EP0619919A1 - Systeme de refroidissement pour module "multi-puces" - Google Patents

Systeme de refroidissement pour module "multi-puces"

Info

Publication number
EP0619919A1
EP0619919A1 EP93902370A EP93902370A EP0619919A1 EP 0619919 A1 EP0619919 A1 EP 0619919A1 EP 93902370 A EP93902370 A EP 93902370A EP 93902370 A EP93902370 A EP 93902370A EP 0619919 A1 EP0619919 A1 EP 0619919A1
Authority
EP
European Patent Office
Prior art keywords
cover
circuit
chip
cooling system
thermal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93902370A
Other languages
German (de)
English (en)
Inventor
Thierry Fromont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bull SAS
Original Assignee
Bull SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bull SAS filed Critical Bull SAS
Publication of EP0619919A1 publication Critical patent/EP0619919A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a cooling system for a “multi-chip” module comprising a substrate on which is arranged a plurality of substantially flat electronic circuits, associated with the substrate a partially flat thermally conductive cover cooperating with a plurality of heat exchange means , each in relation on one side with a circuit and on the other with the hood to transfer heat from the circuit to the hood.
  • Such a cooling system is known from European patent application EP-369 115.
  • a system comprising inter alia a substrate carrying electronic circuits forming with a cover or cap a hermetic enclosure.
  • each circuit heat exchange means In this enclosure are arranged vis-à-vis each circuit heat exchange means.
  • each electronic circuit dissipates a certain amount of heat, at least part of which must be necessarily removed in order to allow nominal operation.
  • a heat exchange means for transferring said heat from a circuit to the cover is in the present case constituted by a cylindrical metal piston whose body is housed in a cavity located in the thickness of the cover .
  • a spring disposed in the upper cavity of the piston keeps the lower end of the latter in pressure on the circuit.
  • the heat transfer from the circuit to the piston will be all the more efficient the larger the surface of the piston in contact with the circuit, ideally the lower end of the piston being in a plane parallel to the plane of the electronic circuit. .
  • the axis of the cavity containing the piston is by construction perpendicular to the plane of the substrate and therefore ideally to the plane of the circuit, in this case the entire lower end of the piston is in contact with the circuit.
  • a non-negligible number of them presents an inclination by compared to the plane of said substrate, in this case only a part of the lower end of the piston is in contact with the circuit and the heat transfer is then no longer optimal.
  • the overall thermal resistance must be of value as reduced as possible.
  • the thermal resistance in the vicinity of the circuit and of the lower part of the piston is low (the contact surface being maximum, this implies an air gap between these two thin parts)
  • the resistance thermal in the vicinity of the contacts between the piston and the cavity is of high value and this over most of the range of variation of the inclination of the circuit.
  • the object of the present invention is to provide a cooling system for “multi-chip” modules, preferably of medium dissipation, which is simple, effective, non-hermetic and which does not have the drawbacks of known systems.
  • the cooling system of the kind mentioned in the preamble uses as a heat exchange means a flexible metallic device with low thermal resistance and is remarkable in that the surfaces of the flexible metallic device in contact at both ends, under pressure determined, with the circuit on the one hand and the cover on the other hand are flat and have a surface condition of flatness and roughness such that it allows the control of the two air spaces between on the one hand the circuit and the first of the two ends and on the other hand, when it exists, between the cover and the second of the two ends, the flexible metallic device with low thermal resistance compensating for the differences in altitude and angles between the substrate and the different circuits and minimizing thermal resistance in the vicinity of said air spaces, while the differential expansions are automatically compensated by the movement of gli relative to the circuit.
  • the device chosen as a heat exchange means by virtue of its flexibility, easy deformation ensuring an integral and systematic application of its contact surfaces with the surfaces of the circuit on the one hand and of the cover on the other hand. These contact surfaces are flat and machined or treated so as to effectively control the air gaps existing at the contacts and obtain thermal resistances of very low value.
  • the low thermal resistance of the device itself results in an overall thermal resistance also of low value and therefore an efficient transfer of heat.
  • the elasticity of the various devices advantageously guarantees on the one hand a good application of these on the circuits under a relatively low pressure imposed by the cover during its association with the substrate and on the other hand compensation for the differential expansions between the substrate and the cover.
  • a good yield is thus obtained which authorizes use of the system with “multi-chip” modules of average dissipation without internal presence of a fluid at the “chips” and therefore without it being necessary to impose a hermetic closure.
  • the efficiency can also be improved by using greases at the level of the contacts with the circuits and / or by providing means for extracting heat at the level of the cover, for example a circulation of fluid on the upper surface of the latter.
  • the flexible metal device with low thermal resistance is a bellows heat pipe of which the evaporator, a metal plate, is the part in contact with the circuit, the condenser, another metal plate, the part in contact with the hood and the body connecting the evaporator to the condenser forms a metal bellows, the assembly containing a heat transfer fluid.
  • the choice of using a heat pipe or heat tube which is a static device of very high thermal conductivity and therefore of very low thermal resistance allows efficient transfer of heat from a circuit to the hood.
  • the choice of using a heat pipe also has an important advantage. In fact, with this type of device, the more the power dissipated and therefore the energy to be transferred increases, the more the overall thermal resistance decreases, and this in a non-linear manner, while in addition the thermal resistance decreases when the temperature of the condenser. increases (within reasonable limits of course,
  • the bellows body gives this device the desired flexibility, under a determined pressure, allowing the deformation necessary to compensate for differences in altitude or inclination.
  • the plasticity due to the choice of material chosen for the bellows, for example a copper alloy, makes it possible to "limit the bearing force and therefore the pressure of the heat pipe on the circuit.
  • each bellows heat pipe is fixed by its condenser to the cover, the assembly being associated with the substrate under a pressure determined by means of fixing means.
  • each circuit corresponds a position of a bellows heat pipe which will come naturally and without adjustment to appear and be applied to the associated circuit.
  • the flexibility of the heat pipe unlike the rigid systems of the prior art, necessarily results in application of a good quality planar contact which favors the decrease in thermal resistance, while the various expansions are automatically compensated for by the sliding movement of the evaporator relative to the circuit, movement of small amplitude allowed because of the freedom left between heat pipe and circuit.
  • each bellows heat pipe also comprises, located along its evaporator, a wick allowing use in the horizontal direction.
  • This wick is preferably made of a fine mesh metal mesh which will thus allow capillary action to raise the heat transfer fluid when the cooling system is used with the heat pipes in a horizontal position _
  • the icrure 1 schematically represents a section of a cooling system for a "multi-chip” module according to the invention.
  • Figure 2 shows in section an example of a flexible metallic device with low thermal resistance usable in the cooling system according to the invention.
  • Ficrure 3 shows in section another example of a flexible metallic device with low thermal resistance usable in the cooling system according to the invention.
  • Figure 1 a section of a cooling system for "multi-chip" module comprising a substrate 1 on which is arranged a plurality of electronic circuits 2a, 2b, 2c, ..., substantially flat.
  • a partially flat cover 3 thermally conductive is associated with the substrate 1 by means of fixing means 4, for example screws.
  • the cover 3 cooperates with a plurality of heat exchange means 5a, 5b, 5c, ..., each in relation on one side respectively with a circuit 2a, 2b, 2c, ..., and on the other with cover 3 to transfer heat from the associated circuit to the cover.
  • the heat exchange means 5a, 5b, 5c, ... is a flexible metallic device with low thermal resistance. According to a preferred application, this device is a bellows heat pipe more precisely described with the figure 2.
  • the surfaces at the two ends of the device 5a, 5b, 5c, ..., in contact on the one hand with the circuit 2a, 2b, 2c, ..., respectively, and on the other hand with the cover 3 are flat and are machined or treated so as to have a surface condition of flatness and roughness such that it allows the control of the two air spaces between, on the one hand the circuit 2a , 2b, 2c, ..., and the first of the two ends and, on the other hand, when it exists, between the cover 3 and the second of the two ends, the flexible metallic device with low thermal resistance compensating for the differences d altitude and angles between the substrate 1 and the different circuits 2a, 2b, 2c, ..., and minimizing the thermal resistances in the vicinity of said air spaces, while the
  • planar surfaces are in intimate contact minimizing the air space and thereby the thermal resistance.
  • the surface condition of the devices is intended to be harmonized with that of the circuits for which the flatness / roughness is known from their specification, thereby enabling the volume of air to be controlled between the contact surfaces. In addition, this volume of air can be further minimized by adding thermal grease to the contacts.
  • the bearing force of the cover 3 on the devices 5a, 5b, 5c, ... makes it possible to maintain sufficient pressure to ensure the minimum contact force necessary allowing the deformation of the flexible body of the devices 5a, 5b, 5c,. .., and thus the compensation of the inclinations.
  • This bearing force is determined by the fixing means 4 of the cover 3 on the substrate 1, its intensity of the order of 300 to 400 g per circuit, is limited due to the plasticity of the bellows thus advantageously reducing the forces applied on the circuits.
  • the three devices 5a, 5b, 5c shown in FIG. 1 only the device 5a has not undergone deformation, the upper surface of the circuit 2a being parallel to the plane of the substrate.
  • the intentionally exaggerated distortion of devices 5b and 5c shows that any inclination is automatically and fully compensated while maintaining the entire upper surface of the devices 5a, 5b, 5c, ..., in close contact with the cover 3 and therefore without increasing the thermal resistance.
  • the devices 5a, 5b, 5c, ... are bellows heat pipes, bellows heat pipes of which the evaporator, a metal plate, is the part in contact with the circuit, the condenser, another metal plate, the part in contact with the cover and the body connecting the evaporator to the condenser forms a metal bellows, the assembly containing a heat transfer fluid.
  • the devices 5a, 5b, 5c, ... are preferably fixed by their condenser to the cover 3, any fixing means that can be used: glue, solder, screws, etc ... (depending on the fixing means chosen, the air gap between condenser and cover will exist or will not exist).
  • pumping and heat extraction means can be associated with the cover 3, means which can consist, for example, of an intimately linked radiator (either integrated or added) to the cover or a circulation of a fluid on the upper surface of the latter.
  • Figure 2 is proposed in section an example of a flexible metallic device with low thermal resistance, here a bellows heat pipe, which can be used in the cooling system according to the invention.
  • the heat pipe 5 is mainly composed of three metal parts: the evaporator 51, the condenser 52 and connecting the condenser to the evaporator, the bellows 53.
  • the evaporator 51 is constituted by a metal plate, for example made of copper, which has the. shape of a disc in the upper part of which a recess was made to receive the lower part of the bellows 53.
  • the lower part of this disc is, .in operation, applied to the circuit to be cooled, it must be perfectly flat and its surface condition harmonized with that of the circuits to be cooled.
  • the condenser 52 which has, here, the same shape and the same characteristics as the evaporator 51, is symmetrically opposite the latter relative to the median plane perpendicular to the axis XX 'of the bellows, it receives in its recess the upper part of the bellows 53.
  • the condenser is in contact and preferably is fixed to the cover 3.
  • the bellows 53 can be glued, welded or brazed, avoiding burrs, to the hollow parts of the evaporator 51 and condenser 52 to form a hermetic device containing the heat transfer liquid 54.
  • a person skilled in the art will be able to easily define the diameter and the thickness of the metal plates, the thickness of the bellows and the composition of the heat transfer liquid.
  • the thickness of the bellows must suit the desired flexibility. Too much thickness decreases. flexibility while a thickness that is too small increases the thermal resistance, the latter possibly being reduced by choosing an adequate heat transfer liquid and / or by increasing the diameter of the metal plates in contact with the circuit to be cooled.
  • a wick 55 can be added, in this case it will be located along the evaporator 51.
  • a wick is preferably made of a wire mesh with a fine mesh.
  • each device 5a, 5b, 5c, ... consists mainly of an upper metal plate 56 in contact with the cover 3 and a lower metal plate 57 in contact with the associated circuit, the plates 56 and 57 being connected together by a metal bellows 58 and the assembly containing a good fluid 59 conductor of heat, for example a liquid metal in the desired temperature range such as gallium or mercury.
  • the upper plate 56 further comprises a plunger 56a (maintained by or integrated into the plate 56 as drawn in FIG. 3) partially bathing in the fluid 59.
  • the fluid 59 thus compensates for the differences in inclination and the variations in the difference between the plunger 56a and the bottom plate 57 induced by the differences in altitude between the circuit 2a, 2b, 2c, ..., and the cover 3 and allowed by the metal bellows 58, while the overall thermal resistance of the device 5a, 5b, 5c, ..., is kept of low value.
  • the metal plate 56 of each of the devices 5a, 5b, 5c, ..., is preferably fixed to the cover 3, any means that can be used: glue, welding, screws, etc., ... (depending on the method of fixing chosen , the air gap between the plate 56 and the cover 3 will exist or will not exist).
  • This simple and efficient cooling system advantageously operates in the conventional temperature ranges of electronics, from minus a few tens of 'C to more than 100 ° C. It is preferably used in combination with "multi-chip" modules of average dissipation, of the order of a few tens of / cm.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Ce système est prévu pour le refroidissement des modules "multi-puces" de moyenne dissipation. Le capot (3) thermiquement conducteur associé au substrat (1) supportant les circuits (2a, 2b, 2c, ...) coopère avec des dispositifs métalliques flexibles (5a, 5b, 5c, ...) à faible résistance thermique qui permettent de transférer la chaleur des circuits vers le capot. Les surfaces de contact des dispositifs (5a, 5b, 5c, ...) sont planes et ont un état de surface de planéité/rugosité permettant le contrôle des lames d'air existant au niveau des contacts. Ce système permet de compenser les différences d'altitude et d'angles entre le substrat et les différents circuits et de minimiser les résistances thermiques au voisinage des contacts. Application: refroidissement des modules "multi-puces" de moyenne dissipation.

Description

Système de refroidissement pour module "multi-puces"
La présente invention concerne un système de refroidissement pour module "multi-puces" comprenant un substrat sur lequel est agencée une pluralité de circuits électroniques sensiblement plats, associé au substrat un capot partiellement plat thermiquement conducteur coopérant avec une pluralité de moyens d'échange de chaleur, chacun en relation d'un côté avec un circuit et de l'autre avec le capot pour transférer la chaleur du circuit vers le capot.
-Un tel système de refroidissement est connu de la demande de brevet européenne EP-369 115. Dans cette demande,, il est décrit un système comprenant entre autres un substrat portant des circuits électroniques formant avec un capot ou chapeau une enceinte hermétique. Dans cette enceinte sont disposés vis-à-vis de chaque circuit des moyens d'échange de chaleur. En effet, chaque circuit électronique dissipe une certaine quantité de chaleur dont une partie au .moins doit être nécessairement évacuée afin d'autoriser un fonctionnement nominal. Ainsi, un moyen d'échange de chaleur pour le transfert de ladite chaleur d'un circuit vers le capot est dans le cas présent constitué d'un piston cylindrique en métal dont le corps est logé dans une cavité située dans l'épaisseur du capot. Un ressort disposé dans la cavité supérieure du piston permet de maintenir en pression l'extrémité inférieure de ce dernier sur le circuit. Le transfert de chaleur du circuit vers le piston sera d'autant plus efficace que la surface du piston en contact avec le circuit sera grande, l'idéal étant que l'extrémité inférieure du piston soit comprise dans un plan parallèle au plan du circuit électronique. L'axe de la cavité contenant le piston est par construction perpendiculaire au plan du substrat et donc idéalement au plan du circuit, dans ce cas l'intégralité de l'extrémité inférieure du piston est en contact avec le circuit. Cependant, de manière générale, sur la quantité de circuits montés sur le substrat un nombre non négligeable d'entre eux présente une inclinaison par rapportau plan dudit substrat, dans ce cas seule une partie de l'extrémité inférieure du piston est en contact avec le circuit et le transfert de chaleur n'est alors plus optimal. Pour tenter de remédier à cet inconvénient, compte tenu de la rigidité mécanique des pistons, il est prévu alors dans le demande précitée de donner une forme tronconique au piston et d'augmenter le diamètre de la cavité dans laquelle est logé ledit piston pour permettre à ce dernier de prendre l'inclinaison nécessaire à l'alignement de son extrémité inférieure avec le plan du circuit et imposer ainsi un contact intégral.
Une telle solution comporte néanmoins de sérieux inconvénients. En effet, pour que l'échange de chaleur se fasse de manière efficace, une autre exigence doit être satisfaite : la résistance thermique globale doit être de valeur aussi réduite que possible. Or dans le cas présent, si la résistance thermique au voisinage du circuit et de la partie inférieure du piston est .faible (la surface de contact étant maximale, ceci implique une lame d'air entre ces deux parties de faible épaisseur) , la résistance thermique au voisinage des contacts entre le piston et la cavité est elle par contre de valeur élevée et ce sur la majeure partie du domaine de variation de l'inclinaison du circuit. Ainsi, lorsque l'angle d'inclinaison du circuit est nul ou de faible valeur, aucun contact n'existe entre le piston et la cavité, la résistance thermique est par conséquent élevée car la lame d'air entourant le piston dans la cavité a une épaisseur non négligeable et ceci d'autant plus que le diamètre de la cavité a été augmenté. A partir d'une certaine valeur d'angle d'inclinaison, il y a contact entre piston et cavité mais ce contact est quasi-ponctuel et la valeur de la résistance thermique même réduite n'est toujours pas négligeable. Enfin, la valeur de la résistance thermique est minimale mais encore significative pour un contact quasi linéaire du piston avec la cavité, c'est-à- dire pour une valeur d'angle d'inclinaison égale ou voisine piston. Le but de la présente invention est de proposer un système de refroidissement pour modules "multi-puces" de préférence de dissipation moyenne, qui soit simple, efficace, non hermétique et qui ne présente pas les inconvénients des systèmes connus .
Pour cela, le système de refroidissement du genre mentionné dans le préambule utilise comme moyen d'échange de chaleur un dispositif métallique flexible à faible résistance thermique et est remarquable en ce que les surfaces du dispositif métallique flexible en contact aux deux extrémités, sous une pression déterminée, avec le circuit d'une part et le capot d'autre part sont planes et ont un état de surface de planéité et de rugosité tel qu'il permet le contrôle des deux lames d'air entre d'une part le circuit et la première des deux extrémités et d'autre part, lorsqu'elle existe, entre le capot et la seconde des deux extrémités, le dispositif métallique flexible à faible résistance thermique compensant les différences d'altitude et d'angles entre le substrat et les différents circuits et minimisant les résistances thermiques au voisinage desdites lames d'air, alors que les dilatations différentielles sont automatiquement compensées par le mouvement de glissement par rapport au circuit.
Ainsi le dispositif choisi comme moyen d'échange de chaleur, autorise, de par sa flexibilité, une déformation aisée assurant une application intégrale et systématique de ses surfaces de contact avec les surfaces du circuit d'une part et du capot d'autre part. Ces surfaces de contact sont planes et usinées ou traitées de sorte à contrôler efficacement les lames d'air existant au niveau des contacts et obtenir des résistances thermiques de très faible valeur. La faible résistance thermique du dispositif lui-même entraîne une résistance thermique globale également de faible valeur et donc un transfert efficace de la chaleur. L'élasticité des divers dispositifs garantit avantageusement d'une part une bonne application de ceux-ci sur les circuits sous une pression relativement faible imposée par le capot lors de son association avec le substrat et d'autre part une compensation des dilatations différentielles entre le substrat et le capot. Un bon rendement est ainsi obtenu qui autorise une utilisation du système avec des modules "multi- puces" de dissipation moyenne sans présence interne d'un fluide au niveau des "puces" et donc sans qu'il soit nécessaire d'imposer une fermeture hermétique. Le rendement peut en outre être amélioré en utilisant des graisses au niveau des contacts avec les circuits et/ou en prévoyant des moyens d'extraction de la chaleur au niveau du capot par exemple une circulation de fluide à la surface supérieure de celui-ci.
Selon une application préférée, le dispositif métallique flexible à faible résistance thermique est un caloduc à soufflet dont l'évaporateur, une plaque métallique, est la partie en contact avec le circuit, le condenseur, une autre plaque métallique, la partie en contact avec le capot et le corps reliant l'évaporateur au condenseur forme un soufflet métallique, l'ensemble contenant un fluide caloporteur.
De cette manière, le choix d'utilisation d'un caloduc ou tube de chaleur qui est un dispositif statique de conductibilité thermique très élevée et donc de résistance thermique très faible autorise un transfert efficace de la chaleur d'un circuit vers le capot. Le choix de l'utilisation d'un caloduc entraîne de plus un important avantage. En effet, avec ce type de dispositif plus la puissance dissipée et donc l'énergie à transférer augmente et plus la résistance thermique globale diminue, et ceci de manière non-linéaire, alors qu'en outre la résistance thermique diminue lorsque la température du condenseur augmente (dans des limites raisonnables bien entendu, c'est-
• à-dire interdisant l'assèchement du caloduc). Egalement, le corps formant soufflet donne à ce dispositif la flexibilité désirée, sous une pression déterminée, autorisant la déformation nécessaire pour compenser les différences d'altitude ou d'inclinaison. En outre la plasticité due au choix du matériau choisi pour le soufflet, par exemple un alliage de cuivre, permet de "limiter la force d'appui et donc la pression du caloduc sur le circuit.
Dans une forme de réalisation préférée, chaque caloduc à soufflet est fixé par son condenseur au capot, l'ensemble étant associé au substrat sous une pression déterminée par l'intermédiaire de moyens de fixation. Ainsi à chaque circuit correspond une position d'un caloduc à soufflet qui viendra de manière naturelle et sans réglage se présenter et s'appliquer sur le circuit associé. La flexibilité du caloduc contrairement aux systèmes rigides de l'art antérieur, entraîne nécessairement lors de l'application un contact planaire de bonne qualité qui favorise la diminution de la résistance thermique, alors que les diverses dilatations sont automatiquement compensées par le mouvement de glissement de l'évaporateur par rapport au circuit, mouvement de faible amplitude permis du fait de la liberté laissée entre caloduc et circuit. La pression que le caloduc doit exercer sur le circuit, qui comme cela a été vu précédemment est de valeur limitée du fait de la plasticité du matériau du soufflet, est déterminée par les moyens de fixation du capot sur le substrat. Ainsi une force d'appui par exemple d'environ 300 à 400 g est généralement suffisante, celle-ci peut être aisément obtenue lors de la fermeture du capot sur le substrat au moyen de vis. En outre comme aucune fixation n'est prévue entre un caloduc et son circuit associé, il s'ensuit qu'aucune dégradation du circuit n'est entraînée, comme cela est souvent le cas dans les systèmes de l'art antérieur, les circuits étant, lors du démontage du capot, retrouvés dans leur état mécanique initial. Selon une caractéristique additionnelle du système de refroidissement selon l'invention, chaque caloduc à soufflet comporte également, située le long de son évaporateur, une mèche autorisant une utilisation dans le sens horizontal. Cette mèche est de préférence constituée d'un grillage métallique à maille fine qui permettra ainsi .par capillarité de faire remonter le fluide caloporteur lorsque le système de refroidissement est utilisé avec les caloducs en position horizontale _
La description suivante en regard des dessins annexés, le tout donné à titre d'exemple, fera bien comprendre comment l'invention peut être réalisée.
La icrure 1 représente de manière schématique une coupe d'un système de refroidissement pour module "multi-puces" selon l'invention.
La ficrure 2 montre en coupe un exemple de dispositif métallique flexible à faible résistance thermique utilisable dans le système de refroidissement selon l'invention.
La ficrure 3 présente en coupe un autre exemple de dispositif métallique flexible à faible résistance thermique utilisable dans le système de refroidissement selon l'invention.
Sur la figure 1 est proposée une coupe d'un système de refroidissement pour module "multi-puces" comprenant un substrat 1 sur lequel est agencée une pluralité de circuits électroniques 2a, 2b, 2c, ..., sensiblement plats. Un capot partiellement plat 3 thermiquement conducteur est associé au substrat 1 par l'intermédiaire de moyens de fixation 4, par exemple des vis. Le capot 3 coopère avec une pluralité de moyens d'échange de chaleur 5a, 5b, 5c, ..., chacun en relation d'un côté respectivement avec un circuit 2a, 2b, 2c, ..., et de l'autre avec le capot 3 pour transférer la chaleur du circuit associé vers le capot.
Le moyen d'échange de chaleur 5a, 5b, 5c, ..., est un dispositif métallique flexible à faible résistance thermique. Selon une application préférée, ce dispositif est un caloduc à soufflet plus précisément décrit avec la figure 2. Conformément à l'idée de l'invention, les surfaces aux deux extrémités du dispositif 5a, 5b, 5c, ..., en contact d'une part avec respectivement le circuit 2a, 2b, 2c, ..., et d'autre part avec le capot 3 sont planes et sont usinées ou traitées de manière à présenter un état de surface de planéité et de rugosité tel qu'il permet le contrôle des deux lames d'air entre, d'une part le circuit 2a, 2b, 2c, ..., et la première des deux extrémités et, d'autre part, lorsqu'elle existe, entre le capot 3 et la seconde des deux extrémités, le dispositif métallique flexible à faible résistance thermique compensant les différences d'altitude et d'angles entre le substrat 1 et les différents circuits 2a, 2b, 2c, ..., et minimisant les résistances thermiques au voisinage desdites lames d'air, alors que les dilatations différentielles sont automatiquement compensées par le mouvement de glissement par rapport au circuit. Ainsi ces surfaces planes sont en contact intime minimisant la lame d'air et par là la résistance thermique. L'état de surface des dispositifs est prévu pour être harmonisé avec celui des circuits dont la planéité/rugosité est connue de leur spécification permettant de la sorte le contrôle du volume d'air entre les surfaces de contact. En outre, ce volume d'air peut être encore minimisé par adjonction de graisse thermique au niveau des contacts. La force d'appui du capot 3 sur les dispositifs 5a, 5b, 5c, ..., permet de maintenir une pression suffisante pour assurer la force de contact minimale nécessaire autorisant la déformation du corps flexible des dispositifs 5a, 5b, 5c, ..., et ainsi la compensation des inclinaisons. Cette force d'appui est déterminée par les moyens de fixation 4 du capot 3 sur le substrat 1, son intensité de l'ordre de 300 à 400 g par circuit, est limitée du fait de la plasticité du soufflet réduisant avantageusement ainsi les efforts appliqués sur les circuits. Des trois dispositifs 5a, 5b, 5c représentés sur la figure 1, seul le dispositif 5a n'a pas subi de déformation, la surface supérieure du circuit 2a étant parallèle au plan du substrat. La déformation, volontairement exagérée, des dispositifs 5b et 5c permet de montrer que toute inclinaison est automatiquement et entièrement compensée tout en maintenant l'intégralité de la surface supérieure des dispositifs 5a, 5b, 5c, ..., en contact étroit avec le capot 3 et donc sans augmentation de la résistance thermique.
Dans un mode de réalisation préféré les dispositifs 5a, 5b, 5c, ..., sont des caloducs à soufflet, caloduc à soufflet dont l'évaporateur, une plaque métallique, est la partie en contact avec le circuit, le condenseur, une autre plaque métallique, la partie en contact avec le capot et le corps reliant l'évaporateur au condenseur forme un soufflet métallique, l'ensemble contenant un fluide caloporteur.
Les dispositifs 5a, 5b, 5c, ..., sont de préférence fixés par leur condenseur au capot 3, tout moyen de fixation pouvant être utilisé : colle, soudure, vis, etc ... (selon le moyen de fixation choisi, la lame d'air entre condenseur et capot existera ou n'existera pas) .
En outre, pour des modules de plus forte dissipation, des moyens de pompage et d'extraction de la chaleur peuvent être associés au capot 3, moyens qui peuvent consister par exemple en un radiateur intimement lié (soit intégré, soit ajouté) au capot ou une circulation d'un fluide à la surface supérieure de ce dernier.
Sur la figure 2 est proposé en coupe un exemple de dispositif métallique flexible à faible résistance thermique, ici caloduc à soufflet, pouvant être utilisé dans le système de refroidissement selon l'invention.
Le caloduc 5 est principalement composé de trois parties métalliques : l'évaporateur 51, le condenseur 52 et reliant le condenseur à l'évaporateur, le soufflet 53. L'évaporateur 51 est constitué par une plaque métallique, par exemple en cuivre, qui a la. forme d'un disque dans la partie supérieure duquel a été pratiqué un évidement permettant de recevoir la partie basse du soufflet 53. La partie inférieure de ce disque est, .en fonctionnement, appliquée sur le circuit à refroidir, elle doit être parfaitement plane et son état de surface harmonisé avec celui des circuits à refroidir. Le condenseur 52 qui a, ici, la même forme et les mêmes caractéristiques que l'évaporateur 51, est symétriquement opposé à ce dernier par rapport au plan médian perpendiculaire à l'axe XX' du soufflet, il reçoit dans son évidement la partie haute du soufflet 53. Le condenseur est en contact et de préférence est fixé au capot 3. Le soufflet 53 peut être collé, soudé ou brasé, en évitant les bavures, aux parties évidées des évaporateur 51 et condenseur 52 pour former un dispositif hermétique contenant le liquide caloporteur 54. L'homme du métier saura sans difficulté définir le diamètre et l'épaisseur des plaques métalliques, l'épaisseur du soufflet et la composition du liquide caloporteur. Cependant, il doit être remarqué que l'épaisseur du soufflet doit convenir à la flexibilité désirée. Une épaisseur trop importante diminue . la flexibilité alors qu'une épaisseur trop faible augmente la résistance thermique, cette dernière pouvant être néanmoins réduite en choisisssant un liquide caloporteur adéquat et/ou en augmentant le diamètre des plaques métalliques en contact avec le circuit à refroidir.
De plus, afin que les caloducs puissent être utilisés en position horizontale, une mèche 55 peut être adjointe, elle sera dans ce cas située le long de l'évaporateur 51. Une telle mèche est de préférence constituée d'un grillage métallique à maille fine.
Selon un second mode de réalisation représenté à la figure 3, chaque dispositif 5a, 5b, 5c, ..., est constitué principalement d'une plaque métallique supérieure 56 en contact avec le capot 3 et d'une plaque métallique inférieure 57 en contact avec le circuit associé, les plaques 56 et 57 étant reliées entre elles par un soufflet métallique 58 et l'ensemble contenant un fluide 59 bon conducteur de la chaleur, par exemple un métal liquide dans l gamme de température désirée comme du gallium ou du mercure. La plaque supérieure 56 comporte en outre un plongeur 56a (maintenu par ou intégré à la plaque 56 comme dessiné sur la figure 3) baignant en partie dans le fluide 59.
Le fluide 59 compense ainsi les différences d'inclinaison et les variations de l'écart entre le plongeur 56a et la plaque inférieure 57 induites par les différences d'altitude entre le circuit 2a, 2b, 2c, ..., et le capot 3 et permises par le soufflet métallique 58, alors que la résistance thermique globale du dispositif 5a, 5b, 5c, ..., est conservée de faible valeur. La plaque métallique 56 de chacun des dispositifs 5a, 5b, 5c, ..., est de préférence fixée au capot 3, tout moyen pouvant être utilisé : colle, soudure, vis, etc, ... (selon le mode de fixation choisi, la lame d'air entre la plaque 56 et le capot 3 existera ou n'existera pas) .
Ce système de refroidissement simple et efficace fonctionne avantageusement dans les gammes de température classiques de l'électronique, de moins quelques dizaines de 'C à plus de 100°C. Il est de préférence utilisé associé à des modules "multi-puces" de moyenne dissipation, de l'ordre de quelques dizaines de /cm .

Claims

Revendications :
1. Système de refroidissement pour module "multi-puces" comprenant un substrat sur lequel est agencée une pluralité de circuits électroniques sensiblement plats, associé au substrat un capot partiellement plat thermiquement conducteur coopérant avec une pluralité de moyens d'échange de chaleur chacun en relation d'un côté avec un circuit et de l'autre avec le capot pour transférer la chaleur du circuit vers le capot, le moyen d'échange de chaleur étant un dispositif métallique flexible à faible résistance thermique, caractérisé en ce que les surfaces du dispositif métallique flexible en contact aux deux extrémités, sous une pression déterminée, avec le circuit d'une part et le capot d'autre part sont planes et ont un état de surface de planéité et du rugosité tel qu'il permet le contrôle des deux lames d'air entre d'une part le circuit et la première des deux extrémités et d'autre part, lorsqu'elle existe, entre le capot et la seconde des deux extrémités, le dispositif métallique flexible à faible résistance thermique compensant les différences d'altitude et d'angles entre le substrat et les différents circuits et minimisant les résistances thermiques au voisinage desdites lames d'air, alors que les dilatations différentielles sont automatiquement compensées par le mouvement de glissement par rapport au circuit.
2. Système de refroidissement pour module "multi-puces" selon la revendication 1, caractérisé en ce que le dispositif métallique flexible à faible résistance thermique est un caloduc à soufflet dont l'évaporateur, une plaque métallique, est la partie en contact avec le circuit, le condenseur, une autre plaque métallique, la partie en contact avec le capot et le corps reliant l'évaporateur au condenseur forme un soufflet métallique, l'ensemble contenant un fluide caloporteur.
3. Système de refroidissement pour module "multi-puces" selon la revendication 2, caractérisé en ce que chaque caloduc à soufflet est fixé par son condenseur au capot, l'ensemble étant associé au substrat sous une pression déterminée par l'intermédiaire de moyens de fixation.
4. Système de refroidissement pour module "multi-puces" selon la revendication 3, caractérisé en ce que chaque caloduc à soufflet comporte également, située le long de son évaporateur, une mèche autorisant ainsi une utilisation dans le sens horizontal.
5. Système de refroidissement pour module "multi-puces" selon la revendication 4, caractérisé en ce que la mèche est constituée d'un grillage métallique à maille fine.
6. Système de refroidissement pour module "multi-puces" selon la revendication 1, caractérisé en ce que le dispositif métallique flexible à faible résistance thermique est constitué principalement ' d'une plaque métallique supérieure en contact avec le capot et d'une plaque métallique inférieure en contact avec le circuit reliées entre elles par un soufflet métallique, l'ensemble contenant un fluide bon conducteur de la chaleur, la plaque métallique supérieure comportant en outre un plongeur baignant en partie dans le fluide, ce dernier compensant ainsi les différences d'inclinaison et les variations de l'écart entre le plongeur et la plaque métallique inférieure induites par les différences d'altitude entre le circuit et le capot.
7. Système de refroidissement pour module "multi-puces" selon la revendication 6, caractérisé en ce que la plaque métallique supérieure de chacun des dispositifs métalliques flexibles à faible résistance thermique est fixée au capot, l'ensemble étant associé au substrat sous une pression déterminée par l'intermédiaire de moyens de fixation.
8. Module "multi-puces" utilisant le système de refroidissement selon l'une des revendications précédentes.
9. Dispositif, machine, ordinateur utilisant au moins un module "multi-puces" selon la revendication 8.
EP93902370A 1991-12-30 1992-12-22 Systeme de refroidissement pour module "multi-puces" Withdrawn EP0619919A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9116309 1991-12-30
FR9116309A FR2685816A1 (fr) 1991-12-30 1991-12-30 Systeme de refroidissement pour module "multi-puces".
PCT/FR1992/001228 WO1993013556A1 (fr) 1991-12-30 1992-12-22 Systeme de refroidissement pour module 'multi-puces'

Publications (1)

Publication Number Publication Date
EP0619919A1 true EP0619919A1 (fr) 1994-10-19

Family

ID=9420631

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93902370A Withdrawn EP0619919A1 (fr) 1991-12-30 1992-12-22 Systeme de refroidissement pour module "multi-puces"

Country Status (5)

Country Link
EP (1) EP0619919A1 (fr)
JP (1) JPH06510638A (fr)
CA (1) CA2123120A1 (fr)
FR (1) FR2685816A1 (fr)
WO (1) WO1993013556A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3994117B2 (ja) * 2002-11-07 2007-10-17 Smc株式会社 ヒーター付きポペット弁
US20060087816A1 (en) 2004-09-21 2006-04-27 Ingo Ewes Heat-transfer devices
JP4389974B2 (ja) * 2007-06-26 2009-12-24 株式会社デンソー 車両用交流発電機
GB2500706A (en) 2012-03-30 2013-10-02 Ibm Concentrating solar photovoltaic-thermal hybrid systems
GB201205738D0 (en) 2012-03-30 2012-05-16 Ibm Photovoltaic thermal hybrid solar receivers
GB2500703A (en) 2012-03-30 2013-10-02 Ibm Cooling devices for photovoltaic modules
JP2014013849A (ja) * 2012-07-05 2014-01-23 Fujikura Ltd 電子装置用放熱構造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951740A (en) * 1988-06-27 1990-08-28 Texas A & M University System Bellows heat pipe for thermal control of electronic components
US5005638A (en) * 1988-10-31 1991-04-09 International Business Machines Corporation Thermal conduction module with barrel shaped piston for improved heat transfer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9313556A1 *

Also Published As

Publication number Publication date
JPH06510638A (ja) 1994-11-24
CA2123120A1 (fr) 1993-07-08
WO1993013556A1 (fr) 1993-07-08
FR2685816A1 (fr) 1993-07-02

Similar Documents

Publication Publication Date Title
CA2074436C (fr) Dissipateur thermique
EP2770809B1 (fr) Carte électronique
EP1243169B1 (fr) Module electronique a haut pouvoir de refroidissement
EP0603048B1 (fr) Système de dissipation de l'énergie calorifique dégagée par un composant électronique et enceinte close utilisée dans un tel système
FR2686765A1 (fr) Dispositif de fixation, notamment pour la fixation d'un composant electronique sur une paroi d'un dissipateur thermique .
EP0023171A1 (fr) Oscillateur haute fréquence autothermostaté
EP0619919A1 (fr) Systeme de refroidissement pour module "multi-puces"
FR2937795A1 (fr) Dispositif electronique a matrice de diodes electroluminescentes de forte puissance comprenant des moyens de refroidissement ameliores
EP0419371B1 (fr) Dispositif de détection infrarouge
EP2327127B9 (fr) Structure de pompage optique
EP3052909B1 (fr) Circuit imprime flexible a faible emissivite
FR2511193A1 (fr) Support en materiau colamine pour le refroidissement et l'encapsulation d'un substrat de circuit electronique
EP1239515A1 (fr) Substrat pour circuit électronique de puissance et module électronique de puissance utilisant un tel substrat
EP1116424A1 (fr) Assemblage electronique comportant une semelle formant drain thermique
EP4165449A1 (fr) Optique réflective équipée d'un système de refroidissement
FR2759243A1 (fr) Echangeur de chaleur pour composants electroniques et appareillages electrotechniques
FR2495838A1 (fr) Dispositif de refroidissement amovible pour supports de circuits integres
CA3036861A1 (fr) Dispositif de conduction thermique et systeme de dissipation de chaleur associe
WO2018020189A2 (fr) Module électronique de puissance d'un aéronef et procédé de fabrication associé
FR2737608A1 (fr) Dispositif electronique de puissance pourvu de moyens ameliores d'evacuation de la chaleur
EP0192525B1 (fr) Structure de laser à gaz
EP0093659A1 (fr) Support de dispositifs à circuits intégrés
FR2716302A1 (fr) Dispositif de chauffage pour la réalisation de connexions par un matériau fusible.
FR3074972A1 (fr) Element d'un laser a disque comportant le milieu amplificateur et des moyens ameliores de refroidissement.
FR2898462A1 (fr) Drain thermique pour carte electronique comportant des elements en graphite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 19950908

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19961115