EP0622597B1 - Process and device for melting metals, more particularly non-ferrous metals - Google Patents

Process and device for melting metals, more particularly non-ferrous metals Download PDF

Info

Publication number
EP0622597B1
EP0622597B1 EP94105652A EP94105652A EP0622597B1 EP 0622597 B1 EP0622597 B1 EP 0622597B1 EP 94105652 A EP94105652 A EP 94105652A EP 94105652 A EP94105652 A EP 94105652A EP 0622597 B1 EP0622597 B1 EP 0622597B1
Authority
EP
European Patent Office
Prior art keywords
chamber
pump
space
molten metal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94105652A
Other languages
German (de)
French (fr)
Other versions
EP0622597A3 (en
EP0622597A2 (en
Inventor
Lars Henrik Mikael Jafs
Daniel Jafs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABJAFS EXPORT HOLIMESY Oy
Original Assignee
ABJAFS EXPORT HOLIMESY Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABJAFS EXPORT HOLIMESY Oy filed Critical ABJAFS EXPORT HOLIMESY Oy
Publication of EP0622597A2 publication Critical patent/EP0622597A2/en
Publication of EP0622597A3 publication Critical patent/EP0622597A3/en
Application granted granted Critical
Publication of EP0622597B1 publication Critical patent/EP0622597B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/006General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with use of an inert protective material including the use of an inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material

Definitions

  • the invention relates to a method and a device for melting of metal. Reference is made to the preambles of claims 1 and 8.
  • SE-PS 437 339 shows and describes the melting of metal in one Melting furnace.
  • the metal is circulated and in batches added by means of pneumatic pumps.
  • To melt quality too To improve it is known to degas the metal, for example by means of gaseous nitrogen, ideally in combination with a filtration.
  • the invention is based on the object, the method and the device according to the preambles of claims 1 and 8 improve that the melting quality is even better than since then.
  • the invention is mainly based on the idea to reduce the turbulence in the chambers.
  • An essential idea of the method according to the invention and the The device according to the invention is that that amount of melted material, which at elevated pressure in the space above of the melting furnace is pressed into the calming chamber, essentially is greater than the amount of molten metal that is used at the same time Melting chamber, which is connected to the pressure chamber, is returned. This is achieved in that the amount of melt that is in the Unit of time from each pump chamber to the connected one Calming chamber is fed, is about 3 to 15 times as large as that of each pump chamber (10, 11) to the connected melting chamber (5) in Pump chamber space above the melt when the pressure rises or Pressure drop transferred quantity.
  • a rise in pressure above the melt in the pump chamber is determined by an increase in pressure of the inert gas, preferably nitrogen, is reached, and by filling the space above the melt and by Establish a conductive connection to the top room above one Pump piston in the pump cylinder that connects to the pump chamber connected. Pressure rise and fall are kept under control, to avoid creating a vacuum.
  • the inert gas preferably nitrogen
  • the mirror in the furnace and in the outlet pipeline is best like this set that minimal mirror fluctuations are possible. At Continuous consumption must also be continuously and on the supply Consumption must be coordinated.
  • the device essentially comprises a conventional melting furnace, preferably with two melting chambers, two pump chambers and two Calming chambers.
  • the cross-sectional area of the Channel between a pump chamber and the associated one Calming chamber much larger than the cross-sectional area of the channel between the same pump chamber and the previous one Melting chamber.
  • the relationship between these cross-sectional areas lies in Range from 15: 1 to 3: 1, preferably between 10: 1 to 5: 1.
  • a ratio of 8: 1 is particularly cheap.
  • the pump cylinders that hold the molten metal in the furnace circulate are vertically arranged pump cylinders, divided by one horizontal, firm subdivision into an upper and a lower Pump room.
  • a pump shaft is movable through the subdivision passed through and provided with a pump piston at the other end. The subdivision divides the cylinder space into two equal parts.
  • the space above the upper pump piston communicates via a Pipeline with the space above the molten metal in the Pump chamber connected to the pump.
  • the one with the other communicating rooms are filled with inert gas, preferably with Nitrogen.
  • the communicating space above the upper pump piston with a Manometer and provide a valve that leads to a gas source on best to a nitrogen source.
  • the space between the horizontal wall of the pump cylinder and the upper pump piston as well as the space between the horizontal Wall and the upper pump piston are attached to a corresponding one Compressed air source connected adjustable, while the room below the lower pump piston communicates with the atmosphere.
  • One on this Wisely equipped pump cylinder enables the pressure in the room increase or decrease above the melt in the pump chamber; in this way the melt is gently transferred to the settling chamber, and the melt remaining in the channel can gently return to the channel be fed. Without controlled pressure conditions, the Pump chamber under the influence of the reversing movement of the Pump piston underpressure arise, causing a sudden Backflow and impacts on the melt in the pump chamber. The turbulence that would then occur would significantly increase the melting quality affect.
  • FIG. 1 is a schematic view of a melting furnace, seen from above with the cover removed, with the associated pump cylinders.
  • Figure 2 is a cross section of a vertical pump cylinder connected to the pump chamber in the furnace.
  • the melting furnace is divided into several separate chambers divided, which are provided with openings through which the chambers communicate with each other.
  • the heat for melting the metal becomes fed from the electrically heated lid of the melting furnace; this is in the figures not shown. Blocks and / or scrap are after preheating fed to a feed chamber 1.
  • Liquid flows from there Metal through an opening in the bottom area of a first Melting chamber 3.
  • the opening is not shown, but the Material flow through the opening by means of an arrow 2.
  • the metal then flows from the melting chamber 3 through an opening in the area of the bottom subsequent melting chamber 5 - see arrow 4. Between the Melting chambers 3 and 5 can degas and / or filter the melt to improve the melt quality.
  • the degassing and Filter chambers 7 and 8 have a greater depth than the melting chambers, to make backflow impossible.
  • Melting chamber 5 communicates with two pump chambers 10 and 11 two channels - see arrows 12 and 13.
  • the mouth of the channels in the Melting chamber 5 is located near the bottom of the Melting chamber, and their mouths to the pump chambers 10 and 11 are located near the bottom of their corresponding pump chamber.
  • the pump chamber 11 becomes molten metal through a channel of larger cross section pressed into the calming chamber 15 - see Arrow 14.
  • the mouth of the channel in the pump chamber 11 is in near the bottom of the pumping chamber, and its mouth in the Calming chamber 15 is located near the top of the Calming chamber (15).
  • the ratio between the cross sectional areas of the Channels 14 and 13 are best at 8: 1. However, it can also be in the area from 10: 1 to 5: 1, even between 15: 1 to 3: 1.
  • the volume of the Melt changes due to the friction on the pipe walls in the Unit of time not in the same ratio as the cross-sectional areas.
  • the effect the friction of the flow increases inversely proportional to Cross sectional area.
  • An even larger ratio leads to oxidation, and one an even lower ratio leads to poor working methods or even to a system failure.
  • Molten metal flows out of the Calming chamber 15 through an opening in the area of the floor - see Arrow 16 - to inlet chamber 1, where it is fed to the furnace Chill molds, blocks or scrap hits.
  • a controlled amount of molten metal is in the meantime a channel 17 fed to a calming chamber 18, from where it is to Removal is delivered to an electrically heated pipeline 19.
  • the Circulation and pumping out of molten metal is done by feeding an inert gas, for example nitrogen, under Control to the corresponding pump chamber 10, 11 through an inlet channel 20, 21 in the pump chamber cover from an external, vertically arranged Pump cylinders 40, 41.
  • the two pump cylinders (40, 41) are together identical and check their corresponding pump chambers (10, 11) for the same Wise.
  • the pump cylinder (40) has one horizontal partition 22, which preferably the same in two cylinders Rooms 23 and 24 divided. On both sides of the partition 22 is one Pistons 25 and 26 provided.
  • the pistons have a piston rod 27 firmly connected, which is passed through the partition wall 22.
  • An inert gas preferably nitrogen, fills the upper one Pump cylinder chamber 23 and the space above the molten metal in the Pump chamber 10 and 11, which via lines 20 and 21 with the Pump cylinder chamber 23 communicate.
  • the pump cylinder space 23 has a valve 30, which is connected to a nitrogen source and to a manometer 31. The Pumping and thus circulating molten metal is brought about by that compressed air into the cylinder chamber 28 through a pneumatic valve flows in - see the double arrow 32.
  • the furnace lid especially the pump chamber lid, must be properly sealed.
  • the level of the melting furnace and the level the pipeline is best adjusted so that a minimum Mirror fluctuation occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zum Schmelzen von Metall. Auf die Oberbegriffe der Ansprüche 1 und 8 wird verwiesen.The invention relates to a method and a device for melting of metal. Reference is made to the preambles of claims 1 and 8.

SE-PS 437 339 zeigt und beschreibt das Schmelzen von Metall in einem Schmelzofen. Hierbei wird das Metall umgewälzt und chargenweise zugegeben mittels pneumatischer Pumpen. Um die Schmelzqualität zu verbessern ist es bekannt, das Metall zu entgasen, beispielsweise mittels gasförmigen Stickstoffs, am besten in Kombination mit einer Filtration.SE-PS 437 339 shows and describes the melting of metal in one Melting furnace. The metal is circulated and in batches added by means of pneumatic pumps. To melt quality too To improve it is known to degas the metal, for example by means of gaseous nitrogen, ideally in combination with a filtration.

Der Erfindung liegt die Aufgabe zugrunde, das Verfahren und die Vorrichtung gemäß den Oberbegriffen der Ansprüche 1 und 8 dahingehend zu verbessern, daß die Schmelzqualität noch besser wird als seither.The invention is based on the object, the method and the device according to the preambles of claims 1 and 8 improve that the melting quality is even better than since then.

Diese Aufgabe wird durch die kennzeichnenden Merkmale der Ansprüche 1 bzw. 8 gelöst. Die Erfindung beruht in der Hauptsache auf dem Gedanken, die Turbulenz in den Kammern zu verringern.This object is achieved by the characterizing features of claims 1 or 8 solved. The invention is mainly based on the idea to reduce the turbulence in the chambers.

Ein wesentlicher Gedanke des erfindungsgemäßen Verfahrens sowie der erfindungsgemäßen Vorrichtung besteht darin, daß diejenige Menge des geschmolzenen Materiales, die bei erhöhtem Druck in den Raum oberhalb des Schmelzofens in die Beruhigungskammer gedrückt wird, wesentlich größer ist als diejenige Menge geschmolzenen Metalls, das gleichzeitig zur Schmelzkammer, die mit der Druckkammer verbunden ist, zurückgeführt wird. Dies wird dadurch erreicht, daß die Menge der Schmelze, die in der Zeiteinheit von jeder Pumpenkammer zur angeschlossenen Beruhigungskammer zugeführt wird, etwa 3 bis 15 mal so groß ist wie die von jeder Pumpenkammer (10, 11) an die angeschlossene Schmelzkammer (5) im Pumpenkammerraum oberhalb der Schmelze bei Druckanstieg bzw. Druckabfall überführte Menge.An essential idea of the method according to the invention and the The device according to the invention is that that amount of melted material, which at elevated pressure in the space above of the melting furnace is pressed into the calming chamber, essentially is greater than the amount of molten metal that is used at the same time Melting chamber, which is connected to the pressure chamber, is returned. This is achieved in that the amount of melt that is in the Unit of time from each pump chamber to the connected one Calming chamber is fed, is about 3 to 15 times as large as that of each pump chamber (10, 11) to the connected melting chamber (5) in Pump chamber space above the melt when the pressure rises or Pressure drop transferred quantity.

Gleichzeitig können Maßnahmen getroffen werden, um zu verhindern, daß der vom Boden der Pumpenkammer zur Beruhigungskammer überführte Schmelzfluß zum Kanal zurückgeführt wird und auf die Schmelze in der Schmelzkammer auftrifft, im Falle eines plötzlichen Druckabfalles in der Pumpenkammer. Durch diese Maßnahmen wird Turbulenz verhindert und die Qualität der Schmelze gesteigert. Der Kanal zwischen dem Boden der Pumpenkammer und der Beruhigungskammer ist am besten nach oben geneigt, so daß die Schmelze in der Nähe des oberen Endes der Beruhigungskammer abgegeben wird, geringfügig oberhalb des Niveaus der Schmelze.At the same time, measures can be taken to prevent the transferred from the bottom of the pump chamber to the calming chamber Melt flow is returned to the channel and on the melt in the Melting chamber hits, in the event of a sudden drop in pressure in the Pump chamber. These measures prevent turbulence and the Quality of the melt increased. The channel between the bottom of the Pump chamber and the calming chamber is best up inclined so that the melt near the top of the Calming chamber is released slightly above the level of the Melt.

Ein Druckanstieg oberhalb der Schmelze in der Pumpenkammer wird mittels eines Druckanstieges des inerten Gases, am besten Stickstoff, erreicht, und zwar durch Ausfüllen des Raumes oberhalb der Schmelze und durch Herstellen einer leitenden Verbindung zum obersten Raum oberhalb eines Pumpenkolbens im Pumpenzylinder, der an die Pumpenkammer angeschlossen ist. Druckanstieg und -abfall werden unter Kontrolle gehalten, um zu vermeiden, daß ein Vakuum entsteht.A rise in pressure above the melt in the pump chamber is determined by an increase in pressure of the inert gas, preferably nitrogen, is reached, and by filling the space above the melt and by Establish a conductive connection to the top room above one Pump piston in the pump cylinder that connects to the pump chamber connected. Pressure rise and fall are kept under control, to avoid creating a vacuum.

Der Spiegel im Ofen und in der Auslaß-Rohrleitung wird am besten derart eingestellt, daß minimale Spiegelschwankungen möglich sind. Bei kontinuierlichem Verbrauch muß auch die Zufuhr kontinuierlich und auf den Verbrauch abgestimmt sein.The mirror in the furnace and in the outlet pipeline is best like this set that minimal mirror fluctuations are possible. At Continuous consumption must also be continuously and on the supply Consumption must be coordinated.

Die Vorrichtung umfaßt im wesentlichen einen herkömmlichen Schmelzofen, am besten mit zwei Schmelzkammern, zwei Pumpenkammern und zwei Beruhigungskammern. Gemäß der Erfindung ist die Querschnittsfläche des Kanales zwischen einer Pumpenkammer und der zugeordneten Beruhigungskammer wesentlich größer als die Querschnittsfläche des Kanales zwischen derselben Pumpenkammer und der vorausgehenden Schmelzkammer. Das Verhältnis zwischen diesen Querschnittsflächen liegt im Bereich von 15:1 bis 3:1, am besten zwischen 10:1 bis 5:1. Ein Verhältnis von 8:1 ist besonders günstig.The device essentially comprises a conventional melting furnace, preferably with two melting chambers, two pump chambers and two Calming chambers. According to the invention, the cross-sectional area of the Channel between a pump chamber and the associated one Calming chamber much larger than the cross-sectional area of the channel between the same pump chamber and the previous one Melting chamber. The relationship between these cross-sectional areas lies in Range from 15: 1 to 3: 1, preferably between 10: 1 to 5: 1. A ratio of 8: 1 is particularly cheap.

Die Pumpenzylinder, die das geschmolzene Metall im Schmelzofen umwälzen, sind vertikal angeordnete Pumpenzylinder, unterteilt von einer horizontalen, festen Unterteilung in einen oberen und einen unteren Pumpenraum. Eine Pumpenwelle ist beweglich durch die Unterteilung hindurchgeführt und mit einem Pumpenkolben am anderen Ende versehen. Die Unterteilung unterteilt den Zylinderraum in zwei gleiche Teile.The pump cylinders that hold the molten metal in the furnace circulate, are vertically arranged pump cylinders, divided by one horizontal, firm subdivision into an upper and a lower Pump room. A pump shaft is movable through the subdivision passed through and provided with a pump piston at the other end. The subdivision divides the cylinder space into two equal parts.

Der Raum oberhalb des oberen Pumpenkolbens kommuniziert über eine Rohrleitung mit dem Raum oberhalb des geschmolzenen Metalls in der Pumpenkammer, die an die Pumpe angeschlossen ist. Die miteinander kommunizierenden Räume sind mit inertem Gas gefüllt, am besten mit Stickstoff. Um eine kontrollierte Druckzunahme bzw. -abnahme in der Pumpenkammer oberhalb der Schmelze zu erreichen, ist der kommunizierende Raum oberhalb des oberen Pumpenkolbens mit einem Manometer und einem Ventil versehen, das zu einer Gasquelle führt, am besten zu einer Stickstoffquelle.The space above the upper pump piston communicates via a Pipeline with the space above the molten metal in the Pump chamber connected to the pump. The one with the other communicating rooms are filled with inert gas, preferably with Nitrogen. To ensure a controlled increase or decrease in pressure in the Reaching the pump chamber above the melt is the communicating space above the upper pump piston with a Manometer and provide a valve that leads to a gas source on best to a nitrogen source.

Der Raum zwischen der horizontalen Wand des Pumpenzylinders und dem oberen Pumpenkolben sowie auch der Raum zwischen der horizontalen Wand und dem oberen Pumpenkolben sind an eine entsprechende Druckluftquelle einstellbar angeschlossen, während der Raum unterhalb des unteren Pumpenkolbens mit der Atmosphäre kommuniziert. Ein auf diese Weise ausgestatteter Pumpenzylinder ermöglicht es, den Druck im Raum oberhalb der Schmelze in der Pumpenkammer zu steigern oder abzusenken; die Schmelze wird auf diese Weise sanft in die Beruhigungskammer überführt, und die im Kanal verbleibende Schmelze kann sanft dem Kanal wieder zugeführt werden. Ohne kontrollierte Druckbedingungen kann in der Pumpenkammer unter der Einwirkung der Reversierbewegung des Pumpenkolbens Unterdruck entstehen, was zu einer plötzlichen Rückströmung und zu Stößen auf die Schmelze in der Pumpenkammer führt. Die dann auftretende Turbulenz würde die Schmelzqualität erheblich beeinträchtigen.The space between the horizontal wall of the pump cylinder and the upper pump piston as well as the space between the horizontal Wall and the upper pump piston are attached to a corresponding one Compressed air source connected adjustable, while the room below the lower pump piston communicates with the atmosphere. One on this Wisely equipped pump cylinder enables the pressure in the room increase or decrease above the melt in the pump chamber; in this way the melt is gently transferred to the settling chamber, and the melt remaining in the channel can gently return to the channel be fed. Without controlled pressure conditions, the Pump chamber under the influence of the reversing movement of the Pump piston underpressure arise, causing a sudden Backflow and impacts on the melt in the pump chamber. The turbulence that would then occur would significantly increase the melting quality affect.

Die Erfindung ist anhand der Zeichnung näher erläutert. Darin ist im einzelnen folgendes dargestellt:The invention is explained in more detail with reference to the drawing. In it is in detail shown the following:

Figur 1 ist eine schematische Ansicht eines Schmelzofens, von oben gesehen bei abgenommenem Deckel, mit den zugehörenden Pumpenzylindern.
Figur 2 ist ein Querschnitt eines vertikalen Pumpenzylinders, der an die Pumpenkammer im Schmelzofen angeschlossen ist.
FIG. 1 is a schematic view of a melting furnace, seen from above with the cover removed, with the associated pump cylinders.
Figure 2 is a cross section of a vertical pump cylinder connected to the pump chamber in the furnace.

Der Schmelzofen ist in mehrere getrennte Kammern durch Unterteilungen abgeteilt, die mit Öffnungen versehen sind, durch welche die Kammern miteinander kommunizieren. Die Wärme zum Schmelzen des Metalles wird vom elektrisch beheizten Deckel des Schmelzofens zugeführt; dieser ist in den Figuren nicht gezeigt. Blöcke und/oder Schrott werden nach dem Vor-Aufheizen einer Zuführkammer 1 zugeführt. Von dort aus gelangt flüssiges Metall durch eine Offnung im Bereich des Bodens einer ersten Schmelzkammer 3. Die Öffnung ist nicht dargestellt, wohl aber der Materialfluß durch die Öffnung mittels eines Pfeiles 2. Das Metall fließt sodann aus der Schmelzkammer 3 durch eine Öffnung im Bereich des Bodens zur nachfolgenden Schmelzkammer 5 - siehe Pfeil 4. Zwischen den Schmelzkammern 3 und 5 kann die Schmelze entgast und/oder gefiltert werden, um die Schmelzqualität zu verbessern. In diesem Falle strömt die Schmelze aus der ersten Schmelzkammer 3 durch eine Öffnung - siehe Pfeil 6 - zu den Entgasungs- und Filterkammern 7 und 8, und von dort durch eine Öffnung - siehe Pfeil 9 - zur zweiten Schmelzkammer 5. Die Entgasungs- und Filterkammern 7 und 8 haben eine größere Tiefe als die Schmelzkammern, um einen Rückfluß unmöglich zu machen.The melting furnace is divided into several separate chambers divided, which are provided with openings through which the chambers communicate with each other. The heat for melting the metal becomes fed from the electrically heated lid of the melting furnace; this is in the figures not shown. Blocks and / or scrap are after preheating fed to a feed chamber 1. Liquid flows from there Metal through an opening in the bottom area of a first Melting chamber 3. The opening is not shown, but the Material flow through the opening by means of an arrow 2. The metal then flows from the melting chamber 3 through an opening in the area of the bottom subsequent melting chamber 5 - see arrow 4. Between the Melting chambers 3 and 5 can degas and / or filter the melt to improve the melt quality. In this case the flows Melt from the first melting chamber 3 through an opening - see arrow 6 - To the degassing and filter chambers 7 and 8, and from there through one Opening - see arrow 9 - to the second melting chamber 5. The degassing and Filter chambers 7 and 8 have a greater depth than the melting chambers, to make backflow impossible.

Schmelzkammer 5 kommuniziert mit zwei Pumpenkammern 10 und 11 über zwei Kanäle - siehe Pfeile 12 und 13. Die Mündung der Kanäle in die Schmelzkammer 5 befindet sich in der Nähe des Bodens der Schmelzkammer, und ihre Mündungen zu den Pumpenkammern 10 und 11 befinden sich in der Nähe des Bodens ihrer entsprechenden Pumpenkammer. Aus der Pumpenkammer 11 wird geschmolzenes Metall durch einen Kanal von größerem Querschnitt in die Beruhigungskammer 15 gedrückt - siehe Pfeil 14. Die Mündung des Kanales in der Pumpenkammer 11 befindet sich in der Nähe des Bodens der Pumpenkammer, und seine Mündung in der Beruhigungskammer 15 befindet sich in der Nähe des oberen Bereiches der Beruhigungskammer (15). Das Verhältnis zwischen den Querschnittsflächen der Kanäle 14 und 13 liegt am besten bei 8:1. Es kann jedoch auch im Bereich von 10:1 bis 5:1 liegen, sogar zwischen 15:1 bis 3:1. Das Volumen der Schmelze ändert sich aufgrund der Reibung an den Rohrwandungen in der Zeiteinheit nicht im selben Verhältnis wie die Querschnittsflächen. Der Effekt der Reibung der Strömung steigt umgekehrt proportional zur Querschnittsfläche. Ein noch größeres Verhältnis führt zu Oxidation, und ein noch niedrigeres Verhältnis führt zu einer schlechten Arbeitsweise oder gar zu einem Versagen des Systems. Geschmolzenes Metall strömt aus der Beruhigungskammer 15 durch eine Öffnung im Bereich des Bodens - siehe Pfeil 16 - zur Einlaßkammer 1, wo es auf dem Schmelzofen zugeführte Kokillen, Blöcke oder Schrott trifft.Melting chamber 5 communicates with two pump chambers 10 and 11 two channels - see arrows 12 and 13. The mouth of the channels in the Melting chamber 5 is located near the bottom of the Melting chamber, and their mouths to the pump chambers 10 and 11 are located near the bottom of their corresponding pump chamber. The pump chamber 11 becomes molten metal through a channel of larger cross section pressed into the calming chamber 15 - see Arrow 14. The mouth of the channel in the pump chamber 11 is in near the bottom of the pumping chamber, and its mouth in the Calming chamber 15 is located near the top of the Calming chamber (15). The ratio between the cross sectional areas of the Channels 14 and 13 are best at 8: 1. However, it can also be in the area from 10: 1 to 5: 1, even between 15: 1 to 3: 1. The volume of the Melt changes due to the friction on the pipe walls in the Unit of time not in the same ratio as the cross-sectional areas. The effect the friction of the flow increases inversely proportional to Cross sectional area. An even larger ratio leads to oxidation, and one an even lower ratio leads to poor working methods or even to a system failure. Molten metal flows out of the Calming chamber 15 through an opening in the area of the floor - see Arrow 16 - to inlet chamber 1, where it is fed to the furnace Chill molds, blocks or scrap hits.

Eine kontrollierte Menge geschmolzenes Metall wird in der Zwischenzeit durch einen Kanal 17 einer Beruhigungskammer 18 zugeführt, von wo aus es zur Entnahme an eine elektrisch geheizte Rohrleitung 19 abgegeben wird. Das Umwälzen und Herauspumpen geschmolzenen Metalls wird durch Zufuhr eines inerten Gases bewirkt, beispielsweise Stickstoff, und zwar unter Kontrolle zur entsprechenden Pumpenkammer 10, 11 durch einen Einlaßkanal 20, 21 im Pumpenkammerdeckel von einem externen, vertikal angeordneten Pumpenzylinder 40, 41. Die beiden Pumpenzylinder (40,41) sind miteinander identisch und kontrollieren ihre entsprechenden Pumpenkammern (10,11) auf gleiche Weise. Wie man aus Figur 2 erkennt, weist der Pumpenzylinder (40) eine horizontale Trennwand 22 auf, die den Zylinder in zwei vorzugsweise gleiche Räume 23 und 24 unterteilt. Auf beiden Seiten der Trennwand 22 ist ein Kolben 25 bzw. 26 vorgesehen. Die Kolben sind mit einer Kolbenstange 27 fest verbunden, die durch die Trennwand 22 hindurchgeführt ist. Man erkennt den Raum 28 zwischen der Trennwand 22 und dem oberen Pumpenkolben 25 sowie den Raum 29 zwischen der Trennwand 22 und dem unteren Pumpenkolben 26. Ein inertes Gas, am besten Stickstoff, füllt den oberen Pumpenzylinderraum 23 sowie den Raum oberhalb des geschmolzenen Metalls in der Pumpenkammer 10 und 11 aus, die über die Leitungen 20 und 21 mit dem Pumpenzylinderraum 23 kommunizieren. Der Pumpenzylinderraum 23 weist ein Ventil 30 auf, das an eine Stickstoffquelle und an ein Manometer 31 angeschlossen ist. Das Pumpen und somit Umwälzen geschmolzenen Metalls wird dadurch bewirkt, daß komprimierte Luft in den Zylinderraum 28 durch ein pneumatisches Ventil einströmt - siehe den Doppelpfeil 32. In dieser Situation werden die Zylinderkolben 25 und 26 nach oben gedrückt, und es wird Überdruck oberhalb des Metallspiegels in der Pumpenkammer 10, 11 erzeugt. Eine spezifisch größere Menge geschmolzenen Metalls wird sodann durch die Kanäle 14 und 17 in die Beruhigungskammern 15 und 18 eingedrückt, während eine spezifisch kleinere Menge zur Schmelzkammer 5 durch die Kanäle 12 und 13 zurückgedrückt wird. Nach einer gewissen Zeitspanne läßt man den Luftdruck in Raum 28 abfallen, währen der Druck in Raum 29 angehoben wird, so daß sich die Zylinderkolben 25 und 26 nach unten bewegen. Der Stickstoff im obersten Bereich des Raumes 23 der Pumpe expandiert; Manometer 34 wird derart eingestellt, daß Ventil 30 dahingehend gesteuert wird, daß dann mehr Stickstoff hindurchtritt, wenn der Druck in Raum 23 unterhalb eines vorgegebenen Grenzwertes abfällt. Der untere Zylinderraum 24 enthält Luft und kommuniziert mit der Atmosphäre durch eine Rohrleitung 31. Auf diese Weise wird der Druck oberhalb des Spiegels der Schmelze in der Pumpenkammer 10, 11 oberhalb des spezifischen Grenzwertes gehalten, und es tritt kein Unterdruck auf. Diese Anordnung führt zu einem sanften und kontrollierten Drücken geschmolzenen Metalls in die Beruhigungskammer, wodurch ein plötzlicher Rückstrom unterbunden wird, der auf geschmolzenes Material treffen würde.A controlled amount of molten metal is in the meantime a channel 17 fed to a calming chamber 18, from where it is to Removal is delivered to an electrically heated pipeline 19. The Circulation and pumping out of molten metal is done by feeding an inert gas, for example nitrogen, under Control to the corresponding pump chamber 10, 11 through an inlet channel 20, 21 in the pump chamber cover from an external, vertically arranged Pump cylinders 40, 41. The two pump cylinders (40, 41) are together identical and check their corresponding pump chambers (10, 11) for the same Wise. As can be seen from Figure 2, the pump cylinder (40) has one horizontal partition 22, which preferably the same in two cylinders Rooms 23 and 24 divided. On both sides of the partition 22 is one Pistons 25 and 26 provided. The pistons have a piston rod 27 firmly connected, which is passed through the partition wall 22. One notices the space 28 between the partition 22 and the upper pump piston 25 and the space 29 between the partition 22 and the lower one Pump piston 26. An inert gas, preferably nitrogen, fills the upper one Pump cylinder chamber 23 and the space above the molten metal in the Pump chamber 10 and 11, which via lines 20 and 21 with the Pump cylinder chamber 23 communicate. The pump cylinder space 23 has a valve 30, which is connected to a nitrogen source and to a manometer 31. The Pumping and thus circulating molten metal is brought about by that compressed air into the cylinder chamber 28 through a pneumatic valve flows in - see the double arrow 32. In this situation the Cylinder pistons 25 and 26 are pushed upwards and there is overpressure generated above the metal level in the pump chamber 10, 11. A specific larger amount of molten metal is then by the Channels 14 and 17 pressed into the calming chambers 15 and 18, while a specifically smaller amount to the melting chamber 5 through the Channels 12 and 13 is pushed back. After a period of time leaves If the air pressure in room 28 drops, the pressure in room 29 is raised so that the cylinder pistons 25 and 26 down move. The nitrogen in the uppermost area of chamber 23 of the pump expanding; Manometer 34 is set so that valve 30 to do so is controlled so that more nitrogen passes when the pressure in Room 23 falls below a predetermined limit. The lower Cylinder chamber 24 contains air and communicates with the atmosphere through one Pipeline 31. In this way, the pressure above the level of the Melt in the pump chamber 10, 11 above the specific limit held, and no negative pressure occurs. This arrangement leads to one gentle and controlled pressures of molten metal into the Calming chamber, which prevents a sudden backflow, that would hit molten material.

Das Pumpen durch die Pumpenkammern 10 und 11 erzeugt eine Umwälzung durch die Schmelzkammern, so daß Blöcke, Kokillen und Schrott auf das geschmolzene Metall in der Zuführkammer 1 treffen, was zu einem raschen und effizienten Schmelzen führt; geschmolzenes Metall wird aus der Beruhigungskammer 18 durch den Kanal 19 hindurchgepumpt, um weiterverwendet zu werden.Pumping through the pump chambers 10 and 11 creates a circulation through the melting chambers, so that blocks, molds and scrap on the hit molten metal in the feed chamber 1, causing a rapid and efficient melting leads; molten metal is made from the Calming chamber 18 pumped through the channel 19 to to continue to be used.

Die Deckel des Schmelzofens, besonders der Pumpenkammerdeckel, müssen einwandfrei abgedichtet sein. Das Niveau des Schmelzofens und das Niveau der Rohrleitung werden am besten derart justiert, daß eine minimale Spiegelschwankung eintritt.The furnace lid, especially the pump chamber lid, must be properly sealed. The level of the melting furnace and the level the pipeline is best adjusted so that a minimum Mirror fluctuation occurs.

Claims (15)

  1. Method for melting of metal and for processing of molten metals, particularly of non-ferrous metal, whereby the solid metal is supplied to a chamber (1) and is fed from one chamber to another one (3, 5, 10, 11, 15, 18) through ducts connecting the chambers, with simultaneous melting or processing by thermal radiation from the chamber lids, one or more pumps (40, 41) acting on the space above the molten metal in one or more pump chambers (10, 11) connected with the pump, each of which is connected at the bottom part through ducts with a melt chamber (5) supplying molten metal to the pump chamber and with a splash chamber (18, 15) from where molten metal is taken away to a pipe (19) to be consumed or recycled, characterized in that the amount of the melt as is fed from each pump chamber (10, 11) to the connected splash chamber (18, 15) is approximately three to fifteen times as high as the amount which is transferred from each pump chamber (10, 11) to the connected melting chamber (5) in the pump chamber space when the pressure increases respectively decreases.
  2. A method according to claim 1, characterized in that the space above the molten metal in the pump chamber (10, 11) and the connected space (23) in the pump (40) is filled with an inert gas, preferably nitrogen.
  3. A method according to claim 1 or 2, characterized in that the pressure drop in the pump chamber (10, 11) space above the molten metal is controlled so that no vacuum is generated.
  4. A method according to any of the preceding claims, characterized in that the various spaces (23, 27, 29, 24) of the pump cylinder (40, 41) can be evacuated for pressure control.
  5. A method according to any of the preceding claims, characterized in that the level of the melting furnace including the outlet pipe (19) is maintained approximately constant.
  6. A method according to any of the preceding claims, characterized in that feeding of the melt from each pump chamber (10, 11) to the connected splash chamber (15, 18) is fed continuously.
  7. A method according to any of claims 1 to 6, characterized in that the transfer of molten metal from near the bottom of the pump chamber (10, 11) to near the lid of the splash chamber (15, 18) above the level of the melt is upwardly increasing.
  8. A device for implementing the method according to any of the preceding claims, comprising a melting furnace or a furnace with one or more chambers (3, 5, 10, 11, 18, 15) including a batching chamber (1), heat-radiating chamber lids, one or more pneumatic pumps (40, 41) connected with the furnace to circulate molten metal from one chamber to another, and a discharge pipe (19), the chambers being interconnected with ducts, through which molten metal is transferred between consecutive chambers, characterized in that the ratio between the cross-sectionl surfaces of the ducts (12, 17; 13, 14) between a pump chamber (10, 11) and the preceding melt chamber (5) and between the same pump chamber (10, 11) and the consecutive splash chamber (18, 15) is from 3:1 to 15:1, preferably from 5:1 to 10:1.
  9. A device according to claim 8, characterized in that the configuration of the pneumatic pump or pumps (40, 41) comprises vertically disposed pump cylinders, divided with a horizontal solid partition (22) into an upper (23) and a lower (24) cylinder space, and having a pump shaft (27) passing freely through the partition and having a pump piston (25, 26) at either end.
  10. A device according to claim 8 or 9, characterized in that the solid partition (22) divides the pump cylinder volume into two equal parts.
  11. A device according to any of claims 8 to 10, characterized in that the ducts (17; 14) between each pump chamber (10, 11) and the connected splash chamber (18, 15) extends obliquely upwards from near the bottom of the pump chamber to near the splash chamber lid (above the melt surface level).
  12. A device according to any of claims 8 to 11, characterized in that the space (23) above the upper pump piston (25) in each pump cylinder (40, 41) is connected, through a pipe (20, 41), with the space above the molten metal in the pump chamber (10, 11) connected with the pump.
  13. A device according to any of claims 8 to 12, characterized in that the space (23) above the pump piston (25) in each pump cylinder (40, 41) and the space above the molten metal in the pump chamber (10, 11) connected with the pump cylinder are filled with inert gas, preferably nitrogen.
  14. A device according to claim 13, characterized in that the space (23) above the upper pump piston is provided with a manometer (34) and with a valve (30) leading to a gas source for controlling gas pressure.
  15. A device according to any of claims 8 to 14, characterized in that the space (28) between the horizontal wall and the upper pump piston and the space (29) between the horizontal wall and the lower pump piston are each connected under control (32, 33) to a respective compressed air source, the space (24) below the lower pump piston communicating with the surrounding atmosphere through a pipe (31).
EP94105652A 1993-04-20 1994-04-13 Process and device for melting metals, more particularly non-ferrous metals Expired - Lifetime EP0622597B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI931786 1993-04-20
FI931786A FI94649C (en) 1993-04-20 1993-04-20 Foerfarande och anordning Foer smaeltning av metall, saerskilt icke-jaernmetall

Publications (3)

Publication Number Publication Date
EP0622597A2 EP0622597A2 (en) 1994-11-02
EP0622597A3 EP0622597A3 (en) 1995-09-06
EP0622597B1 true EP0622597B1 (en) 1998-02-25

Family

ID=8537775

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94105652A Expired - Lifetime EP0622597B1 (en) 1993-04-20 1994-04-13 Process and device for melting metals, more particularly non-ferrous metals

Country Status (7)

Country Link
US (1) US5591248A (en)
EP (1) EP0622597B1 (en)
JP (1) JPH07120159A (en)
DE (1) DE59405285D1 (en)
DK (1) DK0622597T3 (en)
FI (2) FI94649C (en)
RU (1) RU2127327C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112077271A (en) * 2020-09-21 2020-12-15 株洲火炬工业炉有限责任公司 Zinc liquid quantitative pouring and peeling system and using method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE336314T1 (en) * 2001-04-19 2006-09-15 Alcoa Inc SYSTEM FOR FEEDING MELTED METAL UNDER CONSTANT PRESSURE AND METHOD FOR PRODUCING CONTINUOUS METAL ARTICLES
US6505674B1 (en) * 2001-04-19 2003-01-14 Alcoa Inc. Injector for molten metal supply system
US6536508B1 (en) * 2001-09-21 2003-03-25 Alcoa Inc. Continuous pressure molten metal supply system and method
US7934627B2 (en) * 2005-10-13 2011-05-03 Alcoa Inc. Apparatus and method for high pressure extrusion with molten aluminum
US20080213717A1 (en) * 2007-03-01 2008-09-04 Transmet Corporation Method of increasing the efficiency of melting metal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276758A (en) * 1963-04-24 1966-10-04 North American Aviation Inc Metal melting furnace system
US3764297A (en) * 1971-08-18 1973-10-09 Airco Inc Method and apparatus for purifying metal
US3935003A (en) * 1974-02-25 1976-01-27 Kaiser Aluminum & Chemical Corporation Process for melting metal
DE2425067A1 (en) * 1974-05-24 1975-12-04 Idra Pressen Gmbh Dosing unit for delivering molten metal, esp. magnesium - to hot-chamber pressure die casting machines
SE437339B (en) * 1978-07-31 1985-02-25 Grenges Weda Ab POSITION FROM A MOLD METAL BATTERY PORTION TO A RECEIVING SITE LOCATED ABOVE THE BATH SURFACE AND THE KITCHEN
US4848603A (en) * 1987-05-28 1989-07-18 Toshiba Machine Co., Ltd. Holding furnace of constant molten metal level
CA2086879A1 (en) * 1993-01-07 1994-07-08 Henry Meyer Process and apparatus for delivering a metered shot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112077271A (en) * 2020-09-21 2020-12-15 株洲火炬工业炉有限责任公司 Zinc liquid quantitative pouring and peeling system and using method
CN112077271B (en) * 2020-09-21 2021-07-27 株洲火炬工业炉有限责任公司 Zinc liquid quantitative pouring and peeling system and using method

Also Published As

Publication number Publication date
FI94649C (en) 1995-10-10
EP0622597A3 (en) 1995-09-06
FI931786A (en) 1994-10-21
US5591248A (en) 1997-01-07
FI931786A0 (en) 1993-04-20
EP0622597A2 (en) 1994-11-02
RU2127327C1 (en) 1999-03-10
FI98530B (en) 1997-03-27
DK0622597T3 (en) 1998-09-28
DE59405285D1 (en) 1998-04-02
FI94649B (en) 1995-06-30
JPH07120159A (en) 1995-05-12
FI98530C (en) 1997-07-10

Similar Documents

Publication Publication Date Title
DE69702984T2 (en) SUBMERSIBLE PIPE FOR CONTINUOUSLY THIN SLAM
DE2049521C3 (en) Multiple continuous caster for aluminum and aluminum alloys
DE2610415B2 (en) Discharge device for heat fusible material
EP0051310A1 (en) Apparatus for producing cast products
EP1274526A1 (en) Method and drive system for the control/regulation of linear pressure/cast movement
DE2906261A1 (en) METHOD AND DEVICE FOR DIRECT CHILLING CASTING OF NON-FERROUS METALS THROUGH AN OPEN MOLD
DE2505618C3 (en) Forming tool
EP0622597B1 (en) Process and device for melting metals, more particularly non-ferrous metals
DE2140183A1 (en) Hydraulic drive
DE3605529C3 (en) Die casting process and die casting machine
DE2207678A1 (en) Device for generating hydraulic pressure
DE2245768A1 (en) DEVICE FOR CASTING OR MEASURING MOLTEN METAL, FOR EXAMPLE LEAD
DE2530785C3 (en) Device for introducing aggregates into iron melts
DE830387C (en) Method and device for continuous casting of a metal strand
DE69618345T2 (en) Method and system for decanting molten metal
DE2548672A1 (en) DEVICE FOR GENERATING ARTIFICIAL GRAVITY IN LIQUIDS
DE69733423T2 (en) FRAMELESS HIGH PRESSURE PLATE PRESS
DE69001137T2 (en) REAR LATERAL BAR OF A MOLD FOR DIE CASTING METAL PLATE PRODUCTS OR SLABS.
DE69728129T4 (en) Venting device and method for viscous or viscous substances
DE2952986A1 (en) A method of melt transference from a bath to a recipient above the bath surface and an apparatus for applying the method
DE3721333C2 (en)
AT20154B (en) Caster for collector plates.
DE1800315A1 (en) Device for dissolving gas in a liquid
DE919892C (en) Immersion device with quette for quenching workpieces, especially sheet metal
DE284295C (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE DK ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE DK ES FR GB IT SE

17P Request for examination filed

Effective date: 19960216

17Q First examination report despatched

Effective date: 19960425

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980225

ITF It: translation for a ep patent filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19980319

Year of fee payment: 5

REF Corresponds to:

Ref document number: 59405285

Country of ref document: DE

Date of ref document: 19980402

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980430

Year of fee payment: 5

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980501

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020307

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020319

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020529

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050413