EP0623969B1 - Réseau d'antennes à commande de phase à dispositif de commande de faisceau opto-électronique - Google Patents

Réseau d'antennes à commande de phase à dispositif de commande de faisceau opto-électronique Download PDF

Info

Publication number
EP0623969B1
EP0623969B1 EP94106631A EP94106631A EP0623969B1 EP 0623969 B1 EP0623969 B1 EP 0623969B1 EP 94106631 A EP94106631 A EP 94106631A EP 94106631 A EP94106631 A EP 94106631A EP 0623969 B1 EP0623969 B1 EP 0623969B1
Authority
EP
European Patent Office
Prior art keywords
optical
module
signal
transmitter
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94106631A
Other languages
German (de)
English (en)
Other versions
EP0623969A3 (fr
EP0623969A2 (fr
Inventor
Heinz-Peter Dr. Dipl.-Ing. Feldle
Sandip Dipl.-Ing. Banerjee
Michael Dipl.-Ing. Ludwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP0623969A2 publication Critical patent/EP0623969A2/fr
Publication of EP0623969A3 publication Critical patent/EP0623969A3/fr
Application granted granted Critical
Publication of EP0623969B1 publication Critical patent/EP0623969B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2676Optically controlled phased array

Definitions

  • the invention relates to a group antenna according to the preamble of claim 1.
  • the invention is particularly applicable to a Antenna system for satellite communication and radar applications in the micro and millimeter wave frequency range, which increasingly as a (1xN) - or two-dimensional (MxN), active antenna groups can be realized.
  • phase-controlled Antennas for ground and on-board radar antennas their aperture through a few hundred to several thousand transmit / receive modules (T / R modules) with direct assigned radiator elements.
  • the received signal of the antenna is over the same distribution network, mostly as a waveguide structure or is designed as a triplate structure, or transmit a special reception distribution to the receiver.
  • the required settings of the RF signals for shaping and panning the antenna pattern, polarization types and calibration for transmit and receive operations takes place by means of phase and amplitude controls in the respective T / R modules.
  • Transmit and oscillator signals are generated with a frequency of 2.9 GHz that emitted (Transmit signal) or a mixer (oscillator signal) be supplied for demodulation of the received signal.
  • the received electrical signal demodulated in the mixer is electrically amplified and an electro-optical modulator fed. This modulates that from a laser diode emitted light to an optical received signal.
  • This and the optical transmit / oscillator signal are preferred via two separate optical distribution networks to one central evaluation unit.
  • Each T / R module has an associated light wave guide directly connected to the central unit.
  • a generic antenna is known from US Pat. No. 4,885,589 known by means of a central laser arrangement a first optical beam shaping network modulated transmission signals or the unmodulated oscillator signal to the T / R modules conducts, which means in transmission mode the optical transmission signal controlled phase shifter and amplifier to an assigned Radiator element conducts. In reception mode, this is over the radar signal received via the radiator element via controlled Receiving amplifier and phase shifter processed and by means of the unmodulated modulator signal and a modulator converted into an optical modulated received signal, which via a second optical beam forming network of a remote Evaluation unit is supplied.
  • the control of the T / R modules takes place via a separate control line structure. This arrangement a group antenna proves to be very complex and very fragile in the connection structure.
  • the invention has for its object a generic Specify group antenna that is reliable and inexpensive is producible, the fast and highly precise changes of the Allows phase and / or amplitude assignments and in particular is suitable for an on-board radar application.
  • Such an optical waveguide structure can be produced inexpensively.
  • a second advantage is that in the optical fiber structure a bidirectional data transmission of all signals done in time-division multiplexing.
  • a third advantage is that in every T / R module A digitally controllable T / R module control is available with which the phase and / or are highly precise and fast Amplitude assignment of the entire antenna is adjustable.
  • a fourth advantage is that all signals, in particular the transmission signal, the LO signal and the IF signal in the original frequency range via the fiber optic structure be transmitted. Otherwise necessary electrical and / or optical mixers avoided.
  • a fifth advantage is that in every T / R module electro-optical as well as opto-electric components that are inexpensive as integrated III-V semiconductor components can be produced, are present.
  • FIG. 1 to FIG. 6 show schematically illustrated block diagrams to explain the Invention.
  • signals in the x-band are transmitted from a frequency center via a distribution network to the individual T / R modules or from these to signal processing transmitted with a central receiver or antenna sub-group assigned receivers.
  • the conventional distribution structure (s) for the x-band signals are advantageously replaced by optical fibers and their combination to form an optical beamforming network.
  • Monomode fiber optic cables or distribution networks are used primarily because of their low attenuation and dispersion values at wavelengths from 0.8 ⁇ m to 1.55 ⁇ m .
  • the radar-typical transmit signal and LO signal (in time-division multiplex for transmit and receive cases) is directly modulated onto an optical carrier signal using an electro-optical converter, which is advantageously designed as a so-called DFB laser.
  • an optoelectric converter which is advantageously designed as a photodiode, is then used to convert the transmit or LO signal into the microwave range and prepare it for radiation by the assigned radiator element. With these signal conversions, the amplitude and phase information is retained.
  • various types of transmission for example analog, digital or optical, or unidirectional and bidirectional beamforming networks can be used.
  • the invention advantageously combines the favorable properties of optoelectric and electro-optical converters for converting microwave signals, e.g. up to a frequency of 12 GHz, as well as the optical signal distribution and guidance, whereby a low-interference signal flow with low electrical losses and high mechanical Flexibility becomes possible.
  • FIG. 1 An arrangement of an active antenna group is shown in FIG. 1 shown.
  • the radar-typical transmission signal for the transmission case and the LO (local oscillator) signal for the reception case, both in the microwave range, for example at a frequency of 9 GHz, are transmitted from the frequency center of the radar system to a transmission / Receive changeover switch fed.
  • the applied, high-frequency analog signal arrives at a matching circuit for an electro-optical converter, advantageously a laser diode, which is designed, for example, as a so-called DFB laser diode.
  • the adapter circuit is designed for minimal electrical losses and low noise as well as the required signal bandwidth, for example of 7.5 GHz. up to 10.5 GHz, optimized, whereby the power supply of the electro-optical converter is achieved via an additional network.
  • the adapter circuit for the RF signal (transmit or receive signal) and / or the network for the power supply is advantageously implemented in microstrip line or coplanar technology.
  • the optical superposition signal generated by the laser diode for example at a wavelength of 1550 nm, is coupled into a central optical waveguide (LWL) of a beam shaping (beamforming) network.
  • LWL central optical waveguide
  • beam shaping beamforming
  • the subsequent optical amplifier for example designed as a fiber-optical amplifier or an optical semiconductor amplifier, increases the level of the optical signal, which is then distributed and switched on in a line (one-dimensional array) or in a line and column (two-dimensional array) in an optical beamforming network (optical divider) the respective T / R modules are routed via corresponding optical fibers.
  • optical beamforming network is based on optical 1: 4 dividers, which are connected in a star or tree structure via optical fibers.
  • the 1: 4 signal division is adapted to so-called macromodules, in which 4 T / R modules are combined in a common mechanical housing.
  • Optical 1: 5 dividers have proven to be advantageous for generating BITE ( b uild i n t est) signals, the fifth output being able to be used for monitoring the signal transmission.
  • One output each of an optical divider (1: 4 or 1: 5) is associated with an optical fiber T / R module coupled, which is shown in FIG. 2 explained in more detail becomes.
  • the optical signals via optical fibers to the respective optoelectronic converter, e.g. a photodiode, a T / R module.
  • the respective optoelectronic converter e.g. a photodiode, a T / R module.
  • the photodiodes of these converters then become the optical signals demodulated.
  • the photodiodes become DC voltage biased and to optimize the transmission properties (e.g. noise, insertion loss) adapted for high frequency.
  • the output side RF line of the matching network e.g. with 50 ⁇ characteristic impedance and implemented in microstrip technology the electrical resulting from the demodulation Transmit or LO signals a monolithic, low noise Amplifier (LNA) fed.
  • the operating frequency range this LNA includes e.g.
  • the amplified microwave signal reaches a diplexer, which consists of a combination of two bandpass filters (BPF).
  • BPF bandpass filters
  • One of the BPF is on the transmit signal, e.g. 9.5 GHz up to 10.5 GHz, optimized, the other for the LO signal, e.g. 7.5 GHz to 8.5 GHz.
  • This passive diplexer structure thus enables simple, reliable signal separation with very low insertion loss, e.g.
  • This signal separation is in accordance with the respective operating mode of the Radar system (transmit or receive) alternatively with one Changeover switch (SPDT switch), e.g. in monolithic form because of the highest operating frequency of 10.5 GHz specified mechanical T / R module width, executable.
  • the transmission signal then arrives at a for transmission and Receipt case same control path, consisting of two switches (SPDT switch), an amplitude controller (executed e.g. as an adjustable amplifier VGA) and a 6-bit Phase adjuster.
  • the RF signal becomes corresponding the antenna requirements, e.g. Club shape, Club swing etc. weighted in amplitude and phase.
  • each Radiator element supplied to the antenna group After the required power amplification using a driver amplifier and power amplifiers, preferably carried out in a balanced amplifier configuration, that will Send signal via a send / receive switch, e.g. one Circulator, and a low-pass filter (TPF) each Radiator element supplied to the antenna group.
  • a send / receive switch e.g. one Circulator
  • TPF low-pass filter
  • the TPF and the high-pass characteristic of the radiator element e.g. executed in waveguide technology, realize a bandpass characteristic, on the operating frequency range 9.5 GHz to 10.5 GHz is optimized.
  • the incoming electromagnetic arrives Radar signal on the arrangement of the radiator elements of the Arrays.
  • the respective RF signal in the x-band of a radiator element passes through the TPF and the send / receive switch to a non-reflective limiter.
  • the received signal is generated by means of the LNA amplified in the frequency range 9.5 GHz to 10.5 GHz, arrives via the described control path (phase and Amplitude weighting) on a bandpass filter BPF (9.5 GHz10.5 GHz).
  • This band-limited signal as well as the LO signal feed one monolithic mixer.
  • the resulting IF signal e.g. with a center frequency of 2 GHz, is then after a Low pass filter (TPF) and an IF amplifier at the output of the of the respective T / R module.
  • TPF Low pass filter
  • T / R module control on each T / R module available.
  • This generates control signals St, which the Press the SPDT switch (send / receive switch) and also the phase adjuster and the amplitude adjuster accordingly the desired (antenna) diagram.
  • the control of the T / R module control can e.g. electric done with the help of an electric, not shown Control line network.
  • the control signals are in encoded digital form in time-division multiplexing via the optical fiber transfer.
  • the T / R module control receives in this case a control input signal from the output of the low noise Amplifier LNA. This time division multiplexing procedure is as follows based on FIG. 6 explained in more detail.
  • T / R module fine power supply on each T / R module with which e.g. the electrical Tensions generated for the components described and be stabilized.
  • the T / R module according to FIG. 3 differs from that of FIG. 2 only in that after the IF amplifier an analog / digital converter for the IF range is inserted.
  • the received signals (IF range) in digital form for further transmission and processing in the receiver (conventional radar) or available to several receivers (adaptive array).
  • the signal transmission in the case of reception in accordance with FIG. 2nd takes place via coaxial cables and / or distributions in Stripline shape or according to FIG. 3 over one Data bus structure.
  • optical signal transmission possible.
  • To do this within the T / R modules receive the analog or digital signals (IF range) for direct modulation of a Laser diode (with low laser threshold) used and that respective optical signal generated on special fiber an optical reception distribution.
  • the required Demodulation takes place by means of optoelectric Converter on the corresponding evaluation unit (receivers).
  • FIG. 4 shows an embodiment in which this is based on the FIG. 1 described optical beamforming network through bi-directional usage is advantageously used. This will relate the effort the optical beamforming network or the optical Reception distribution minimized, especially for one active antenna group.
  • the time sequential Radar operation is within a radar cycle
  • Beamsteering Unit " Beamsteering Unit
  • the setting values of the phase and amplitude adjuster accordingly the antenna requirements for the Transmit and receive case transmitted and buffered, e.g. in a digital memory in the T / R modules is available.
  • the laser diode 2 it is possible to omit the laser diode 2 and instead the (main) laser diode (for transmission of the transmission and / or LO signal) electrically with a Signal corresponding to the control signals (initialization signals) to modulate so that a time division multiplex emitted corresponding optical signal.
  • T / R module it is advantageous to use a T / R module according to FIG. 3 the analog / digital converter ADC shown there downstream digital buffer. So that in every T / R module in digital form in the IF area Receive signals are buffered.
  • FIGS Transducer designation in each module by an electro-optical transmission / reception arrangement according to FIG. 5 to replace.
  • the arrangement contains a first one electrical branch, consisting of the already based on the 2, 3 described optoelectric converter (photodiode), an associated electrical matching network and the downstream low - noise amplifier LNA, on its Output the transmit or LO signal is generated.
  • the described analog IF signal (receive signal) (FIG. 2) or the corresponding digital IF signal (FIG. 3) that has been cached advantageously the electrical input of the second branch.
  • This contains an electrical matching network and a downstream one electro-optical converters, e.g. a laser diode.
  • the optical signal routings belonging to the converters are using an optical directional coupler the optical fiber leading to each module.
  • Such an arrangement according to FIG. 5 is advantageous fully integrated as an opto-electrical component Form as a semiconductor device, preferably in a so-called III-V technology, e.g. GaAs technology, producible.
  • III-V technology e.g. GaAs technology
  • the resulting optical signal is then into the optical via the optical directional coupler Beamforming network fed into the central unit (BSU) demodulated and there in a known manner evaluated.
  • BSU central unit
  • optical fibers of the beamforming network according to FIG. 4 is then bidirectional optical data transmission in the already mentioned Time division multiplex operation possible.
  • the time-division multiplex signal contains a transmission signal which is, for example, 1.0 ⁇ s long and which, for example, contains a transmission frequency from a frequency range from 9.5 GHz to 10.5 GHz.
  • an initialization telegram required for the subsequent radar cycle n + 1 is sent, for example, in a period of 0.5 ⁇ s.
  • the initialization telegram sent by the beam shaping unit (BSU) contains in digital form at least data for setting the SPDT switch and the phase and amplitude adjuster (FIG.
  • a cycle n-1 hermoldes received signal, eg during a time of about 0.5 ⁇ of the T / R module's is transmitted.
  • the received signal preferably contains IF received data in digital form which relate to the initialization telegram for the radar cycle n contained in the radar cycle n-1.
  • the LO signal is transmitted to the T / R module in a time period of approximately 5 ⁇ s, which is required to convert the received signal and which, for example, has a frequency from a frequency range of 7.5 GHz to 8.5 GHz contains. This is followed by the transmission of the time-division multiplex signal for the radar cycle n + 1, which begins with the transmission of the associated transmission signal n + 1.
  • FIG. 6b is alternatively another time-division multiplex signal shown for a single T / R module.
  • the time division multiplex signal contains a so-called initialization telegram, that e.g. a total of approximately 0.5 ⁇ s long is.
  • Initialization telegram contains at least in digital form Data for setting the SPDT switches and the Phase and amplitude adjuster (FIG. 2, 3) and an identifier to identify the associated T / R module.
  • Such an initialization telegram is sent by the T / R module controller (FIG. 2, 3) evaluated and then the corresponding Control signals generated.
  • the broadcast signal is sent out e.g.
  • a transmission frequency contains a frequency range from 9.5 GHz to 10.5 GHz.
  • On the transmission signal is then e.g. in a period of time of 5 ⁇ s for converting the received signal required LO signal, e.g. a frequency from a frequency range contains from 7.5 GHz to 8.5 GHz to the T / R module transfer.
  • This is followed by one Period of about 0.5 ⁇ s from that by the Initialization telegram addressed T / R module one Transmission of the digital IF reception data available.
  • optical beamforming network transmitted to the central unit (BSU) and there before the optical isolator via an optical directional coupler on a central photodiode (with appropriate matching circuit and bias network).
  • the optical signal is detected (demodulated) and as conventional Data telegram fed to a receiver and there in a known Way evaluated.
  • Transmitting / receiving radiator elements and associated T / R modules can contain all T / R modules via the on the basis of FIG. 1 and / or FIG. 4 described fiber optic network couple and then only a single optical fiber for connection to the associated central processing unit (BSU) use. Otherwise necessary RF transmission lines, e.g. Coaxial cables and / or waveguides are more advantageous Way not needed.
  • the laser diode in the central processing unit enables over one another spatially via optical fibers remote radar sensors, e.g. so-called multi-surface arrangements and / or so-called back / forward radar sensors (Forward / backward sensors) and / or so-called look up / look down radar sensors (up / down sensors), in advantageously to couple inexpensively and reliably.
  • remote radar sensors e.g. so-called multi-surface arrangements and / or so-called back / forward radar sensors (Forward / backward sensors) and / or so-called look up / look down radar sensors (up / down sensors).
  • the invention is not based on the exemplary embodiments described limited, but applicable to others, e.g. on a group antenna for one essential lower frequency range.

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Optical Communication System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (11)

  1. Antenne en réseau avec un réseau de formation de faisceau optique composé au moins de :
    plusieurs éléments rayonnants répartis en ligne et/ou sous la forme d'une matrice pour émettre et/ou recevoir des ondes électromagnétiques,
    plusieurs modules d'émission/réception, chaque élément rayonnant étant couplé à un module correspondant,
    une unité de commande qui génère au moins les signaux d'émission et un signal d'oscillateur pour un mélangeur dans chaque module,
    une unité d'exploitation qui exploite les signaux de réception reçus par les éléments rayonnants,
    un premier réseau de formation de faisceau optique qui relie à l'aide d'un guide de lumière, l'unité de commande à un module d'émission/ réception et permet de transmettre vers le module les signaux d'émission et le signal d'oscillateur,
    un second réseau de formation de faisceau optique, qui relie à l'aide d'un guide de lumière, l'unité d'exploitation à un module d'émission/réception et qui transmet les signaux de réception du module,
    dans lequel,
    dans chaque module on a un organe de réglage de phase commandé pour modifier la position de phase du signal d'émission ou de réception,
    dans chaque module il est prévu un organe de réglage d'amplitude, commandé pour modifier l'amplitude du signal d'émission ou de réception,
    dans chaque module il y a au moins un commutateur émission/réception, et
    dans l'unité de commande on a un unique dispositif laser central couplé optiquement au premier réseau de formation de faisceaux,
    caractérisée en ce que
    l'unité de commande et l'unité d'exploitation sont réunies dans une unité de commande et d'exploitation centrale,
    les deux réseaux de formation de faisceau optiques sont réunis dans un même réseau optique reliant à l'aide d'un unique guide de lumière, l'unité de commande et d'exploitation centrale à un module d'émission/réception, et par lequel les signaux d'émission, les signaux de réception, le signal d'oscillateur et les signaux de commande sont échangés avec le module,
    dans chaque module il est prévu une commande qui agit sur l'organe de réglage de phase, l'organe de réglage d'amplitude et sur le commutateur émission/réception, sur la base des signaux de commande de l'unité centrale de commande et d'exploitation, et
    un modulateur est relié au dispositif laser pour que la lumière laser émise par le dispositif laser puisse être, selon le procédé de multiplexage dans le temps au moins avec un signal d'initialisation pour régler au moins un module d'émission/réception, modulée avec le signal d'émission et avec le signal d'oscillateur.
  2. Antenne en réseau selon la revendication 1,
    caractérisée en ce que
    le dispositif laser comporte un laser semi-conducteur et le réseau de formation de faisceaux comporte au moins un amplificateur optique.
  3. Antenne en réseau selon la revendication 1 ou la revendication 2,
    caractérisée en ce que
    dans au moins un module il est prévu un convertisseur électro-optique, - le convertisseur électro-optique est couplé optiquement au réseau de formation de faisceau fonctionnant de manière bidirectionnelle selon le procédé de multiplexage dans le temps, et - le convertisseur électro-optique est relié électriquement à la sortie d'un mélangeur électrique qui partant du signal d'oscillateur et du signal de réception génère un signal de fréquence intermédiaire correspondant.
  4. Antenne en réseau selon l'une quelconque des revendications précédentes,
    caractérisée en ce qu'
    entre le mélangeur et le convertisseur électro-optique il y a un convertisseur analogique-numérique et le signal de fréquence intermédiaire est transmis sous forme optique numérique par le réseau de formation de faisceau vers l'unité centrale de commande et d'exploitation.
  5. Antenne en réseau en selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    dans au moins un module, on a un composant semi-conducteur optoélectrique intégré formé au moins d'un substrat semi-conducteur de préférence d'un substrat semi-conducteur de type III-V et ayant,
    un moyen de guidage optique central intégré du signal pour être couplé sur un guide de lumière du réseau de formation de faisceaux ;
    un coupleur optique directionnel couplé sur le moyen de guidage central optique du signal,
    une première branche formée au moins d'un convertisseur optoélectique, d'un réseau adaptateur électrique en aval ainsi que d'un amplificateur à faible bruit en aval (LNA), et
    une seconde branche formée au moins d'un convertisseur électro-optique et d'un réseau adaptateur électrique en aval.
  6. Antenne en réseau selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    chaque fois plusieurs modules, de préférence quatre, sont regroupés dans un groupe de modules, et dans le réseau de formation de faisceau, on a un nombre de diviseurs optiques adapté au nombre de modules des groupes de modules.
  7. Antenne en réseau selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    pour au moins un diviseur optique, le nombre de dérivations optiques est supérieur au nombre des modules couplés à ce diviseur, et l'une des dérivations supplémentaires est prévue pour des opérations de contrôle électro-optiques et/ou optoélectroniques.
  8. Antenne en réseau selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    dans au moins un module, on a un diplexeur électrique formé de composants électriques passifs dans lequel on divise les signaux d'émission et les signaux d'oscillateur (LO) fournis en multiplexage dans le temps pour les répartir dans deux branches électriques séparées.
  9. Antenne en réseau selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    plusieurs dispositifs d'antennes séparés dans l'espace sont formés chaque fois de plusieurs modules et/ou groupes de modules, et
    les dispositifs séparés sont reliés au réseau optique de formation de faisceau par des diviseurs optiques correspondants.
  10. Antenne en réseau selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    les éléments rayonnants dont la répartition en ligne ou en matrice ainsi que les modules et leur disposition en ligne ou en matrice sont accordés sur un rayonnement électromagnétique dans la plage des ondes millimétriques ou micrométriques.
  11. Antenne en réseau selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    le réseau de formation de faisceau comporte au moins une dérivation optique sous la forme d'une structure en étoile ou une structure arborescente,
    le réseau de formation de faisceau est conçu pour un fonctionnement optique bidirectionnel à multiplexage dans le temps, et
    l'unité centrale de commande et d'exploitation comporte un isolateur optique pour la séparation optique des signaux optiques d'émission et de réception.
EP94106631A 1993-05-03 1994-04-28 Réseau d'antennes à commande de phase à dispositif de commande de faisceau opto-électronique Expired - Lifetime EP0623969B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4314406 1993-05-03
DE4314406A DE4314406C2 (de) 1993-05-03 1993-05-03 Gruppenantenne mit optischem Strahlformungs-Netzwerk

Publications (3)

Publication Number Publication Date
EP0623969A2 EP0623969A2 (fr) 1994-11-09
EP0623969A3 EP0623969A3 (fr) 1995-12-27
EP0623969B1 true EP0623969B1 (fr) 2001-06-27

Family

ID=6486914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94106631A Expired - Lifetime EP0623969B1 (fr) 1993-05-03 1994-04-28 Réseau d'antennes à commande de phase à dispositif de commande de faisceau opto-électronique

Country Status (2)

Country Link
EP (1) EP0623969B1 (fr)
DE (2) DE4314406C2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19613824A1 (de) * 1996-04-06 1997-10-16 Univ Dresden Tech Verfahren und Anordnung zur optischen Erzeugung von Mikrowellen
KR102470140B1 (ko) 2018-09-03 2022-11-24 한국전자통신연구원 빔포밍 통신을 위한 송수신 장치 및 방법
CN112600586B (zh) * 2021-03-05 2021-05-28 北京永为正信电子技术发展有限公司 通信终端设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7807170A (nl) * 1978-06-30 1980-01-03 Hollandse Signaalapparaten Bv Radarsysteem.
US4814773A (en) * 1983-05-11 1989-03-21 Hughes Aircraft Company Fiber optic feed network for radar
US4885589A (en) * 1988-09-14 1989-12-05 General Electric Company Optical distribution of transmitter signals and antenna returns in a phased array radar system
US5051754A (en) * 1990-08-15 1991-09-24 Hughes Aircraft Company Optoelectronic wide bandwidth photonic beamsteering phased array
US5247309A (en) * 1991-10-01 1993-09-21 Grumman Aerospace Corporation Opto-electrical transmitter/receiver module
DE4136801A1 (de) * 1991-11-08 1993-05-13 Daimler Benz Ag Gruppenantenne

Also Published As

Publication number Publication date
DE59409791D1 (de) 2001-08-02
DE4314406C2 (de) 2002-11-21
EP0623969A3 (fr) 1995-12-27
EP0623969A2 (fr) 1994-11-09
DE4314406A1 (de) 1994-11-10

Similar Documents

Publication Publication Date Title
DE3787941T2 (de) Elektro-optisch gesteuerte, breitbandige, phasengesteuerte Mehrfachstrahlantenne.
DE68924590T2 (de) Optischer strahlformer für eine hochfrequenz-gruppenantenne.
DE69838827T2 (de) Teilerloser optischer Schalter mit Rundsendefähigkeit
DE69119510T2 (de) Phasengesteuerte Gruppe mit breitbandiger optoelektronischer, photonischer Antennenstrahlsteuerung
DE3689583T2 (de) Optisches Wellenlängenmultiplexvermittlungssystem mit Wellenlängenschaltlichtmodulatoren.
DE69827739T2 (de) Koherentes optisches Nachrichtenübertragungssystem
DE69127215T2 (de) Optisches Übertragungsverfahren und optisches Übertragungssystem
EP0105177B1 (fr) Elément de couplage optique
EP0762674A2 (fr) Méthode et circuit pour la transmission de signaux reçus d'une antenne à une station de base d'un système radio
EP0354567A2 (fr) Ensemble émission-réception pour un système de communication bidirectionnel cohérent et optique
EP0096327A1 (fr) Réseau de distribution
CN1533059A (zh) 卫星电视分配
DE69020362T2 (de) Verlustfreie optische komponente.
DE102022123727A1 (de) Optisches multilink-terabit-terminal
EP0349766A2 (fr) Système de transmission d'informations optique, concernant en particulier le raccordement d'abonnés
DE68905896T2 (de) Laseranordnung in einem optischen verbindungssystem.
EP0623969B1 (fr) Réseau d'antennes à commande de phase à dispositif de commande de faisceau opto-électronique
US5721556A (en) Fiberoptic manifold and time delay arrangement for a phased array antenna
EP1378074B1 (fr) Dispositif et systeme de transmission optique de donnees entre des satellites
EP0288418B1 (fr) Procédé pour la transmission optique d'informations à réception hétérodyne
DE3827589C2 (fr)
DE4136801A1 (de) Gruppenantenne
DE19603403A1 (de) Optisches Übertragungssystem, bei dem störende optische Interferenzen in der Zentrale reduziert sind
EP0386635B1 (fr) Dispositif de répartition de signaux à large bande par un réseau ramifié de ligne coaxiale
EP0928076B1 (fr) Système de transmission hybride avec une solution de repliement pour des connections exigeant haute disponibilité

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL SE

17P Request for examination filed

Effective date: 19960510

17Q First examination report despatched

Effective date: 19990720

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AEROSPACE AKTIENGESELLSCHAFT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS DEUTSCHLAND GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL SE

REF Corresponds to:

Ref document number: 59409791

Country of ref document: DE

Date of ref document: 20010802

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011018

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100331

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100506

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100413

Year of fee payment: 17

Ref country code: DE

Payment date: 20100423

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100415

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59409791

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59409791

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111101

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031