectively rotate at a certain angular velocity and the center of its rotation does not move.
  • a typical example is the Malloy engine (United States) the rotor of which is divided by a number of vanes and rotates eccentrically in the chamber.
  • an oscillatory-rotating engine In an oscillatory-rotating engine, a plurality of rotors respectively rotate about the center of rotating at a varying angular velocity, the chamber volumes change as the rotors come close to one another or move away from one another.
  • a typical example of the oscillatory-rotating engine is the Kauertz engine.
  • a rotor rotates in a closed chamber which makes a planetary motion.
  • a typical example of the planetary rotating engine is the Wankel engine installed in Mazda sport cars.
  • each of the above-mentioned rotary engines includes four strokes during one cycle in the enclosed space: intake, compression, power (or combustion), and exhaust.
  • Apex seals or blades are necessary for separating the four strokes.
  • Motor oil is also necessary for sealing and lubricating interfaces between the rotors and stators.
  • German Patent DE-A-14 26 835 discloses a turbine including a central rotor enclosed in a drum enclosed in a housing. A plurality of vanes project radially outwardly from the central rotor. A plurality of vanes project radially inwardly from the drum. Steam can flow past the vanes in order to rotate the central rotor and the drum in opposite directions. The central rotor and the drum can both transmit power.
  • this turbine is complicated in structure and bulky in size.
  • an engine including a combustor for producing a gas and a turbine including a central rotor enclosed in a hermetic housing consisting of two annular stators and an annular rotor sandwiched between the annular atators.
  • a group of angled channels are defined in an external surface of the central rotor for receiving the gas from the combustor.
  • a group of angled channels are defined in an internal surface of the annular rotor for receiving the gas from the angled channels defined in the central rotor.
  • the angled channels defined in the central rotor are orientated opposite to the angled channels defined in the annular rotor so that the central rotor and the annular rotor rotate in opposite directions when the gas flows through the angled channels.
  • Each of the angled channels defined in the central rotor will be in communication with a corresponding one of the angled channels defined in the annular rotor when they partly overlap.
  • FIG. 1 and 2 of the drawings there is shown an internal combustion engine using a turbine in accordance with the first embodiment of the present invention.
  • a turbine is combined with a combustor, however, a combustor can be a separate element from a turbine in accordance with the second embodiment of the present invention.
  • a central rotor 20 is formed as a frustum and has a hole 208 axially formed therethrough.
  • the central rotor 20 has a substantially conical outer side consisting of two conical faces 201 and 203 and a cylindrical face 202.
  • the conical face 201 is formed at the fore end of the central rotor 20.
  • the cylindrical face 202 is formed at the rear end of the central rotor 20.
  • the conical face 203 is formed at the middle portion of the central rotor 20.
  • the conical face 201 has a more acute angle of slope than that of the conical surface 203.
  • a number of, e.g., two, series of curved channels are formed in the conical face 203.
  • a first series has several, e.g., three, curved channels 204.
  • a second series has a corresponding number of, i.e., three, curved channels 205.
  • each of the curved channels 204 and 205 has a curved form as shown in Figure 3 of the drawings and a U-shaped form as shown in Figure 4. Fore ends of the curved channels 204 are merged into the conical face 201.
  • curved channels 204 are communicated with one another by means of the groove 207, so that the pressure in the curved channels 204 can be balanced.
  • the curved channels 205 are communicated with one another by means of the groove 206, so that the pressure in the curved channels 205 can be balanced.
  • the turbine in accordance with this invention also has at least one annular rotor.
  • Three annular stators 30, 50 and 70 and the annular rotors 40 and 60 are alternatively mounted about the central rotor 20.
  • the annular rotor 40 has a circular recess formed in a fore end thereof.
  • the annular stator 50 has a circular recess formed in a fore end thereof.
  • the annular rotor 60 has a circular recess formed in a fore end thereof.
  • the exhaust 70 has a circular recess formed in the fore end thereof.
  • gaskets 81, 82, 83, and 84 are received in the circular recess formed in the annular rotor 40, the annular stator 50, the annular rotor 60 and the exhaust 70.
  • the gaskets 81, 82, 83 and 84 serve as seals.
  • a stator 30 serves as a cap and has a plurality of fixing lugs 301 which are mounted to an engine seat (not shown), a tubular portion 302 which receives a bearing 11 for supporting the shaft 10 and three ports 303, 304 and 305 which include at least one intake port and at least one spark plug port.
  • the stator 30 is mounted on the shaft 10 by means of a bearing 11.
  • An annular stator 50 has a smooth conical inner surface and a plurality of fixing lugs 501 which are mounted to the engine seat (not shown).
  • An exhaust 70 has an inner side and outer side.
  • a number of, e.g., three, exhaust ports 701 are formed in the outer side of the exhaust 70 and communicated with three exhaust passages 702 formed in the inner side of the exhaust 70.
  • An annular rotor 40 has an inner side and an outer side.
  • a plurality of curved channels 402 are formed in the inner side of the annular rotor 40 corresponding to the curved channels 204/205 on the central rotor 20.
  • the curved channels 402 are similar to the curved channels 204/205 but are in an opposite direction.
  • a plurality of teeth 603 are formed on the outer side of the annular rotor 40.
  • the annular rotor 60 is similar to the annular rotor 40 but has a larger diameter. That is, the annular rotor 60 has a groove 601 communicating three curved channels 602 with one another and a plurality of teeth 603.
  • a hollow shaft 10 has an exit 101 at an end thereof, a plurality of elongated holes 102 in a periphery thereof and an inlet 103 in the periphery thereof near another end thereof.
  • the shaft 10 is inserted through the stator 30, the central rotor 20 and the exhaust 70.
  • the shaft 10 is mounted in the stator 30 and the exhaust 70 by means of two bearings 11 and 12.
  • a flywheel 15, a gear 16 and an encoder 17 are firmly mounted on the hollow shaft 10.
  • the central rotor 20 is enclosed by means of the stator 30, the annular rotor 40, the annular stator 50, the annular rotor 60 and the exhaust 70.
  • the stator 30 and the conical face 201 form an internal combustion chamber. At least one plug (not shown) is mounted in at least one of the holes 303, 304 and 305. At least one of the holes 303, 304 and 305 serves as an intake port for fuel-and-gas mixture.
  • the stator 30, the conical face 201 and the spark plug form a combustor.
  • the internal combustion chamber communicates with the curved channels 204.
  • the curved channels 204 communicate with the curved channels 402 which communicate with the curved channels 205 which communicate with the curved channels 602 which communicate with the exhaust passages 702.
  • the internal combustion chamber communicates with the fore ends of the curved channels 204.
  • the middle portions of the curved channels 204 is covered by means of the stator 30.
  • the rear end of each of the curved channels 204 communicates with the fore end of a corresponding one of the curved channels 402.
  • the rear end of each of the curved channels 402 communicates with the fore end of a corresponding one of the curved channels 205.
  • the middle portions of the curved channels 205 are covered by means of the annular stator 50.
  • the rear end of each of the curved channels 205 communicates with the fore end of a corresponding one of the curved channels 602.
  • the rear end of each of the curved channels 602 communicates with a corresponding one of the exhaust passages 702.
  • a fuel-and-air mixture is drawn into the internal combustion chamber and burnt by means of the spark plug, so that gas expands and flows into the curved channels.
  • the gas will be referred to as driving gas.
  • the encoder 17 provides signals in order to monitor the rotation of the central rotor 20.
  • the central rotor 20 rotates when the driving gas rushes into the curved channels 204.
  • the annular rotor 40 rotates in an opposite direction to that of the central rotor 20 when the driving gas rushes into the curved channels 402.
  • the rotation of the central rotor 20 is reinforced when the driving gas passes rushes into the curved channels 205.
  • the annular rotor 60 rotates in an opposite direction to that of the central rotor 20 when the driving gas rushes into the curved channels 602.
  • the driving gas is released from the turbine by means of the exhaust passages 702.
  • the annular rotors 40 and 60 have teeth 403 and 603.
  • the teeth 403 and 603 can be engaged with gear trains for driving some components, such as an air conditioner or an air compressor.
  • a turbine in accordance with a second embodiment of the present invention.
  • a turbine is formed as an element separate from a combustor (not shown).
  • Fuel-and-air mixture is induced in the combustor wherein fuel is burnt. Gas expands and surges into the turbine by means of pipes, the gas will be referred to as the driving gas.
  • the combustor will not be described in detail as it is well known.
  • the turbine in accordance with the second embodiment is similar to that in accordance with the first embodiment.
  • the exhaust 70 is replaced with a stator 86
  • the stator 30 is replaced with an exhaust 90.
  • the stator 86 serves as a cap which encloses the rear end (following the direction implied in Figures 1-5) of the central rotor 20 such that the rear ends of the curved channels 602 communicate with the stator 86.
  • the stator 86 defines a central hole 88 through which the shaft 10 is inserted.
  • the stator 86 is mounted on the shaft 10 by means of the bearing 12.
  • the stator 86 is communicated with the combustor by means of an inlet 89, so that driving gas rushes from the combustor into the stator 86.
  • the driving gas rotates the central rotor 20 and the annular rotors 60 and 40 as it sequentially passes through the curved channels 602, 205, 402 and 204.
  • the exhaust 90 is similar to the exhaust 70, but smaller in size.
  • the exhaust 90 has three exhaust passages 92 communicating with the fore ends of the curved channels 204 and three corresponding exhaust ports 94 for releasing exhaust out of the turbine.
  • the central rotor 20 is a frustum which is tapered from the rear end toward the fore end.
  • driving gas flows from the fore end to the rear end.
  • driving gas flows from the rear end to the fore end.
  • the central rotor 20 can be shaped as a cylindrical element, i.e., it has the same diameter along the length thereof. Therefore, the annular stators 30 and 50, the annular rotors 40 and 60 and the exhaust substantially have identical sizes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (11)

  1. Moteur comprenant un dispositif de combustion, destiné à produire un gaz, et une turbine comprenant un rotor central (20), un groupe de canaux angulaires (204), définis dans une surface externe du rotor central (20), pour recevoir le gaz en provenance du dispositif de combustion, un rotor annulaire (40) enfermant le rotor central (20), et un groupe de canaux angulaires (402), définis dans une surface interne du rotor annulaire (40), pour recevoir le gaz en provenance des canaux angulaires (204) définis dans le rotor central (20), dans lequel les canaux angulaires (204), définis dans le rotor central (20), sont orientés à l'opposé des canaux angulaires (402) définis dans le rotor annulaire (40), de telle sorte que le rotor central (20) et le rotor annulaire (40) tournent dans des directions opposées lorsque le gaz s'écoule à travers les canaux angulaires (204,402), lesdits canaux angulaires (204,402) étant disposés de telle sorte que chacun desdits canaux angulaires (204), définis dans le rotor central (20), et un canal correspondant des canaux angulaires (402), définis dans le rotor annulaire (40), communiquent entre eux lorsqu'ils se recouvrent en partie, le rotor annulaire (40) étant pris en sandwich entre deux stators annulaires (30,50), formant ainsi un logement hermétique.
  2. Moteur selon la revendication 1, dans lequel le rotor central (20) comprend une rainure (207) y définie pour établir une communication entre les canaux angulaires (204) y définis.
  3. Moteur selon la revendication 1, comprenant un deuxième groupe de canaux angulaires (205), définis dans le rotor central, pour recevoir le gaz en provenance des canaux angulaires (402) définis dans le rotor annulaire (40), un deuxième rotor annulaire (60) enfermant le rotor central (20), un groupe de canaux angulaires (602), définis dans le deuxième rotor annulaire (60), pour recevoir le gaz en provenance du deuxième groupe de canaux angulaires (205), définis dans le rotor central (20), et une pluralité de dents (603) formées sur une surface externe du deuxième rotor annulaire (60), dans lequel les canaux angulaires (204,205), définis dans le rotor central (20), sont orientés à l'opposé des canaux angulaires (402,602) définis dans les rotors annulaires (40,60), de telle sorte que le rotor central (20) et les rotors annulaires (40,60) tournent dans des directions opposées lorsque le gaz s'écoule à travers les canaux angulaires (204, 402, 205, 602).
  4. Moteur selon la revendication 3, dans lequel le rotor central (20) comprend une rainure (207) y definie pour établir une communication entre le premier groupe de canaux angulaires (204) y définis, et une autre rainure (206) y définie pour établir une communication entre le deuxième groupe de canaux angulaires (205).
  5. Moteur selon les revendications 3 et 4, comprenant trois stators annulaires (30,50,70) placés en alternance avec les rotors annulaires (40,60), formant ainsi un logement hermétique dans lequel le rotor central (20) est reçu.
  6. Moteur selon les revendications 3 à 5, dans lequel chaque canal du premier groupe de canaux angulaires (204) définis dans le rotor central (20) comprend une entrée pour recevoir le gaz en provenance du dispositif de combustion et une sortie, et chacun des canaux angulaires (402) définis dans le premier rotor annulaire (40) comprend une entrée pour recevoir le gaz en provenance de la sortie d'un canal correspondant du premier groupe de canaux angulaires (204), définis dans le rotor central (20) et une sortie, et chaque canal du deuxième groupe de canaux angulaires (205), définis dans le rotor central (20), comprend une entrée pour recevoir le gaz en provenance de la sortie d'un canal correspondant des canaux angulaires (402), définis dans le premier rotor annulaire (40) et une sortie, et chacun des canaux angulaires (602), définis dans le deuxième rotor annulaire (60), comprend une entrée pour recevoir le gaz en provenance de la sortie d'un canal correspondant du deuxième groupe de canaux angulaires (205), définis dans le rotor central (20), et une sortie pour évacuer le gaz.
  7. Moteur selon les revendications 1 à 6, comprenant un arbre sur lequel le rotor central est monté.
  8. Moteur selon la revendication 7, dans lequel le rotor central comprend un passage dans le sens axial y défini et ledit arbre est inséré par l'intermédiaire du passage dans le sens axial, défini dans le rotor central.
  9. Moteur selon la revendication 8, dans lequel l'arbre comprend un passage dans le sens axial y défini, et une pluralité d'ouvertures définies à l'intérieur pour la transmission d'un liquide de refroidissement au rotor central.
  10. Moteur selon les revendications 1 à 9, dans lequel le rotor central est un cône tronconique.
  11. Moteur selon les revendications 1 à 10, dans lequel chacun des canaux angulaires est un canal angulaire en forme de V.
EP19930201449 1993-05-21 1993-05-21 Turbine Expired - Lifetime EP0625629B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE1993604310 DE69304310T2 (de) 1993-05-21 1993-05-21 Turbine
EP19930201449 EP0625629B1 (fr) 1993-05-21 1993-05-21 Turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19930201449 EP0625629B1 (fr) 1993-05-21 1993-05-21 Turbine

Publications (2)

Publication Number Publication Date
EP0625629A1 EP0625629A1 (fr) 1994-11-23
EP0625629B1 true EP0625629B1 (fr) 1996-08-28

Family

ID=8213840

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930201449 Expired - Lifetime EP0625629B1 (fr) 1993-05-21 1993-05-21 Turbine

Country Status (2)

Country Link
EP (1) EP0625629B1 (fr)
DE (1) DE69304310T2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1056435C (zh) * 1996-04-18 2000-09-13 沈泉贵 无叶汽轮机
CN100366871C (zh) * 2004-03-19 2008-02-06 刘富清 冲击式发动机
CN108301876A (zh) * 2017-08-31 2018-07-20 李钢坤 一种旋转发动机的回转曲管转子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1426835A1 (de) * 1964-06-27 1969-04-03 Maschf Augsburg Nuernberg Ag Verfahren und Anordnung zur Energieerzeugung bzw. zur Leistungsaufnahme in gegenlaeufigen Turbinen bzw. Arbeitsmaschinen
GB1258986A (fr) * 1969-09-04 1972-01-05

Also Published As

Publication number Publication date
DE69304310T2 (de) 1997-04-17
DE69304310D1 (de) 1996-10-02
EP0625629A1 (fr) 1994-11-23

Similar Documents

Publication Publication Date Title
US5277158A (en) Multiple vane rotary internal combustion engine
KR101711778B1 (ko) 회전 피스톤 기계 및 제어 기어 장치
US3685287A (en) Re-entry type integrated gas turbine engine and method of operation
CA2573769C (fr) Moteur thermique rotatif a montage concentrique
US5352295A (en) Rotary vane engine
US4203410A (en) Method for operating a rotary engine
JP2859739B2 (ja) ロータリーエンジン
US5224847A (en) Rotary engine
US6536403B1 (en) Direct drive rotary engine
US3132632A (en) Rotary engine
EP0625629B1 (fr) Turbine
US6298821B1 (en) Bolonkin rotary engine
FI110807B (fi) Pyörivä polttomoottori
EP0734486B1 (fr) Moteur rotatif
WO2017204683A1 (fr) Moteur à combustion interne six temps à rotor et à pales
US3626911A (en) Rotary machines
WO2002097249A1 (fr) Procede de fonctionnement d'un moteur a piston rotatif et moteur a piston rotatif a combustion interne
US6186098B1 (en) Coaxial oscillating axisymmetric engine
US3716033A (en) Rotary internal combustion engine
US5237814A (en) Internal combustion rotary engine
US7080623B1 (en) Rotor for an axial vane rotary device
US5520147A (en) Rotary motor or engine having a rotational gate valve
KR100536468B1 (ko) 로터리엔진
KR20020090286A (ko) 로타리 기관
CN109236461A (zh) 一种转子与定子间导流式转子内燃机

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19950322

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19960828

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960828

REF Corresponds to:

Ref document number: 69304310

Country of ref document: DE

Date of ref document: 19961002

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970711

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970715

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970730

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990302

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST