EP0620298B1 - Open-end spinning rotor - Google Patents

Open-end spinning rotor Download PDF

Info

Publication number
EP0620298B1
EP0620298B1 EP94105223A EP94105223A EP0620298B1 EP 0620298 B1 EP0620298 B1 EP 0620298B1 EP 94105223 A EP94105223 A EP 94105223A EP 94105223 A EP94105223 A EP 94105223A EP 0620298 B1 EP0620298 B1 EP 0620298B1
Authority
EP
European Patent Office
Prior art keywords
spinning rotor
open
rotor
collar
stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94105223A
Other languages
German (de)
French (fr)
Other versions
EP0620298A1 (en
Inventor
Erich Bock
Edmund Schuller
Klaus Schoberth
Josef Schermer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rieter Ingolstadt Spinnereimaschinenbau AG
Original Assignee
Rieter Ingolstadt Spinnereimaschinenbau AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rieter Ingolstadt Spinnereimaschinenbau AG filed Critical Rieter Ingolstadt Spinnereimaschinenbau AG
Publication of EP0620298A1 publication Critical patent/EP0620298A1/en
Application granted granted Critical
Publication of EP0620298B1 publication Critical patent/EP0620298B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/04Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by contact of fibres with a running surface
    • D01H4/08Rotor spinning, i.e. the running surface being provided by a rotor
    • D01H4/10Rotors

Definitions

  • the invention relates to an open-end spinning rotor according to the preamble of claim 1.
  • EP-A-090 939 it is known in a spinning rotor of this type to press a collar onto the shaft, against which the spinning rotor is pressed and fastened by means of a tension disk.
  • DE-OS 28 12 297 an open-end spinning rotor is known, which is integrally formed with a hub and the hub is press-fitted to the shaft.
  • DE-A 29 39 325 shows a rotor which is detachably joined with a collar by means of hooks.
  • DE-A 40 20 518 it is known to form the rotor shaft in one piece with a collar, the spinning rotor being fastened to the shaft by supporting it on the collar and pressing it against the collar by means of a tensioning disk.
  • Open-end spinning rotors are operated at speeds of well over 100,000 revolutions per minute. The highest demands are placed on the attachment of the spinning rotor, since this is subject to heavy stress as a result of mechanical vibrations. At the same time, operation at such high speeds requires, for the known reasons of vibration technology, that the axial projection of the spinning rotor to the bearing point closest to it, for example a pair of support disks, is made as short as possible. This Requirement requires that the axial extent of the federal government must be kept as small as possible, which has the disadvantage in the case of pressed-on collars that less space is available, with the risk that the connection will come loose during operation.
  • the rotor shaft is formed in one piece with the collar, this disadvantage can be avoided, but an open-end spinning rotor designed in this way can only be produced at very high cost.
  • Another disadvantage is that the shaft is not universally suitable for use together with a thick-walled and thin-walled spinning rotor, and that the collar has to be ground in order to balance the spinning rotor.
  • the hub cannot also be replaced, with the result that the newly assembled spinning rotor can only be very difficult to be balanced again with the reused shaft.
  • the object of the present application is to design an open-end spinning rotor in such a way that the disadvantages of the prior art are avoided, reliable fastening of the rotor is achieved even when operating at high speeds, the spinning rotor can also be used for the highest speeds and it is particularly economical and can be manufactured with a versatile shaft that can be used for different types of rotors.
  • a stop on the rotor shaft provides the collar with an axial support, which supports the collar especially in the event of axial vibrations of the rotor, thereby preventing loosening or displacement of the collar on the rotor shaft. If the spinning rotor is formed in one piece with the collar, the collar can be made particularly short in the axial direction, which improves the vibration behavior of the rotor during operation, since the spinning rotor can be brought closer to the bearing point. The waistband can be made shorter by the stop.
  • the spinning rotor is pressed axially against the collar because a thin-walled rotor can thereby be fastened, as a result of which the axial distance from the rotor bearing can also be shortened.
  • the stop is formed in one piece with the rotor shaft. This makes it possible to machine the surface of the rotor shaft in one operation and at the same time to form the stop.
  • the stop is designed in the form of a groove which cooperates with a snap ring.
  • a stop which is designed as a cylindrical or conical change in diameter of the rotor shaft offers a particularly good hold for the collar.
  • a cylindrical change in diameter provides a defined stop for the collar in the axial direction.
  • a short axial extension of the stop also helps to keep the distance between the spinning rotor and the bearing point short can be. It is particularly advantageous if the axial extent of the stop is between 0.1 mm and 3 mm. If the radial extent of the stop is limited to twice the diameter of the rotor shaft, it is achieved that as little mass as possible is attached to the rotor shaft, which also improves the running behavior at high speeds. It is particularly favorable to design the stop as a micro stop, in which the stop projects beyond the rotor shaft, for example, by less than 2 mm. It is particularly advantageous if the stop projects beyond the rotor shaft between 0.1 mm and 1 mm, for example 0.2 mm.
  • a favorable embodiment of the invention is when the spinning rotor is pressed against the collar by means of a tensioning disk and is thus fastened. A particularly good fastening of the rotor is achieved by means of the tensioning disk, and the collar can be made short. This has the consequence that the overhang of the rotor is also influenced favorably.
  • the spinning rotor itself can be pressed on, which reduces the load on the collar and can thus advantageously be made shorter. If the diameter of the centering shoulder is kept equal to the diameter of the rotor shaft, this simplifies the machining of the rotor shaft.
  • the advantageous combination for example of a thin-walled rotor with an axially longer collar and vice versa, ensures that one thick-walled and one thin-walled rotor can be joined together with one and the same shaft without the axial position of the rotor groove being changed thereby. As a result, the axial position of the spinning rotor does not have to be readjusted when it is inserted into a spinning box.
  • the invention is particularly advantageous in that the contact surface between the components pressed onto the rotor shaft is provided with solid particles. As a result, the coefficient of friction between these surfaces is significantly increased. It can thereby be achieved that the axial length of the component applied to the rotor shaft can be shortened without the strength of the connection suffering as a result.
  • At least one of the surfaces in which the solid particles are incorporated is particularly advantageously coated with a binding layer. This advantageously consists of nickel. Diamond is a particularly favorable material for the solid particles. Other hard materials, such as silicon carbide, can also be used for this.
  • FIG. 1 shows a spinning rotor 1 designed according to the invention, which is attached to its shaft 2 by means of a collar 3 and a tensioning disk 6.
  • the shaft has a stop 4 on which the collar 3 is supported.
  • the stop 4 is designed as a micro-stop, which has an axial extension of 0.8 mm and protrudes 0.2 mm radially over the centering projection 7, which has the same diameter as the rest of the rotor shaft 2.
  • the radial projection of the stop 4 can be chosen both larger and smaller, but the dimensions mentioned above are particularly advantageous. If the final contour is produced by grinding the blank during the manufacture of the rotor shaft, the stop 4 is advantageously formed in that this area is not ground. Depending on the diameter of the blank, a radial protrusion of the stop between 0.1 mm and 0.2 mm can be achieved.
  • the collar 3 is pressed onto the centering lug 7, advantageously also the spinning rotor 1, which enables an additional stability of the connection.
  • the collar and rotor are not pressed on, which however may require a larger radial projection of the stop.
  • the spinning rotor 1 is pressed against the collar 3, whereby the connection between the spinning rotor 1 and the rotor shaft 2 receives its final strength.
  • the spinning rotor 1 of FIG. 1 is a thick-walled spinning rotor, since it is turned from the solid.
  • the floor 12 has a thickness of several millimeters.
  • FIG. 2 shows a spinning rotor 1 which is fastened on a rotor shaft 2.
  • the spinning rotor 1 from FIG. 2 is a thin-walled spinning rotor, such as is produced, for example, by reshaping a steel sheet.
  • the rotor base 12 has only a wall thickness of approximately 1 mm.
  • That of FIG. 2 is supported on the collar 3 and is pressed against it by means of a tensioning disk 6.
  • the collar 3 in turn is pressed onto the rotor shaft 2 and is supported against the stop 4.
  • the axial extent of the collar 3 in the spinning rotor of FIG. 2 is greater than that of the collar 3 of FIG. 1.
  • Both rotors have the same distance from the plane in which the rotor groove 11 is located to the end 24 of the rotor shaft 2. This has the advantage that both the thin-walled and the thick-walled rotor can be used in the same spinning station without adjustment work being necessary.
  • the spinning rotors of FIGS. 1 and 2 are also fastened on an identically designed rotor shaft 2. The invention therefore makes it possible to fasten different spinning rotors on a rotor shaft of the same type, while at the same time still fulfilling the requirement that the distance between rotor groove 11 and end 24 remains the same.
  • the stop 4 according to the invention makes it possible to make the collar 3 very short axially, as a result of which the spinning rotor can be mounted in the immediate vicinity of the spinning rotor 1.
  • micro stop 4 is despite the small axial expansion of the collar 3 ensures in a simple manner that a secure attachment of the spinning rotor 1 on the rotor shaft 2 is possible.
  • the axial extent of the collar 3 is coordinated with the thickness of the bottom 12 of the spinning rotor 1, whereby it is achieved that the position of the rotor groove 11 remains axially the same for both thin-walled and thick-walled spinning rotors.
  • FIG. 3 shows part of a rotor shaft 2 in which the stop 4 is designed as a conical change in diameter 23 on the rotor shaft 2.
  • a collar 3 is pressed onto the rotor shaft 2 and carries the centering projection 7 onto which the spinning rotor 1 is pressed when it is a thick-walled spinning rotor, as shown for example in FIG.
  • the conical change in diameter 23 of the rotor shaft 2 can also be made small, similar to the case of the cylindrical change in diameter due to the microstop 4 in FIGS. 1 and 2.
  • Figure 4 shows the attachment of a spinning rotor 1 on a rotor shaft 2, where the collar 3 is supported on a stop 4, which is formed by a cylindrical diameter change 22, here a reduction in diameter.
  • the clamping disc 6 is supported on the collar 3, on which the spinning rotor 1 is pressed.
  • the tensioning disk 6 it is also possible for the tensioning disk 6 to be supported directly on the rotor shaft.
  • the stop 4 is formed by a snap ring 5, which cooperates with a groove 21 of the rotor shaft 2. Because the collar 3 engages over the snap ring 5, it cannot expand when the spinning rotor is in operation.
  • FIG. 5 shows a detailed view of a rotor shaft 2 for a spinning rotor designed according to the invention.
  • a collar 3 is pressed onto the rotor shaft 2, as is also shown in FIG. 1.
  • the stop 4 is designed as a micro stop, which was produced on the shaft by grinding the shaft blank to the final dimension of the shaft, only the area of the stop 4 remaining unprocessed.
  • the rotor shaft 2 On the side of the stop 4 facing the collar 3, the rotor shaft 2 has an undercut 41 so that the collar 3 comes to rest well against the stop 4.
  • the collar 3 is pressed onto the rotor shaft 2, so that 4 forces for fastening the spinning rotor can not only be absorbed by the stop.
  • the collar 3 has a slight chamfer 31 on the side of its bore facing the stop 4, so that it can be pressed onto the rotor shaft 2 more easily.
  • the centering projection 7 of the rotor shaft 2 has the same nominal diameter as the rotor shaft.
  • the dimensions of the stop 4 correspond to those of FIG. 1 or FIG. 2.
  • FIG. 6 shows an open-end spinning rotor 1 designed according to the invention on its rotor shaft 2.
  • the spinning rotor is formed in one piece with its collar 3.
  • the centering projection 7 is coated with a nickel-diamond layer, as a result of which the connection between collar 3 and rotor shaft 2 is significantly improved.
  • a coating in which the hard material grains are embedded in such a way that there is a distance between them which is approximately one to five times the diameter of the grains is particularly favorable.
  • FIG. 7 shows a detailed view of the joint between collar 3 and rotor shaft 2.
  • hard material grains 82 in the form of diamond grains are embedded in the binding layer 81, which consists of nickel.
  • the coating is applied to the rotor shaft 2.
  • the rotor shaft 2 of FIG. 6 also has a stop 4 according to the invention, which forms a support for the collar 3. If, as in FIG. 4, the collar 3 is only pressed onto the rotor shaft 2 without additional fastening in the form of a tensioning disk, the use of a stop 4 is very important for the strength of the connection advantageous because in particular the axial vibrations can be supported by the stop 4.
  • the object can be achieved both by the inventive design of the rotor shaft with a stop and by the coating of the rotor shaft or collar according to the invention. A combination of the two is particularly advantageous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

Die Erfindung betrifft einen Offenend-Spinnrotor gemäß dem Oberbegriff des Anspruches 1. Aus der EP-A- 090 939 ist es bei einem Spinnrotor dieser Art bekannt auf den Schaft einen Bund aufzupressen, gegen den der Spinnrotor angedrückt und mittels einer Spannscheibe befestigt wird. Aus der DE-OS 28 12 297 ist ein Offenend-Spinnrotor bekannt, der mit einer Nabe einstückig ausgebildet ist und die Nabe mit dem Schaft im Preßsitz mit diesem verbunden wird. Die DE-A 29 39 325 zeigt einen Rotor der mit einem Bund mittels Haken lösbar zusammengefügt ist. Aus der DE-A 40 20 518 ist es bekannt den Rotorschaft mit einem Bund einstückig auszubilden, wobei die Befestigung des Spinnrotors am Schaft dadurch erfolgt, daß sich dieser am Bund abstützt und mittels einer Spannscheibe gegen den Bund gedrückt wird.The invention relates to an open-end spinning rotor according to the preamble of claim 1. From EP-A-090 939 it is known in a spinning rotor of this type to press a collar onto the shaft, against which the spinning rotor is pressed and fastened by means of a tension disk. From DE-OS 28 12 297 an open-end spinning rotor is known, which is integrally formed with a hub and the hub is press-fitted to the shaft. DE-A 29 39 325 shows a rotor which is detachably joined with a collar by means of hooks. From DE-A 40 20 518 it is known to form the rotor shaft in one piece with a collar, the spinning rotor being fastened to the shaft by supporting it on the collar and pressing it against the collar by means of a tensioning disk.

Offenend-Spinnrotoren werden mit Drehzahlen von weit über 100.000 Umdrehungen pro Minute betrieben. Dabei werden an die Befestigung des Spinnrotors höchste Anforderungen gestellt, da diese infolge mechanischer Schwingungen stark beansprucht wird. Gleichzeitig erfordert der Betrieb mit derart hohen Drehzahlen aus den bekannten schwingunsgtechnischen Gründen, daß der axiale Überstand des Spinnrotors zu der ihm am nächsten gelegenen Lagerstelle, z.B. einem Stützscheibenpaar, möglichst kurz ausgebildet wird. Diese Forderung bedingt, daß die axiale Ausdehnung des Bundes möglichst gering gehalten werden muß, was bei aufgepreßten Bünden den Nachteil hat, daß weniger Fläche zur Verfügung steht, mit der Gefahr, daß die Verbindung sich im Betrieb löst. Wird der Rotorschaft mit dem Bund einstückig ausgebildet, kann zwar dieser Nachteil vermieden werden, jedoch ist ein derart ausgebildeter Offenend-Spinnrotor nur sehr kostenintensiv herstellbar. Ein weiterer Nachteil ist, daß der Schaft nicht universell für den Einsatz zusammen mit einem dickwandigen und dünnwandigen Spinnrotors geeignet ist, sowie daß zum Auswuchten des Spinnrotors der Bund angeschliffen werden muß. Beim Austausch des Spinnrotors kann die Nabe nicht ebenfalls mit ausgetauscht werden, mit der Folge, daß der neu montierte Spinnrotor zusammen mit dem wiederverwendeten Schaft nur sehr schwierig wieder ausgewuchtet werden kann.Open-end spinning rotors are operated at speeds of well over 100,000 revolutions per minute. The highest demands are placed on the attachment of the spinning rotor, since this is subject to heavy stress as a result of mechanical vibrations. At the same time, operation at such high speeds requires, for the known reasons of vibration technology, that the axial projection of the spinning rotor to the bearing point closest to it, for example a pair of support disks, is made as short as possible. This Requirement requires that the axial extent of the federal government must be kept as small as possible, which has the disadvantage in the case of pressed-on collars that less space is available, with the risk that the connection will come loose during operation. If the rotor shaft is formed in one piece with the collar, this disadvantage can be avoided, but an open-end spinning rotor designed in this way can only be produced at very high cost. Another disadvantage is that the shaft is not universally suitable for use together with a thick-walled and thin-walled spinning rotor, and that the collar has to be ground in order to balance the spinning rotor. When replacing the spinning rotor, the hub cannot also be replaced, with the result that the newly assembled spinning rotor can only be very difficult to be balanced again with the reused shaft.

Aufgabe der vorliegenden Anmeldung ist es einen Offenend-Spinnrotor so auszubilden, daß die Nachteile des Standes der Technik vermieden werden, eine zuverlässige Befestigung des Rotors auch bei Betrieb mit hohen Drehzahlen erreicht wird, der Spinnrotor auch für höchste Drehzahlen einsetzbar ist und er insbesondere kostengünstig und mit einem vielseitig einsetzbaren Schaft hergestellt werden kann, der für verschiedenartige Rotoren verwendet werden kann.The object of the present application is to design an open-end spinning rotor in such a way that the disadvantages of the prior art are avoided, reliable fastening of the rotor is achieved even when operating at high speeds, the spinning rotor can also be used for the highest speeds and it is particularly economical and can be manufactured with a versatile shaft that can be used for different types of rotors.

Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruches 1 sowie durch die Merkmale des Anspruches 18 gelöst. Durch das Anordnen einen Anschlages auf dem Rotorschaft findet der Bund eine axiale Abstützung, die insbesondere bei axialen Schwingungen des Rotors den Bund abstützen, wodurch ein Lockern oder sich Verschieben des Bundes auf dem Rotorschaft verhindert wird. Wird der Spinnrotor mit dem Bund einstückig ausgebildet, so kann der Bund in axialer Richtung besonders kurz ausgebildet werden, was dem Schwingungsverhalten des Rotors im Betrieb verbessert, da der Spinnrotor näher an die Lagerstelle herangebracht werden kann. Durch den Anschlag kann der Bund kürzer ausgestaltet werden. Besonders vorteilhaft ist es, wenn der Spinnrotor gegen den Bund axial angedrückt wird, weil dadurch ein dünnwandiger Rotor befestigt werden kann, wodurch der axiale Abstand zur Rotorlagerung ebenfalls verkürzt werden kann. Besonders günstig ist es, wenn der Anschlag mit dem Rotorschaft einstückig ausgebildet wird. Dadurch ist es möglich in einem Arbeitsgang die Oberfläche des Rotorschaftes zu bearbeiten und gleichzeitig den Anschlag auszubilden. In weiterer vorteilhaften Ausgestaltung wird der Anschlag in Form einer Nut, die mit einem Sprengring zusammenarbeitet, ausgebildet. Einen besonders guten Halt für den Bund bietet ein Anschlag, der als zylindrische oder kegelförmige Durchmesserveränderung des Rotorschaftes ausgebildet ist. Eine zylindrische Durchmesserveränderung bietet in axialer Richtung einen definierten Anschlag für den Bund. Eine kurze axiale Ausdehnung des Anschlages, z.B. von weniger als 15mm Länge, trägt ebenfalls dazu bei, daß der Abstand des Spinnrotors zur Lagerstelle kurz gehalten werden kann. Besonders günstig ist es, wenn die axiale Ausdehnung des Anschlages zwischen 0,1mm und 3mm beträgt. Wird die radiale Ausdehnung des Anschlages auf das Doppelte des Durchmessers des Rotorschaftes begrenzt, wird erreicht, daß möglichst wenig Masse am Rotorschaft angebracht wird, was ebenfalls das Laufverhalten bei hohen Drehzahlen verbessert. Besonders günstig ist es den Anschlag als Mikroanschlag auszubilden, bei dem der Anschlag den Rotorschaft beispielsweise mit weniger als 2 mm überragt. Besonders vorteilhaft ist es, wenn der Anschlag den Rotorschaft zwischen 0,1 mm und 1 mm, z.B. 0,2 mm überragt. Dies ist insbesondere deswegen besonders vorteilhaft, weil ein solcher Anschlag beim Bearbeiten eines Rohling für den Rotorschaft, der bekanntlich ein radiales Übermaß besitzt, ohne zusätzlichen Materialaufwand herausgearbeitet werden kann. Dadurch ist es möglich in einem Arbeitsgang den Rotorschaft fertig zu schleifen und den Anschlag herzustellen. Dies ergibt eine besonders kostengünstige Verfahrensweise zum Herstellen des Rotorschaftes, was sich auf die Kosten des Spinnrotors ebenfalls günstig auswirkt. Eine günstige Ausgestaltung der Erfindung ist es, wenn der Spinnrotor mittels einer Spannscheibe gegen den Bund gedrückt und damit befestigt wird. Durch die Spannscheibe wird eine besonders gute Befestigung des Rotors erreicht, wobei der Bund kurz ausgebildet werden kann. Dies hat zur Folge, daß der Überhang des Rotors ebenfalls günstig beeinflußt wird. Durch die Ausgestaltung des Rotorschaftes oder des Bundes mit einem Zentrieransatz wird erreicht, daß auch der Spinnrotor selbst aufgepreßt werden kann, wodurch die Belastung auf den Bund verringert wird und dieser somit vorteilhafterweise kürzer ausgebildet werden kann. Wird der Durchmesser des Zentrieransatzes gleich dem Durchmesser des Rotorschaftes gehalten, vereinfacht dies die Bearbeitung des Rotorschaftes. Durch die vorteilhafte Kombination, beispielsweise eines dünnwandigen Rotors mit einem axial längeren Bund und umgekehrt, wird erreicht, daß mit ein und demselben Schaft ein dickwandiger und ein dünnwandiger Rotor zusammengefügt werden kann, ohne daß dadurch die axiale Position der Rotorrille verändert wird. Dadurch muß die axiale Position des Spinnrotors, wenn dieser in eine Spinnbox eingesetzt wird, nicht neu justiert werden.The object is achieved by the features of claim 1 and by the features of claim 18. By the arrangement of a stop on the rotor shaft provides the collar with an axial support, which supports the collar especially in the event of axial vibrations of the rotor, thereby preventing loosening or displacement of the collar on the rotor shaft. If the spinning rotor is formed in one piece with the collar, the collar can be made particularly short in the axial direction, which improves the vibration behavior of the rotor during operation, since the spinning rotor can be brought closer to the bearing point. The waistband can be made shorter by the stop. It is particularly advantageous if the spinning rotor is pressed axially against the collar because a thin-walled rotor can thereby be fastened, as a result of which the axial distance from the rotor bearing can also be shortened. It is particularly favorable if the stop is formed in one piece with the rotor shaft. This makes it possible to machine the surface of the rotor shaft in one operation and at the same time to form the stop. In a further advantageous embodiment, the stop is designed in the form of a groove which cooperates with a snap ring. A stop which is designed as a cylindrical or conical change in diameter of the rotor shaft offers a particularly good hold for the collar. A cylindrical change in diameter provides a defined stop for the collar in the axial direction. A short axial extension of the stop, for example less than 15 mm in length, also helps to keep the distance between the spinning rotor and the bearing point short can be. It is particularly advantageous if the axial extent of the stop is between 0.1 mm and 3 mm. If the radial extent of the stop is limited to twice the diameter of the rotor shaft, it is achieved that as little mass as possible is attached to the rotor shaft, which also improves the running behavior at high speeds. It is particularly favorable to design the stop as a micro stop, in which the stop projects beyond the rotor shaft, for example, by less than 2 mm. It is particularly advantageous if the stop projects beyond the rotor shaft between 0.1 mm and 1 mm, for example 0.2 mm. This is particularly advantageous in particular because such a stop can be worked out without additional material expenditure when machining a blank for the rotor shaft, which is known to have a radial oversize. This makes it possible to finish grinding the rotor shaft and producing the stop in one operation. This results in a particularly cost-effective procedure for producing the rotor shaft, which also has a favorable effect on the costs of the spinning rotor. A favorable embodiment of the invention is when the spinning rotor is pressed against the collar by means of a tensioning disk and is thus fastened. A particularly good fastening of the rotor is achieved by means of the tensioning disk, and the collar can be made short. This has the consequence that the overhang of the rotor is also influenced favorably. By designing the rotor shaft or the collar with a centering approach, that the spinning rotor itself can be pressed on, which reduces the load on the collar and can thus advantageously be made shorter. If the diameter of the centering shoulder is kept equal to the diameter of the rotor shaft, this simplifies the machining of the rotor shaft. The advantageous combination, for example of a thin-walled rotor with an axially longer collar and vice versa, ensures that one thick-walled and one thin-walled rotor can be joined together with one and the same shaft without the axial position of the rotor groove being changed thereby. As a result, the axial position of the spinning rotor does not have to be readjusted when it is inserted into a spinning box.

Besonders vorteilhaft ist die Erfindung bei der die Berührfläche zwischen den auf den Rotorschaft aufgepreßten Bauteilen mit Feststoffpartikeln versehen werden. Dies hat zur Folge, daß der Reibwert zwischen diesen Flächen wesentlich erhöht wird. Dadurch kann erreicht werden, daß die axiale Länge des auf den Rotorschaft aufgebrachten Bauteiles verkürzt werden kann, ohne daß die Festigkeit der Verbindung darunter leidet. Besonders vorteilhaft wird wenigstens eine der Flächen mit einer Bindeschicht beschichtet, in die die Feststoffpartikel eingebunden sind. Vorteilhafterweise besteht diese aus Nickel. Ein besonders günstiger Werkstoff für die Feststoffpartikel ist Diamant. Aber auch andere Hartstoffe, z.B. Siliciumcarbid können dafür eingesetzt werden.The invention is particularly advantageous in that the contact surface between the components pressed onto the rotor shaft is provided with solid particles. As a result, the coefficient of friction between these surfaces is significantly increased. It can thereby be achieved that the axial length of the component applied to the rotor shaft can be shortened without the strength of the connection suffering as a result. At least one of the surfaces in which the solid particles are incorporated is particularly advantageously coated with a binding layer. This advantageously consists of nickel. Diamond is a particularly favorable material for the solid particles. Other hard materials, such as silicon carbide, can also be used for this.

Im folgenden wird die Erfindung anhand von zeichnerischen Darstellungen beschrieben.The invention is described below with the aid of graphic representations.

Es zeigen

Figur 1
einen dickwandigen, erfindungsgemäß ausgebildeten Spinnrotor,
Figur 2
einen dünnwandigen, erfindungsgemäß ausgebildeten Spinnrotor,
Figur 3
einen Schaft für einen Offenend-Spinnrotor mit kegelförmiger Durchmesserveränderung des Rotorschaftes,
Figur 4
einen Offenend-Spinnrotor, dessen Bund den Zentrieransatz trägt, auf den der Spinnrotor aufgepreßt ist,
Figur 5
eine Detailansicht des Anschlages für den Bund,
Figur 6
einen erfindungsgemäß ausgestalteten Offenend-Spinnrotor, bei dem die Berührfläche 11 von Rotorschaft und Bund Feststoffpartikel enthält,
Figur 7
einen Ausschnitt der Berührfläche 11 von Figur 7 im Schnitt.
Show it
Figure 1
a thick-walled spinning rotor designed according to the invention,
Figure 2
a thin-walled spinning rotor designed according to the invention,
Figure 3
a shaft for an open-end spinning rotor with a conical change in diameter of the rotor shaft,
Figure 4
an open-end spinning rotor, the collar of which carries the centering projection onto which the spinning rotor is pressed,
Figure 5
a detailed view of the stop for the federal government,
Figure 6
an open-end spinning rotor designed according to the invention, in which the contact surface 11 of the rotor shaft and collar contains solid particles,
Figure 7
a section of the contact surface 11 of Figure 7 in section.

Figur 1 zeigt einen erfindungsgemäß ausgebildeten Spinnrotor 1, der mittels eines Bundes 3 und einer Spannscheibe 6 auf seinem Schaft 2 befestigt ist. Der Schaft besitzt einen Anschlag 4, an dem sich der Bund 3 abstützt. Der Anschlag 4 ist als Mikroanschlag ausgebildet, der eine axiale Ausdehnung von 0,8 mm hat und radial über den Zentrieransatz 7, der den gleichen Durchmesser wie der übrige Rotorschaft 2 besitzt, 0,2 mm übersteht. Der radiale Überstand des Anschlages 4 kann sowohl größer als auch kleiner gewählt werden, besonders vorteilhaft sind jedoch die oben genannten Maße. Wird beim Herstellen des Rotorschaftes die endgültige Kontur durch Überschleifen des Rohlings hergestellt, wird vorteilhafterweise der Anschlag 4 dadurch gebildet, daß dieser Bereich nicht überschliffen wird. Je nach Durchmesser des Rohlings kann, beispielsweise durchaus auch ein radialer Überstand des Anschlages zwischen 0,1 mm und 0,2 mm erzielt werden.FIG. 1 shows a spinning rotor 1 designed according to the invention, which is attached to its shaft 2 by means of a collar 3 and a tensioning disk 6. The shaft has a stop 4 on which the collar 3 is supported. The stop 4 is designed as a micro-stop, which has an axial extension of 0.8 mm and protrudes 0.2 mm radially over the centering projection 7, which has the same diameter as the rest of the rotor shaft 2. The radial projection of the stop 4 can be chosen both larger and smaller, but the dimensions mentioned above are particularly advantageous. If the final contour is produced by grinding the blank during the manufacture of the rotor shaft, the stop 4 is advantageously formed in that this area is not ground. Depending on the diameter of the blank, a radial protrusion of the stop between 0.1 mm and 0.2 mm can be achieved.

Der Bund 3 ist auf den Zentrieransatz 7 aufgepreßt, vorteilhafterweise auch der Spinnrotor 1, was eine zusätzliche Stabilität der Verbindung ermöglicht. Es ist jedoch auch möglich, daß Bund und Rotor nicht aufgepreßt sind, was eventuell allerdings einen größeren radialen Überstand des Anschlages erforderlich macht. Mit Hilfe der Spannscheibe 6, ist der Spinnrotor 1 gegen den Bund 3 gedrückt, wodurch die Verbindung zwischen Spinnrotor 1 und Rotorschaft 2 ihre endgültige Festigkeit erhält. Der Spinnrotor 1 von Figur 1 ist ein dickwandiger Spinnrotor, da er aus dem Vollen gedreht ist. Der Boden 12 hat dabei eine Dicke von mehreren Millimetern.The collar 3 is pressed onto the centering lug 7, advantageously also the spinning rotor 1, which enables an additional stability of the connection. However, it is also possible that the collar and rotor are not pressed on, which however may require a larger radial projection of the stop. With the help of the clamping disc 6, the spinning rotor 1 is pressed against the collar 3, whereby the connection between the spinning rotor 1 and the rotor shaft 2 receives its final strength. The spinning rotor 1 of FIG. 1 is a thick-walled spinning rotor, since it is turned from the solid. The floor 12 has a thickness of several millimeters.

Figur 2 zeigt einen Spinnrotor 1, der auf einem Rotorschaft 2 befestigt ist. Der Spinnrotor 1 von Figur 2 ist ein dünnwandiger Spinnrotor, wie er beispielsweise durch Umformung eines Stahlbleches entsteht. Der Rotorboden 12 hat nur eine Wandstärke von ca. 1 mm. Ebenso wie der Spinnrotor von Figur 1 stützt sich der von Figur 2 am Bund 3 ab und wird mittels einer Spannscheibe 6 gegen diesen gedrückt. Der Bund 3 seinerseits ist auf den Rotorschaft 2 aufgepreßt und stützt sich gegen den Anschlag 4 ab. Die axiale Ausdehnung des Bundes 3 beim Spinnrotor von Figur 2 ist größer als die des Bundes 3 von Figur 1. Beide Rotoren besitzen von der Ebene, in der die Rotorrille 11 liegt, bis zum Ende 24 des Rotorschaftes 2 den gleichen Abstand. Dies hat den Vorteil, daß sowohl der dünnwandige als auch der dickwandige Rotor in derselben Spinnstelle eingesetzt werden kann, ohne daß Einstellarbeiten notwendig sind. Auch sind die Spinnrotoren von Figur 1 und 2 auf einem identisch ausgebildeten Rotorschaft 2 befestigt. Durch die Erfindung ist es also möglich verschiedene Spinnrotoren auf einem gleichartigen Rotorschaft zu befestigen, wobei gleichzeitig noch die Forderung, daß der Abstand zwischen Rotorrille 11 und Ende 24 gleich bleibt, erfüllt wird. Durch den erfindungsgemäßen Anschlag 4 ist es möglich den Bund 3 axial sehr kurz auszubilden, wodurch die Lagerung des Spinnrotors in unmittelbarer Nähe des Spinnrotors 1 erfolgen kann. Durch den Mikroanschlag 4 ist trotz der geringen axialen Ausdehnung des Bundes 3 auf einfache Weise gewährleistet, daß eine sichere Befestigung des Spinnrotors 1 am Rotorschaft 2 möglich ist. Die axiale Ausdehnung des Bundes 3 ist abgestimmt mit der Dicke des Bodens 12 des Spinnrotors 1, wodurch erreicht wird, daß die Position der Rotorrille 11 axial sowohl bei dünnwandigen als auch bei dickwandigen Spinnrotoren gleich bleibt.FIG. 2 shows a spinning rotor 1 which is fastened on a rotor shaft 2. The spinning rotor 1 from FIG. 2 is a thin-walled spinning rotor, such as is produced, for example, by reshaping a steel sheet. The rotor base 12 has only a wall thickness of approximately 1 mm. Like the spinning rotor of FIG. 1, that of FIG. 2 is supported on the collar 3 and is pressed against it by means of a tensioning disk 6. The collar 3 in turn is pressed onto the rotor shaft 2 and is supported against the stop 4. The axial extent of the collar 3 in the spinning rotor of FIG. 2 is greater than that of the collar 3 of FIG. 1. Both rotors have the same distance from the plane in which the rotor groove 11 is located to the end 24 of the rotor shaft 2. This has the advantage that both the thin-walled and the thick-walled rotor can be used in the same spinning station without adjustment work being necessary. The spinning rotors of FIGS. 1 and 2 are also fastened on an identically designed rotor shaft 2. The invention therefore makes it possible to fasten different spinning rotors on a rotor shaft of the same type, while at the same time still fulfilling the requirement that the distance between rotor groove 11 and end 24 remains the same. The stop 4 according to the invention makes it possible to make the collar 3 very short axially, as a result of which the spinning rotor can be mounted in the immediate vicinity of the spinning rotor 1. By the micro stop 4 is despite the small axial expansion of the collar 3 ensures in a simple manner that a secure attachment of the spinning rotor 1 on the rotor shaft 2 is possible. The axial extent of the collar 3 is coordinated with the thickness of the bottom 12 of the spinning rotor 1, whereby it is achieved that the position of the rotor groove 11 remains axially the same for both thin-walled and thick-walled spinning rotors.

Figur 3 zeigt einen Teil eines Rotorschaftes 2, bei dem der Anschlag 4 als kegelförmige Durchmesserveränderung 23 am Rotorschaft 2 ausgebildet ist. Auf den Rotorschaft 2 ist ein Bund 3 aufgepreßt, der den Zentrieransatz 7 trägt, auf den der Spinnrotor 1, wenn es sich um einen dickwandigen Spinnrotor, wie beispielsweise in Figur 4 gezeigt, aufgepreßt wird. Die kegelförmige Durchmesserveränderung 23 des Rotorschaftes 2 kann ebenfalls klein ausgebildet werden, ähnlich wie dies bei der zylinderförmigen Durchmesserveränderung durch den Mikroanschlag 4 in den Figuren 1 und 2 der Fall ist.FIG. 3 shows part of a rotor shaft 2 in which the stop 4 is designed as a conical change in diameter 23 on the rotor shaft 2. A collar 3 is pressed onto the rotor shaft 2 and carries the centering projection 7 onto which the spinning rotor 1 is pressed when it is a thick-walled spinning rotor, as shown for example in FIG. The conical change in diameter 23 of the rotor shaft 2 can also be made small, similar to the case of the cylindrical change in diameter due to the microstop 4 in FIGS. 1 and 2.

Figur 4 zeigt die Befestigung eines Spinnrotors 1 auf einem Rotorschaft 2, wo sich der Bund 3 an einem Anschlag 4 abstützt, der durch eine zylindrische Durchmesserveränderung 22, hier eine Durchmesserverkleinerung, gebildet wird. Die Spannscheibe 6 stützt sich auf dem Bund 3 ab, auf den der Spinnrotor 1 aufgepreßt ist. Es ist jedoch auch möglich, daß sich die Spannscheibe 6 auf dem Rotorschaft direkt abstützt.Figure 4 shows the attachment of a spinning rotor 1 on a rotor shaft 2, where the collar 3 is supported on a stop 4, which is formed by a cylindrical diameter change 22, here a reduction in diameter. The clamping disc 6 is supported on the collar 3, on which the spinning rotor 1 is pressed. However, it is also possible for the tensioning disk 6 to be supported directly on the rotor shaft.

In einer nicht dargestellten Ausführungsform wird der Anschlag 4 durch einen Sprengring 5 gebildet, der mit einer Nut 21 des Rotorschaftes 2 zusammenarbeitet. Dadurch, daß der Bund 3 den Sprengring 5 übergreift, kann sich dieser beim Betrieb des Spinnrotors nicht aufweiten.In an embodiment not shown, the stop 4 is formed by a snap ring 5, which cooperates with a groove 21 of the rotor shaft 2. Because the collar 3 engages over the snap ring 5, it cannot expand when the spinning rotor is in operation.

Figur 5 zeigt eine Detailansicht eines Rotorschaftes 2 für einen erfindungsgemäß ausgebildeten Spinnrotor. Auf dem Rotorschaft 2 ist ein Bund 3 aufgepreßt, wie er auch in Figur 1 gezeigt ist. Der Anschlag 4 ist als Mikroanschlag ausgebildet, der dadurch am Schaft hergestellt wurde, daß der Schaftrohling auf das Schaftendmaß geschliffen wurde, wobei lediglich der Bereich des Anschlages 4 unberarbeitet geblieben ist. Auf der dem Bund 3 zugewandten Seite des Anschlages 4 besitzt der Rotorschaft 2 einen Freistich 41, so daß der Bund 3 gut am Anschlag 4 zur Anlage kommt. Vorteilhafterweise ist der Bund 3 auf den Rotorschaft 2 aufgepreßt, so daß nicht nur durch den Anschlag 4 Kräfte zum Befestigen des Spinnrotors aufgenommen werden können. Der Bund 3 besitzt auf der dem Anschlag 4 zugewandten Seite seiner Bohrung eine leichte Fase 31, so daß er leichter auf den Rotorschaft 2 aufgedrückt werden kann. Der Zentrieransatz 7 des Rotorschaftes 2 hat den gleichen Nenndurchmesser wie der Rotorschaft. Die Abmessungen des Anschlages 4 entsprechen denen von Figur 1 oder Figur 2.FIG. 5 shows a detailed view of a rotor shaft 2 for a spinning rotor designed according to the invention. A collar 3 is pressed onto the rotor shaft 2, as is also shown in FIG. 1. The stop 4 is designed as a micro stop, which was produced on the shaft by grinding the shaft blank to the final dimension of the shaft, only the area of the stop 4 remaining unprocessed. On the side of the stop 4 facing the collar 3, the rotor shaft 2 has an undercut 41 so that the collar 3 comes to rest well against the stop 4. Advantageously, the collar 3 is pressed onto the rotor shaft 2, so that 4 forces for fastening the spinning rotor can not only be absorbed by the stop. The collar 3 has a slight chamfer 31 on the side of its bore facing the stop 4, so that it can be pressed onto the rotor shaft 2 more easily. The centering projection 7 of the rotor shaft 2 has the same nominal diameter as the rotor shaft. The dimensions of the stop 4 correspond to those of FIG. 1 or FIG. 2.

Figur 6 zeigt einen erfindungsgemäß ausgestalteten Offenend-Spinnrotor 1 auf seinem Rotorschaft 2. Der Spinnrotor ist mit seinem Bund 3 einstückig ausgebildet. Der Zentrieransatz 7 ist mit einer Nickel-Diamant-Schicht beschichtet, wodurch die Verbindung zwischen Bund 3 und Rotorschaft 2 wesentlich verbessert wird. Besonders günstig ist eine Beschichtung, in der die Hartstoffkörner so eingelagert sind, daß zwischen diesen ein Abstand vorhanden ist, der etwa dem ein bis fünfachen des Durchmessers der Körner entspricht. Beim Aufpressen des Bundes auf den Rotorschaft verhaken sich die Diamantkörner in der Oberfläche des Bundes und sorgen praktisch für eine formschlüssige Verbindung der Berührflächen.FIG. 6 shows an open-end spinning rotor 1 designed according to the invention on its rotor shaft 2. The spinning rotor is formed in one piece with its collar 3. The centering projection 7 is coated with a nickel-diamond layer, as a result of which the connection between collar 3 and rotor shaft 2 is significantly improved. A coating in which the hard material grains are embedded in such a way that there is a distance between them which is approximately one to five times the diameter of the grains is particularly favorable. When the collar is pressed onto the rotor shaft, the diamond grains get caught in the surface of the collar and practically ensure a positive connection of the contact surfaces.

Figur 7 zeigt eine Detailansicht der Fügestelle zwischen Bund 3 und Rotorschaft 2. Im vorliegenden Fall sind Hartstoffkörner 82 in Gestalt von Diamantkörnern in die Bindeschicht 81, die aus Nickel besteht, eingelagert. Die Beschichtung ist auf den Rotorschaft 2 aufgebracht ist. Es ist jedoch auch möglich den Bund zu beschichten oder sowohl Bund als auch Rotorschaft. Der Rotorschaft 2 von Figur 6 besitzt zusätzlich zur erfinderischen Beschichtung auch einen erfindungsgemäßen Anschlag 4, der eine Abstützung für den Bund 3 bildet. Wird nur, wie bei Figur 4, der Bund 3 auf den Rotorschaft 2 aufgepreßt, ohne daß eine zusätzliche Befestigung in Form einer Spannscheibe erfolgt, ist der Einsatz eines Anschlages 4 für die Festigkeit der Verbindung sehr vorteilhaft, da insbesondere die axialen Schwingungen vom Anschlag 4 abgestützt werden können. Dadurch wird ein Teil der Belastung, die auf den Bund 3 durch den Betrieb des Spinnrotors einwirkt aufgenommen werden, wodurch der Spinnrotor 1 sicher auf dem Rotorschaft 2 befestigt ist. Neben Diamantkörnern als Feststoffpartikel und Nickel als Bindeschicht können auch andere geeignete Werkstoffe eingesetzt werden, wodurch ebenfalls eine Art zusätzliche formschlüssige Verbindung erreicht werden kann.FIG. 7 shows a detailed view of the joint between collar 3 and rotor shaft 2. In the present case, hard material grains 82 in the form of diamond grains are embedded in the binding layer 81, which consists of nickel. The coating is applied to the rotor shaft 2. However, it is also possible to coat the collar or both the collar and the rotor shaft. In addition to the inventive coating, the rotor shaft 2 of FIG. 6 also has a stop 4 according to the invention, which forms a support for the collar 3. If, as in FIG. 4, the collar 3 is only pressed onto the rotor shaft 2 without additional fastening in the form of a tensioning disk, the use of a stop 4 is very important for the strength of the connection advantageous because in particular the axial vibrations can be supported by the stop 4. As a result, part of the load which acts on the collar 3 through the operation of the spinning rotor is absorbed, as a result of which the spinning rotor 1 is securely fastened on the rotor shaft 2. In addition to diamond grains as solid particles and nickel as the bonding layer, other suitable materials can also be used, which also enables a kind of additional positive connection to be achieved.

Sowohl durch die erfindungsgemäße Ausbildung des Rotorschaftes mit einem Anschlag, als auch durch die erfindungsgemäße Beschichtung von Rotorschaft oder Bund kann die gestellte Aufgabe gelöst werden. Eine Kombination beider ist besonders vorteilhaft.The object can be achieved both by the inventive design of the rotor shaft with a stop and by the coating of the rotor shaft or collar according to the invention. A combination of the two is particularly advantageous.

Claims (21)

  1. An open-end spinning rotor (1), which is mounted on a rotor shaft (2), wherein a collar (3) used for securing the spinning rotor (1) is pressed onto the rotor shaft (2), characterized in that the rotor shaft (2) is provided with a stop (4) on which the collar (3) is supported.
  2. An open-end spinning rotor according to Claim 1, characterized in that the spinning rotor (1) is constructed integrally with the collar (3).
  3. An open-end spinning rotor according to Claim 1, characterized in that the spinning rotor (1) is joined detachably to the collar (3).
  4. An open-end spinning rotor according to one or more of Claims 1 to 3, characterized in that the spinning rotor (1) is pressed axially against the collar (3).
  5. An open-end spinning rotor according to one or more of Claims 1 to 4, characterized in that the stop (4) is constructed integrally with the rotor shaft (2).
  6. An open-end spinning rotor according to one or more of Claims 1 to 5, characterized in that the stop (4) is constructed in the form of a cylindrical (22) or conical (23) change in diameter of the rotor shaft (2).
  7. An open-end spinning rotor according to one or more of Claims 1 to 6, characterized in that the stop (4) is connected to the rotor shaft (2) with positive locking.
  8. An open-end spinning rotor according to Claim 7, characterized in that the stop (4) is constructed in the form of a retaining ring (5) cooperating with a groove (21) in the rotor shaft (2).
  9. An open-end spinning rotor according to one or more of Claims 1 to 8, characterized in that the stop (4) has an axial extension of less than 15 mm.
  10. An open-end spinning rotor according to Claim 9, characterized in that the stop (4) has an axial extension of from 0.1 mm to 3 mm.
  11. An open-end spinning rotor according to one or more of Claims 1 to 10, characterized in that the diameter of the stop (4) is less than twice the diameter of the rotor shaft (2).
  12. An open-end spinning rotor according to Claim 11, characterized in that the stop (4) is constructed in the form of a micro-stop which projects radially beyond the rotor shaft (2) by less than 2 mm.
  13. An open-end spinning rotor according to one or more of Claims 4 to 12, characterized in that the spinning rotor (1) is pressed against the collar (3) by means of a tightening washer (6).
  14. An open-end spinning rotor according to one or more of Claims 1 to 13, characterized in that the rotor shaft (2) or the collar (3) has a centring attachment (7) for receiving the spinning rotor (1).
  15. An open-end spinning rotor according to Claim 14, characterized in that the diameter of the centring attachment (7) is equal to the diameter of the rotor shaft (2).
  16. An open-end spinning rotor according to Claim 14 or 15, characterized in that the spinning rotor (1) is pressed onto the centring attachment (7).
  17. An open-end spinning rotor according to one or more of Claims 1 to 16, characterized in that the axial position of the collar (3) on the stop (4) remains the same in relation to the free end (24) of the rotor shaft (2), and the axial position of the rotor channel (11) in relation to the free end (24) of the rotor shaft (2) is determined by the axial length of the collar (3) when different rotors are used.
  18. An open-end spinning rotor (1), which is mounted on a rotor shaft (2), wherein a collar (3) used for securing the spinning rotor (1) is pressed onto the rotor shaft (2), in particular according to one or more of Claims 1 to 17, characterized in that solid particles (8) which increase the friction between the contact faces of the rotor shaft (1) [sic - recte (2)] and the collar (3) and/or the spinning rotor (1) are introduced between the said faces.
  19. An open-end spinning rotor according to Claim 18, characterized in that the rotor shaft (2) and/or the faces of the collar (3) and/or the spinning rotor (1) cooperating with the said rotor shaft (2) are coated with a bonding layer (81) into which solid particles (8) are bonded.
  20. An open-end spinning rotor according to Claim 19, characterized in that the bonding layer (81) is a layer consisting essentially of nickel.
  21. An open-end spinning rotor according to one or more of Claims 18 to 20, characterized in that the solid particles (8) consist of a hard material, for example diamond or silicon carbide.
EP94105223A 1993-04-16 1994-04-02 Open-end spinning rotor Expired - Lifetime EP0620298B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4312365 1993-04-16
DE4312365A DE4312365A1 (en) 1993-04-16 1993-04-16 Open-end spinning rotor

Publications (2)

Publication Number Publication Date
EP0620298A1 EP0620298A1 (en) 1994-10-19
EP0620298B1 true EP0620298B1 (en) 1997-07-09

Family

ID=6485563

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94105223A Expired - Lifetime EP0620298B1 (en) 1993-04-16 1994-04-02 Open-end spinning rotor

Country Status (4)

Country Link
US (1) US5526638A (en)
EP (1) EP0620298B1 (en)
CZ (1) CZ284711B6 (en)
DE (2) DE4312365A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19618027A1 (en) * 1996-05-04 1997-11-06 Rieter Ingolstadt Spinnerei Simple, cost effectively made rugged open end spinning rotor
EP0805224A3 (en) * 1996-05-04 1997-11-19 Rieter Ingolstadt Spinnereimaschinenbau AG Open-end spinning rotor
DE19621190A1 (en) * 1996-05-25 1997-11-27 Rieter Ingolstadt Spinnerei Open-end spinning rotor
DE19910277B4 (en) 1999-03-09 2010-11-04 Oerlikon Textile Gmbh & Co. Kg Spinning rotor for open-end spinning machines
DE19910276A1 (en) 1999-03-09 2000-09-14 Schlafhorst & Co W Spinning rotor for open-end spinning machines and method for producing the spinning rotor
EP1201799B1 (en) * 2000-10-23 2005-03-30 Rieter Ingolstadt Spinnereimaschinenbau AG Sealing element for the housing of an Open-end spinningmachine
DE10326849A1 (en) * 2003-06-14 2004-12-30 Saurer Gmbh & Co. Kg Spinning rotor for an open-end rotor spinning device
US20070013159A1 (en) * 2005-03-23 2007-01-18 Mestre Miquel T Knuckle and bearing assembly and process of manufacturing same
DE102005021920A1 (en) * 2005-05-12 2006-11-16 Saurer Gmbh & Co. Kg spinning rotor
DE102007007260B4 (en) 2007-02-14 2022-04-28 Saurer Spinning Solutions Gmbh & Co. Kg Spinning rotor for an open-end spinning device
DE102012008693A1 (en) * 2012-04-28 2013-10-31 Oerlikon Textile Gmbh & Co. Kg Open-end spinning rotor
DE102013108199A1 (en) * 2013-07-31 2015-02-05 Maschinenfabrik Rieter Ag Open-end spinning rotor with a rotor cup, a rotor shaft and a coupling device
CN104088043A (en) * 2014-06-11 2014-10-08 吴江龙升纺织有限公司 Spinning cup

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1659573A (en) * 1925-02-18 1928-02-21 Lalor Fuel Oil System Company Oil burner
US3331258A (en) * 1964-02-17 1967-07-18 Eckerle Rotor for an internally operating geared pump
US3367687A (en) * 1966-01-27 1968-02-06 General Electric Co. Means to secure an element to a shaft
GB1383194A (en) * 1970-10-08 1975-02-05 Platt International Ltd Open-end spinning apparatus
GB1410972A (en) * 1972-01-14 1975-10-22 Platt Saco Lowell Ltd Spinning of textile yarns
GB1419498A (en) * 1972-02-23 1975-12-31 Platt Saco Lowell Ltd Spinning of textile fibres
CS164465B1 (en) * 1972-10-19 1975-11-07
GB1461259A (en) * 1973-03-14 1977-01-13 Platt Saco Lowell Ltd Textile machines
DE2812297A1 (en) * 1977-03-26 1978-09-28 Platt Saco Lowell Ltd SPINNING ROTOR ARRANGEMENT FOR OPEN-END SPINNING MACHINES
DE2939325C2 (en) * 1979-09-28 1982-05-06 Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt Open-end spinning rotor
DE2939326C2 (en) * 1979-09-28 1982-05-19 Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt Open-end spinning rotor
US4351407A (en) * 1979-12-21 1982-09-28 Dana Corporation Axle drive assembly
US4358923A (en) * 1980-04-10 1982-11-16 Surface Technology, Inc. Composite coatings for open-end machinery parts
US4358922A (en) * 1980-04-10 1982-11-16 Surface Technology, Inc. Metallic articles having dual layers of electroless metal coatings incorporating particulate matter
US4432662A (en) * 1981-08-13 1984-02-21 Ronnkvist Ake E Composite sucker rod and method of manufacturing same
GB2104111B (en) * 1981-08-14 1986-04-23 Reiners Verwaltungs Gmbh Spinning rotor for an open-end spinning machine and method for its production
DE3212785C3 (en) * 1982-04-06 1987-08-20 Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt OPEN-END SPIDER ROTOR
DE3220402C2 (en) * 1982-05-29 1985-03-21 W. Schlafhorst & Co, 4050 Mönchengladbach Method and device for producing a yarn spun with an OE rotor spinning machine
US4594020A (en) * 1982-08-13 1986-06-10 Mega Industrial Products, Inc. Welded oil well pump rod
GB2129840A (en) * 1982-11-12 1984-05-23 John James Stamp Open-end spinning rotors
DE3441235C2 (en) * 1984-11-10 1987-05-14 Etablissement Supervis, Vaduz Crankshaft for small internal combustion engines
DE3519536A1 (en) * 1985-05-31 1986-12-04 Stahlecker, Fritz, 7347 Bad Überkingen Spinning rotor for open-end spinning
DE3615777A1 (en) * 1986-05-10 1987-11-12 Stahlecker Fritz SUPPORT DISC FOR A SUPPORT DISC BEARING OF A OE SPINNING ROTOR
US4712369A (en) * 1987-05-11 1987-12-15 Burckhardt America, Inc. Yarn treating device for open-end spinning frames
DE3723901A1 (en) * 1987-07-18 1989-01-26 Stahlecker Fritz METHOD FOR PRODUCING A OE SPINNING ROTOR
DE3815182A1 (en) * 1988-05-04 1989-11-16 Wolfgang Grahamer Spinning rotor
DE3835037A1 (en) * 1988-10-14 1990-04-19 Schurr Stahlecker & Grill Open-end spinning rotor
US4909656A (en) * 1989-05-11 1990-03-20 Lai Chung Tan Brake pivot
DE4007494C2 (en) * 1990-03-09 1998-07-02 Fritz Stahlecker Method for preventing the uselessness of an OE spinning rotor and OE spinning rotor
DE4020518A1 (en) * 1990-06-28 1992-01-02 Schubert & Salzer Maschinen OPEN-END SPIDER ROTOR

Also Published As

Publication number Publication date
DE4312365A1 (en) 1994-10-20
EP0620298A1 (en) 1994-10-19
CZ85894A3 (en) 1994-10-19
US5526638A (en) 1996-06-18
CZ284711B6 (en) 1999-02-17
DE59403273D1 (en) 1997-08-14

Similar Documents

Publication Publication Date Title
DE68918278T2 (en) DAMPER FOR Torsional Vibrations.
EP0620298B1 (en) Open-end spinning rotor
DE4406826B4 (en) coil spring
DE102017115229A1 (en) Method for producing a rotor for an electric motor and rotor produced by this method
DE3242448C2 (en)
DE4420758A1 (en) Brake disc with friction ring and sheet metal holder
DE69016707T2 (en) Dynamic damper.
DE10253451A1 (en) Compound brake disk, comprising center piece provided with openings for insertion of projections located at friction ring stub
DE10234104B3 (en) Brake disk comprises a friction ring and a holding part interconnected by a connecting ring having recesses extending radially inward from two bending elements which engage in a form-locking manner in the friction ring
EP0090939B1 (en) Open-end spinning rotor
DE3416686C2 (en)
DD153614A1 (en) DRUM BEARING, ESPECIALLY FOR DRUM MACHINES AND CENTRIFUGES
EP0464401B1 (en) Open-ended spinning rotor
EP0775661A1 (en) Transport element for flat articles
EP0170877B1 (en) Open-end spinning rotor and method of producing it
DE68903139T2 (en) DEVICE FOR SECURING A ROLLER BEARING COMPONENT ON A SHAFT.
WO2020165351A1 (en) Assembled brake disc and method for producing a brake disc of this type
EP0218091B1 (en) Sliding sleeve made of a polymeric material for a clutch release bearing
WO2008064818A1 (en) Shaft assembly of an electromotoric auxiliary drive, method for securing a functional element onto a shaft, and an expander ring
DE2603131C3 (en) Composite roll and process for its manufacture
WO2020035618A1 (en) Assembled brake disc, and method for producing a brake disc of this type
WO2005113996A1 (en) Bearing arrangement consisting of a bearing and a bearing support
EP1476670A1 (en) Brake disc comprising a connection between the hub well and friction ring, produced by internal hydroforming
DE19928648A1 (en) Process to press-fit assemble automotive clutch flywheel and housing is simpler and prior art and more reliable
DE2533618C3 (en) Wheel bearings for motor vehicles and a method for adjusting the axial play of the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940402

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19950505

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970709

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59403273

Country of ref document: DE

Date of ref document: 19970814

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980420

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980518

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030505

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050402