EP0616022A1 - Process for pressure gasification of fine particulate fuels - Google Patents

Process for pressure gasification of fine particulate fuels Download PDF

Info

Publication number
EP0616022A1
EP0616022A1 EP93104291A EP93104291A EP0616022A1 EP 0616022 A1 EP0616022 A1 EP 0616022A1 EP 93104291 A EP93104291 A EP 93104291A EP 93104291 A EP93104291 A EP 93104291A EP 0616022 A1 EP0616022 A1 EP 0616022A1
Authority
EP
European Patent Office
Prior art keywords
raw gas
quench
gas
convection
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93104291A
Other languages
German (de)
French (fr)
Other versions
EP0616022B1 (en
Inventor
Dr. Dürrfeld Rainer
Dr. Kowoll Johannes
Dr. Kuske Eberhard
Hans Niermann
Gerhard Wilmer
Joachim Wolff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp Koppers GmbH
Original Assignee
Krupp Koppers GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8212704&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0616022(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Krupp Koppers GmbH filed Critical Krupp Koppers GmbH
Priority to DE59300598T priority Critical patent/DE59300598D1/en
Priority to EP93104291A priority patent/EP0616022B1/en
Priority to ES93104291T priority patent/ES2078078T3/en
Priority to DK93104291.5T priority patent/DK0616022T3/en
Priority to ZA939354A priority patent/ZA939354B/en
Priority to US08/201,364 priority patent/US5441547A/en
Priority to CN94102284A priority patent/CN1041107C/en
Priority to PL94302608A priority patent/PL173329B1/en
Priority to RU94008855A priority patent/RU2122565C1/en
Publication of EP0616022A1 publication Critical patent/EP0616022A1/en
Publication of EP0616022B1 publication Critical patent/EP0616022B1/en
Application granted granted Critical
Priority to GR950403163T priority patent/GR3018065T3/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating

Definitions

  • the invention relates to a method for the pressure gasification of finely divided fuels in the course of the production of process gas.
  • a gasification reactor, a boiler, in particular a convection boiler, and a quenching device are used.
  • Fine-particle fuels mean fine-grained to dust-like fuels. In particular, it may be coal.
  • the energy is fed to the gasification reactor via burners, which usually also carry the finely divided fuel.
  • the gasification reaction is controlled or regulated as required for the production of a service gas of a predetermined composition. Quenching or quenching the raw gas freezes disturbing reactions.
  • a quench gas is supplied for this purpose.
  • the term gas here also means vapors.
  • the prevailing teaching is also used within the scope of the invention.
  • the walls of the gasification reactor and the convection boiler and other components for the purpose of hot cooling e.g. B. in the form of boiling water cooling, tube walls made of different parallel tubes or provided with such tube walls.
  • the convection boiler is equipped with convection heating surfaces. It goes without saying that the heat absorbed via the tube walls and in the convection boiler is used.
  • the invention has for its object to provide a method for pressure gasification, which is characterized by simple procedure and high operational reliability and can be implemented in a simple and compact gasification apparatus.
  • the advantages and effects described are particularly pronounced if the deflected raw gas stream is guided past concentric convection heating surfaces in the convection boiler and to a temperature of 400 ° to 200 ° C. upon entry into the raw gas extraction device is cooled.
  • the supply of the quench gas can also have an effect on the thermodynamics in the process according to the invention for homogenization and homogenization and thus for suppressing streak formation and disadvantageous influences, namely in that the quench gas is distributed in a uniform distribution between the gasification reactor and the quench tube with the aid of a rotating quench gas supply gap the entire circumference and in cross flow to the raw gas is introduced into the quench tube.
  • the quench gas is preferably introduced into the quench tube via a built-in quench gas supply gap.
  • the concentric convection heating surfaces surround the quench tube.
  • the convection heating surfaces there is therefore an annular space with an annular disk-shaped plan, in which a large convection heating surface can be accommodated without difficulty.
  • tower-like boilers with concentric convection heating surfaces have a thermodynamically ineffective area in the center, in the method according to the invention this area is used to hold the quench tube.
  • the systems or apparatuses that result from the teaching of the method according to the invention when introduced into practice are surprisingly compact with high performance and high throughput.
  • the heat transfer and thus the cooling of the raw gas take place very intensively according to the invention, because both the wall of the quench tube and the convection heating surfaces are flowed around and acted upon on both sides by the gas to be cooled.
  • the invention teaches that a swirl flow is impressed on the raw gas stream as it exits the convection boiler in the flue gas extraction device and the flow rate and swirl in the raw gas extraction device are set up in such a way that entrained slag and ash particles are discharged.
  • the gasification apparatus shown in the figures is intended for the pressure gasification of finely divided fuels in the course of the production of process gas and is set up in such a way that it results from the method according to the invention.
  • a middle part has not been shown, the length of which corresponds approximately to the length of the lower part.
  • the basic structure of the gasification apparatus includes a gasification reactor 1, a quench tube 2 for the raw gas emerging from the gasification reactor 1 and a convection boiler 3 with convection heating surfaces 4 for receiving the waste heat of the raw gas.
  • the convection heating surfaces 4 are expediently arranged in the form of concentric cylinders.
  • the apparatuses described are constructed from tube walls, which in turn consist of tubes which are guided in parallel and welded to one another.
  • the gasification reactor 1, the quench tube 2 and the convection boiler 3 are arranged with a boiler housing 5 in a pressure vessel 6.
  • the convection boiler 3 surrounds the quench tube 2 concentrically.
  • the gasification reactor 1 is arranged coaxially under the quench tube 2.
  • the boiler housing 5 also suitably consists of tube walls.
  • a deflection device 7 is arranged or formed in the boiler housing 5 for the raw gas emerging from the quench tube 2 and to be introduced into the convection boiler 3.
  • a raw gas outlet device 8 is arranged in a region between the gasification reactor 1 and convection boiler 3, with which the raw gas from the boiler housing 5 and the pressure vessel 6 is carried out.
  • a swirl-producing deflection of the raw gas emerging from the convection boiler takes place with the aid of guide vanes 8a indicated in FIG. 3.
  • the design is such that the escaping raw gas entrains slag and ash particles so that there are no disturbing deposits in this area. The cooling of the raw gas and thus the Schiackeparticle was carried out so far that baking is not possible.
  • the gasification reactor 1 is fixed in the lower part of the pressure vessel 6 in this.
  • the fixed points 9 indicate this.
  • the convection heating surfaces 4 are carried by the quench tube 2 and the Kesseie housing 5.
  • the quench tube 2 and the boiler housing 5 are placed in their lower area, above the raw gas outlet device 8, on load discharge elements 10, which have raw gas passages 11 and are fixed to the pressure vessel 6 are. In this regard, reference is made in particular to FIGS. 3, 5 and 6 with the fixed points 12.
  • a circumferential quench gas introduction gap 13 is arranged between the gasification reactor 1 and the quench tube 2. This separates the quench tube 2 and the gasification reactor 1.
  • the arrangement is such that between the quench tube area below the load transfer elements 10, on the one hand, and the gasification reactor 1 above its fixed point bearing 9, on the other hand, different, also pressure-vessel-related, thermal expansions are permitted.
  • the quench gas introduction gap 13 is additionally dimensioned as a thermal expansion compensation gap.
  • the pressure vessel 6 is at the same time set up as a supporting structure for the gasification reactor 1, the quench tube 2 and the convection boiler 3 with boiler housing 5 and statically and in terms of stability.
  • the already mentioned deflection device 7 is designed in the exemplary embodiment as a hood-shaped impact deflection device.
  • the raw gas outlet device 8 has a device 14 for the discharge of slag and / or ash particles, which is described in detail below.
  • the convection heating surfaces 4 are fastened on one side to supporting cross members 16.
  • the cross members 16 are connected to the boiler housing 5 and the quench tube 2 without tension in order to avoid constraints from different thermal expansion of the boiler housing or the quench tube.
  • the traverses 16 are statically supported as beams on two supports.
  • the details of the load transfer elements 10 can be seen in particular from FIGS. 5 and 6. These are designed as rigid, metallic components with an inner ring 17, outer ring 18 and spokes 19. The intermediate spaces form the raw gas passages 11. The components 17, 18, 19 described are made in one piece, for. B. as forgings.
  • the load transfer elements 10 are connected to the load-bearing elements in the pressure vessel 6 via heated supports or a heated frame 20 on the boiler housing 5. It was indicated in FIG. 5 that the load transfer elements 10 are at the same time designed as a feed device for the boiling water of a boiling water cooling of the quench tube-forming pipelines of the tube wall of the quench tube 2. For this purpose, reference is made to the pipes or channels 21.
  • the boiling water is discharged via heat expansion deformable discharge pipes 22 connected to the top of the quench pipe 2 or its pipes.
  • heat expansion deformable discharge pipes 22 connected to the top of the quench pipe 2 or its pipes.
  • all pipe connections between the quench pipe 2 and the boiler housing 5 are designed and arranged to be elastically deformable .
  • the gasification reactor 1 forms an annular space 23 opposite the wall of the pressure vessel 6.
  • the quench gases to be supplied become via this annular space 23 to the quench gas introduction gap 13.
  • the annular space 23 is also connected to a pressure compensation space 24 which has remained free between the boiler housing 5 and the pressure vessel 6.
  • the quench gas introduction gap 13 is particularly advantageous in the exemplary embodiment. It is formed between a conically drawn-in output component 25 of the gasification reactor 1 and a skirt 26 of the quench tube 2 which is complementary thereto.
  • the output component 25 is designed on the gasification reactor chamber side free of a refractory lining with a metallic blank.
  • the cone angle is approximately 60 °. All surfaces located downstream of the output component 25 are also free of a refractory lining.
  • the output member 25 of the gasification reactor 1 is provided with a cleaning ring 27 and this periodically, for. B. is movable by means of tapping.
  • the annular space between the peripheral wall of the gasification reactor 1 and the pressure vessel 6 is closed by a membrane 28.
  • the pressure compensation in the area below the membrane is established via the slag discharge opening in the bottom of the gasification reactor 1.
  • a gasification reactor 1 In the pressure vessel 6, which is designed for the pressure of the pressure gasification, a gasification reactor 1, a quench tube 2 and a convection boiler 3 are arranged concentrically.
  • the raw gas emerging axially upward from the gasification reactor 1 is introduced into the quench tube 2 connected upward.
  • a quench gas is supplied.
  • the mixed gas stream of raw gas and quench gas which is referred to again below as raw gas, is deflected above the quench tube 2 by means of a deflection device 7 which is rotationally symmetrical with respect to the axis of the quench tube 2 in the form of a deflecting screen and is converted into a hollow cylindrical raw gas stream.
  • the hollow-cylindrical raw gas flow is introduced into the hollow-cylindrical convection boiler 3, which concentrically surrounds the quench tube 2.
  • the raw gas stream is withdrawn from the convection boiler 3 when it leaves the convection boiler 3 with the aid of a raw gas outlet device 8.
  • the flow rate of the raw gas is first set up in such a way that slag and ash parts entrained by the raw gas are carried via the 180 ° deflection into the hollow cylindrical convection boiler 3, in which they cool down until they lose their adhesiveness.
  • the flow in the raw gas outlet device 8 is set up so that the entrained slag and ash parts are discharged.
  • the exemplary embodiment shows that the deflected raw gas stream is guided past concentric convection heating surfaces 4 in the convection boiler 3 and is cooled to a temperature of 400 to 200 ° C. upon entry into the raw gas outlet device 8.
  • the quench gas is in a circulating quench gas introduction gap 13 between the gasification reactor 1 and the quench tube 2 in uniform distribution over the entire circumference and introduced into the quench tube 2 in cross flow to the raw gas.
  • a swirl flow is impressed on the raw gas flow when it leaves the convection boiler 3 in the raw gas outlet device 8.
  • the flow rate and the swirl in the raw gas outlet device 8 are set up so that entrained slag and ash particles are discharged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Industrial Gases (AREA)

Abstract

In a process for the pressure gasification of fine particulate fuels, a gasification reactor, a quench pipe and a convection boiler are concentrically arranged in a pressure vessel designed for the pressure of the pressure gasification. The crude gas axially leaving the gasification reactor at the top is introduced into the quench pipe connected to the top. A quenching gas is introduced. The mixed gas stream of crude gas and quenching gas is deflected by 180@ by means of a deflection screen which is rotationally symmetrical relative to the axis of the quench pipe and transformed into a hollow-cylindrical gas stream. The hollow-cylindrical gas stream is introduced into the convection boiler which is of hollow-cylindrical shape and concentrically surrounds the quench pipe. On leaving the convection boiler, the crude gas stream is extracted out of the convection boiler by means of a crude gas extraction device. The flow velocity of the crude gas is adjusted such that particles of slag and ash entrained by the crude gas are carried via the 180@ deflection into the hollow-cylindrical convection boiler. The flow velocity in the crude gas extraction device is adjusted such that the entrained particles of slag and ash are discharged.

Description

Die Erfindung betrifft ein Verfahren für die Druckvergasung von feinteiligen Brennstoffen im Zuge der Erzeugung von Brauchgas. Dabei wird mit einem Vergasungsreaktor, einem Kessel, insbesondere einem Konvektionskessel, und einer Quencheinrichtung gearbeitet. - Feinteilige Brennstoffe meint feinkörnige bis staubförmige Brennstoffe. Insbesondere mag es sich um Kohle handeln. Die Energie wird dem Vergasungsreaktor über Brenner zugeführt, die zumeist auch den feinteiligen Brennstoff mitführen. In thermodynamischer Hinsicht wird die Vergasungsreaktion so gesteuert oder geregelt, wie es für die Erzeugung eines Brauchgases vorgegebener Zusammensetzung erforderlich ist. Durch Quenchen oder Abschrecken des Rohgases werden störende Reaktionen gleichsam eingefroren. Dazu wird ein Quenchgas zugeführt. Der Ausdruck Gas meint hier auch Dämpfe. Insoweit wird auch im Rahmen der Erfindung nach der herrschenden Lehre gearbeitet. Bei den entsprechenden Vergasungsapparaten sind die Wandungen des Vergasungsreaktors und des Konvektionskessels und andere Bauteile zum Zwecke der Heißkühlung, z. B. in Form einer Siedewasserkühlung, Rohrwandungen aus verschiedenen parallelen Rohren oder mit solchen Rohrwandungen versehen. Der Konvektionskessel ist mit Konvektionsheizflächen versehen. Es versteht sich, daß die über die Rohrwandungen und im Konvektionskessel aufgenommene Wärme der Nutzung zugeführt wird.The invention relates to a method for the pressure gasification of finely divided fuels in the course of the production of process gas. A gasification reactor, a boiler, in particular a convection boiler, and a quenching device are used. - Fine-particle fuels mean fine-grained to dust-like fuels. In particular, it may be coal. The energy is fed to the gasification reactor via burners, which usually also carry the finely divided fuel. From a thermodynamic point of view, the gasification reaction is controlled or regulated as required for the production of a service gas of a predetermined composition. Quenching or quenching the raw gas freezes disturbing reactions. A quench gas is supplied for this purpose. The term gas here also means vapors. In this respect, the prevailing teaching is also used within the scope of the invention. In the corresponding gasification apparatus, the walls of the gasification reactor and the convection boiler and other components for the purpose of hot cooling, e.g. B. in the form of boiling water cooling, tube walls made of different parallel tubes or provided with such tube walls. The convection boiler is equipped with convection heating surfaces. It goes without saying that the heat absorbed via the tube walls and in the convection boiler is used.

Die bekannten Verfahren, von denen die Erfindung ausgeht (vgl. z. B. EP 0 115 094) arbeiten mit turmförmigen Vergasungsapparaten mit zwei Türmen, die nebeneinander stehen. Das ist in bezug auf die Verfahrensführung im einzelnen und in baulicher Hinsicht aufwendig. Das wird andererseits häufig für erforderlich gehalten, um sicherzustellen, daß beim Vergasungsbetrieb keine Störungen durch abgelagerte Schlacke- und/oder Aschepartikel auftreten. Nichtsdestoweniger muß häufig die Betriebssicherheit störende Strähnenbildung in Kauf genommen werden.The known methods from which the invention is based (cf., for example, EP 0 115 094) work with tower-shaped gasification apparatuses two towers standing side by side. This is complex in terms of process management in detail and structurally. On the other hand, this is often considered necessary to ensure that no disturbances due to deposited slag and / or ash particles occur in the gasification operation. Nevertheless, streak formation which interferes with operational safety must frequently be accepted.

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Druckvergasung anzugeben, welches sich durch einfache Verfahrensführung und hohe Betriebssicherheit auszeichnet sowie in einem einfachen und kompakten Vergasungsapparat verwirklicht werden kann.In contrast, the invention has for its object to provide a method for pressure gasification, which is characterized by simple procedure and high operational reliability and can be implemented in a simple and compact gasification apparatus.

Zur Lösung dieser Aufgabe ist Gegenstand der Erfindung ein Verfahren für die Druckvergasung von feinteiligen Brennstoffen mit den folgenden Verfahrensschritten:

  • a) in einem Druckbehälter, der für den Druck der Druckvergasung ausgelegt ist, werden ein Vergasungsreaktor, ein Quenchrohr und ein Konvektionskessel konzentrisch angeordnet,
  • b) das aus dem Vergasungsreaktor nach oben axial austretende Rohgas wird in das nach oben angeschlossene Quenchrohr eingeführt, welches von dem Konvektionskessel umgeben ist,
  • c) ein Quenchgas wird zugeführt,
  • d) der Mischgasstrom aus Rohgas und Quenchgas (im folgenden wieder Rohgas) wird oberhalb des Quenchrohres mit einem in bezug auf die Achse des Quenchrohres rotationssymmetrischen Umlenkschirm umd 180° umgelenkt und zu einem hohlzylindrischen Gasstrom umgeformt,
  • e) der hohlzylindrische Gasstrom wird in den hohlzylindrisch ausgebildeten Konvektionskessel eingeführt, der das Quenchrohr konzentrisch umgibt,
  • f) der Rohgasstrom wird beim Austritt aus dem Konvektionskessel mit Hilfe einer Rohgasabzugseinrichtung aus dem Konvektionskessel abgezogen,
wobei die Strömungsgeschwindigkeit des Rohgases so eingerichtet wird, daß von dem Rohgas mitgerissene Schlacken- und Aschenteile über die 180°-Umlenkung in den hohlzylindrischen Kovenktionskessel getragen werden, in dem sie eine Abkühlung bis zum Verlust ihrer Klebfähigkeit erfahren, und wobei die Strömungsgeschwindigkeit in der Rohgasabzugseinrichtung so eingerichtet wird, daß die mitgerissenen Schlacken- und Aschenpartikel ausgetragen werden. - Die Erfindung geht von der Erkenntnis aus, daß bei der Druckvergasung von feinteiligen Brennstoffen durch eine gleichsam pilzförmige Umlenkung des Mischgasstromes oder Rohgasstromes um 180° mit einem axialsymmetrischen Umlenkschirm ein Strömungsphänomen mit einem hohlzylindrischen Rohgasstrom regeneriert wird, der aus der 180°-Umlenkung resultierende Drallkomponenten durchführt. So wird überraschenderweise jede die Thermodynamik störende Strähnenbildung vermieden - Überraschenderweise induzieren die Drallkomponenten in dem Rohgasstrom auf seinem Weg durch den Konvektionskessel ein Turbulenzspektrum mit weitgehend homogener isotroper Turbulenz, die den Wärmeübergang verbessert. Ohne Schwierigkeiten kann die Strömungsgeschwindigkeit des Rohgases so eingerichtet werden, daß von dem Rohgas mitgerissene Schlacken- und Aschenpartikel über die 180°-Umlenkung in den hohlzylindrischen Konvektionskessel getragen werden, und zwar bei sehr gleichmäßiger Verteilung. Die so eingerichtete Störmungsgeschwindigkeit des Rohgases im Quenchrohr führt gleichzeitig dazu, daß die vorstehend beschriebenen Drall- und Turbulenzphänomene besonders ausgeprägt und gleichförmig sind. Im Ergebnis kann in einem Konvektionskessel verhältnismäßig geringer Bauhöhe erreicht werden, daß die Schlacken- und Aschenpartikel auf ihrem Wege durch das Quenchrohr und durch den Konvektionskessel eine Abkühlung bis zum Verlust ihrer Klebfähigkeit erfahren. Ohne weiteres können auch die Strömungsgeschwindigkeiten in der Rohgasabzugseinrichtung so eingerichtet werden, daß die mitgerissenen Schlacken- und Aschenpartikel ausgetragen werden, wo sie abgeschieden werden können. Das erfindungsgemäße Verfahren erlaubt es, in dem Vergasungsapparat für die Durchführung des Verfahrens auf feuerfeste Auskleidungen zu verzichten. Abklopfer sind regelmäßig ausreichend.To achieve this object, the invention relates to a process for the pressure gasification of finely divided fuels with the following process steps:
  • a) a gasification reactor, a quench tube and a convection boiler are arranged concentrically in a pressure vessel which is designed for the pressure of the pressure gasification,
  • b) the raw gas emerging axially upward from the gasification reactor is introduced into the quench tube connected upward, which is surrounded by the convection boiler,
  • c) a quench gas is supplied,
  • d) the mixed gas stream of raw gas and quench gas (in the following again raw gas) is deflected above the quench tube with a deflection screen which is rotationally symmetrical with respect to the axis of the quench tube and is converted into a hollow cylindrical gas stream,
  • e) the hollow-cylindrical gas flow is introduced into the hollow-cylindrical convection vessel which concentrically surrounds the quench tube,
  • f) the raw gas stream is withdrawn from the convection boiler on leaving the convection boiler with the aid of a raw gas extraction device,
wherein the flow rate of the raw gas is set up such that slag and ash parts entrained by the raw gas are carried over the 180 ° deflection into the hollow-cylindrical convection boiler, in which they are cooled until they lose their adhesiveness, and the flow rate in the raw gas extraction device is set up so that the entrained slag and ash particles are discharged. - The invention is based on the knowledge that in the pressure gasification of finely divided fuels by a mushroom-shaped deflection of the mixed gas flow or raw gas flow by 180 ° with an axially symmetrical deflection screen, a flow phenomenon with a hollow cylindrical raw gas flow is regenerated, the swirl components resulting from the 180 ° deflection carries out. So will Surprisingly, any streak formation that disturbs the thermodynamics is avoided. Surprisingly, the swirl components in the raw gas stream on their way through the convection boiler induce a turbulence spectrum with largely homogeneous isotropic turbulence, which improves the heat transfer. The flow rate of the raw gas can be set up without difficulty so that slag and ash particles entrained by the raw gas are carried via the 180 ° deflection into the hollow cylindrical convection boiler, with a very uniform distribution. The rate of disturbance of the raw gas in the quench tube thus set also leads to the fact that the swirl and turbulence phenomena described above are particularly pronounced and uniform. As a result, in a convection boiler of relatively low overall height, the slag and ash particles can be cooled as they pass through the quench tube and through the convection boiler until they lose their adhesiveness. The flow velocities in the raw gas extraction device can also be set up in such a way that the entrained slag and ash particles are discharged where they can be separated off. The method according to the invention makes it possible to dispense with refractory linings in the gasification apparatus for carrying out the method. Tappers are usually sufficient.

Die beschriebenen Vorteile und Effekte sind besonders ausgeprägt, wenn in dem Konvektionskessel der umgelenkte Rohgasstrom an konzentrischen Konvektionsheizflächen vorbeigeführt und auf eine Temperatur von 400° bis 200°C bei Eintritt in die Rohgasabzugseinrichtung abgekühlt wird. Auch durch die Zuführung des Quenchgases kann bei dem erfindungsgemäßen Verfahren zur Homogenisierung und Vergleichmäßigung und damit zur Unterdrückung von Strähnenbildung und nachteilige Einflüsse auf die Thermodynamik eingewirkt werden, und zwar dadurch, daß das Quenchgas mit Hilfe eines umlaufenden Quenchgaszuführungsspaltes zwischen Vergasungsreaktor und Quenchrohr in gleichmäßiger Verteilung über den gesamten Umfang und im Kreuzstrom zum Rohgas in das Quenchrohr eingeführt wird. Vorzugsweise wird dabei das Quenchgas über einen einbautenfreien Quenchgaszuführungsspalt in das Quenchrohr eingeführt.The advantages and effects described are particularly pronounced if the deflected raw gas stream is guided past concentric convection heating surfaces in the convection boiler and to a temperature of 400 ° to 200 ° C. upon entry into the raw gas extraction device is cooled. The supply of the quench gas can also have an effect on the thermodynamics in the process according to the invention for homogenization and homogenization and thus for suppressing streak formation and disadvantageous influences, namely in that the quench gas is distributed in a uniform distribution between the gasification reactor and the quench tube with the aid of a rotating quench gas supply gap the entire circumference and in cross flow to the raw gas is introduced into the quench tube. The quench gas is preferably introduced into the quench tube via a built-in quench gas supply gap.

Arbeitet man nach dem erfindungsgemäßen Verfahren, so umgeben die konzentrischen Konvektionsheizflächen das Quenchrohr. Für die Konvektionsheizflächen steht damit ein Ringraum mit ringscheibenförmigem Grundriß zur Verfügung, in den sich ohne Schwierigkeiten eine große Kovenktionsheizfläche unterbringen läßt. Während turmartige Kessel mit konzentrischen Konvektionsheizflächen im Zentrum einen thermodynamisch wenig wirksamen Bereich aufweisen, wird bei dem erfindungsgemäßen Verfahren dieser Bereich zur Aufnahme des Quenchrohres genutzt. Die Anlagen oder Apparate, die aus der Lehre des erfindungsgemäßen Verfahrens bei der Einführung in die Praxis resultieren, sind bei hoher Leistung und großem Durchsatz erstaunlich kompakt. Der Wärmeübergang und damit die Abkühlung des Rohgases erfolgen erfindungsgemäß sehr intensiv, weil sowohl die Wand des Quenchrohres als auch die Konvektionsheizflächen von dem abzukühlenden Gas zweiseitig umströmt und beaufschlagt sind. Um den Austritt des abgekühlten Rohgases so zu führen, daß Schlacken- und Aschenpartikel sich in der Rohgasabzugseinrichtung nicht ablagern, lehrt die Erfindung, daß dem Rohgasstrom beim Austritt aus dem Konvektionskessel in der Rauchgasabzugseinrichtung eine Drallströmung eingeprägt wird und die Strömungsgeschwindigkeit sowie der Drall in der Rohgasabzugseinrichtung so eingerichtet werden, daß mitgerissene Schlacken- und Aschenpartikel ausgetragen werden.If the process according to the invention is used, the concentric convection heating surfaces surround the quench tube. For the convection heating surfaces there is therefore an annular space with an annular disk-shaped plan, in which a large convection heating surface can be accommodated without difficulty. While tower-like boilers with concentric convection heating surfaces have a thermodynamically ineffective area in the center, in the method according to the invention this area is used to hold the quench tube. The systems or apparatuses that result from the teaching of the method according to the invention when introduced into practice are surprisingly compact with high performance and high throughput. The heat transfer and thus the cooling of the raw gas take place very intensively according to the invention, because both the wall of the quench tube and the convection heating surfaces are flowed around and acted upon on both sides by the gas to be cooled. In order to guide the exit of the cooled raw gas in such a way that slag and ash particles do not deposit in the raw gas extraction device, The invention teaches that a swirl flow is impressed on the raw gas stream as it exits the convection boiler in the flue gas extraction device and the flow rate and swirl in the raw gas extraction device are set up in such a way that entrained slag and ash particles are discharged.

Im folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung ausführlicher erläutert, und zwar anhand eines Vergasungsapparates der für das erfindungsgemäße Verfahren eingerichtet ist. Es zeigen in schematischer Darstellung

Fig. 1
eine Ansicht eines Vergasungsapparates,
Fig. 2
in gegenüber der Fig. 1 wesentlich vergrößertem Maßstab den Ausschnitt A aus dem Gegenstand der Fig. 1,
Fig. 3
im Maßstab der Fig. 2 den Ausschnitt B aus dem Gegenstand nach Fig. 1,
Fig. 4
im Maßstab der Fig. 2 den Ausschnitt C aus dem Gegenstand der Fig. 1,
Fig. 5
in gegenüber den Fig. 1 bis 4 nochmals vergrößertem Maßstab den Ausschnitt D aus dem Gegenstand der Fig. 3,
Fig. 6
einen Schnitt in Richtung E-E durch den Gegenstand der Fig. 5 und
Fig. 7
in gegenüber den Fig. 1 bis 4 vergrößertem Maßstab den Ausschnitt F aus dem Gegenstand der Fig. 1.
In the following, the invention will be explained in more detail with reference to a drawing representing only one exemplary embodiment, specifically with the aid of a gasification apparatus which is set up for the method according to the invention. They show a schematic representation
Fig. 1
a view of a gasification apparatus,
Fig. 2
in a significantly enlarged scale compared to FIG. 1, section A from the subject of FIG. 1,
Fig. 3
2 shows the detail B from the object according to FIG. 1,
Fig. 4
2 the section C from the subject of FIG. 1,
Fig. 5
1 to 4, on a further enlarged scale, the detail D from the subject of FIG. 3,
Fig. 6
a section in the direction of EE through the subject of Fig. 5 and
Fig. 7
on an enlarged scale compared to FIGS. 1 to 4, the detail F from the subject of FIG. 1.

Der in den Figuren dargestellte Vergasungsapparat ist für die Druckvergasung von feinteiligen Brennstoffen im Zuge der Erzeugung von Brauchgas bestimmt und so eingerichtet, wie es aus dem erfindungsgemäßen Verfahren resultiert. In der Fig. 1 ist ein Mittelteil nicht dargestellt worden, dessen Länge etwa der Länge des Unterteils entspricht.The gasification apparatus shown in the figures is intended for the pressure gasification of finely divided fuels in the course of the production of process gas and is set up in such a way that it results from the method according to the invention. In Fig. 1, a middle part has not been shown, the length of which corresponds approximately to the length of the lower part.

Zum grundsätzlichen Aufbau des Vergasungsapparates gehören ein Vergasungsreaktor 1, ein Quenchrohr 2 für das aus dem Vergasungsreaktor 1 austretende Rohgas und ein Konvektionskessel 3 mit Konvektionsheizflächen 4 für die Aufnahme der Abhitze des Rohgases. Es versteht sich, daß die Konvektionsheizflächen 4 zweckmäßigerweise in Form von konzentrischen Zylindern angeordnet sind. Wie eingangs bereits erwähnt sind die beschriebenen Apparate aus Rohrwandungen aufgebaut, die ihrerseits aus parallel geführten, miteinander verschweißten Rohren bestehen.The basic structure of the gasification apparatus includes a gasification reactor 1, a quench tube 2 for the raw gas emerging from the gasification reactor 1 and a convection boiler 3 with convection heating surfaces 4 for receiving the waste heat of the raw gas. It is understood that the convection heating surfaces 4 are expediently arranged in the form of concentric cylinders. As already mentioned at the beginning, the apparatuses described are constructed from tube walls, which in turn consist of tubes which are guided in parallel and welded to one another.

Man entnimmt aus der Fig. 1, daß der Vergasungsreaktor 1, das Quenchrohr 2 und der Konvektionskessel 3 mit einer Kesseleinhausung 5 in einem Druckbehälter 6 angeordnet sind. Der Konvektionskessel 3 umgibt das Quenchrohr 2 konzentrisch. Der Vergasungsreaktor 1 ist koaxial unter dem Quenchrohr 2 angeordnet. Auch die Kesseleinhausung 5 besteht zweckmäßig aus Rohrwänden. Man erkennt im Oberteil der Fig. 1, 2 die Aufhängung eines Bündels von Konvektionsheizflächen 4 am Quenchrohr 2 sowie an der Kesseleinhausung 5. Auf gleiche Weise können über die Höhe des Vergasungsapparates verteilt weitere Bündel von Konvektionsheizflächen angeordnet sein.It can be seen from FIG. 1 that the gasification reactor 1, the quench tube 2 and the convection boiler 3 are arranged with a boiler housing 5 in a pressure vessel 6. The convection boiler 3 surrounds the quench tube 2 concentrically. The gasification reactor 1 is arranged coaxially under the quench tube 2. The boiler housing 5 also suitably consists of tube walls. One can see in the upper part of FIGS. 1, 2 the suspension of a bundle of Convection heating surfaces 4 on the quench tube 2 and on the boiler housing 5. In the same way, further bundles of convection heating surfaces can be arranged distributed over the height of the gasification apparatus.

Oberhalb des Quenchrohres 2 ist in der Kesseleinhausung 5 eine Umlenkeinrichtung 7 für das aus dem Quenchrohr 2 austretende und in den Konvektionskessel 3 einzuleitende Rohgas angeordnet oder ausgebildet. Dazu wird insbesondere auch auf die Fig. 2 verwiesen. Insbesondere in der Fig. 3 erkennt man, daß in einem Bereich zwischen Vergasungsreaktor 1 und Konvektionskessel 3 eine Rohgasaustrittseinrichtung 8 angeordnet ist, mit der das Rohgas aus der Kesseleinhausung 5 und dem Druckbehälter 6 ausgeführt wird. Es erfolgt eine drallerzeugende Umlenkung des aus dem Konvektionskessel austretenden Rohgases mit Hilfe von in Fig. 3 angedeuteten Leitschaufeln 8a. Die Auslegung ist so getroffen, daß das austretende Rohgas Schlacke- und Aschepartikel mitreißt, so daß störende Ablagerungen in diesem Bereich nicht erfolgen. Die Abkühlung des Rohgases und damit der Schiackepartikel wurde soweit geführt, daß ein Anbacken nicht möglich ist. Aus der Fig. 4 entnimmt man, daß der Vergasungsreaktor 1 im unteren Teil des Druckbehälters 6 in diesem festpunktgelagert ist. Die Festpunkte 9 deuten dieses an.Above the quench tube 2, a deflection device 7 is arranged or formed in the boiler housing 5 for the raw gas emerging from the quench tube 2 and to be introduced into the convection boiler 3. For this purpose, reference is also made in particular to FIG. 2. In particular in Fig. 3 it can be seen that a raw gas outlet device 8 is arranged in a region between the gasification reactor 1 and convection boiler 3, with which the raw gas from the boiler housing 5 and the pressure vessel 6 is carried out. A swirl-producing deflection of the raw gas emerging from the convection boiler takes place with the aid of guide vanes 8a indicated in FIG. 3. The design is such that the escaping raw gas entrains slag and ash particles so that there are no disturbing deposits in this area. The cooling of the raw gas and thus the Schiackeparticle was carried out so far that baking is not possible. From Fig. 4 it can be seen that the gasification reactor 1 is fixed in the lower part of the pressure vessel 6 in this. The fixed points 9 indicate this.

Die Konvektionsheizflächen 4 sind von dem Quenchrohr 2 und der Kesseieinhausung 5 getragen. Das Quenchrohr 2 und die Kesseleinhausung 5 sind in ihrem unteren Bereich, oberhalb der Rohgasaustrittseinrichtung 8, auf Lastaustragelemente 10 aufgesetzt, die Rohgasdurchlässe 11 aufweisen und am Druckbehälter 6 festpunktgelagert sind. Insoweit wird insbesondere auf die Fig. 3, 5 und 6 mit den Festpunkten 12 verwiesen.The convection heating surfaces 4 are carried by the quench tube 2 and the Kesseie housing 5. The quench tube 2 and the boiler housing 5 are placed in their lower area, above the raw gas outlet device 8, on load discharge elements 10, which have raw gas passages 11 and are fixed to the pressure vessel 6 are. In this regard, reference is made in particular to FIGS. 3, 5 and 6 with the fixed points 12.

Insbesondere aus der Fig. 4 entnimmt man, daß zwischen Vergasungsreaktor 1 und Quenchrohr 2 ein umlaufender Quenchgaseinführungsspalt 13 angeordnet ist. Dieser trennt das Quenchrohr 2 und den Vergasungsreaktor 1. Die Anordnung ist so getroffen, daß zwischen dem Quenchrohrbereich unterhalb der Lastabtragungselemente 10 einerseits und dem Vergasungsreaktor 1 oberhalb von dessen Festpunktlagerung 9 andererseits unterschiedliche, auch druckbehälterbedingte Wärmedehnungen zugelassen sind. Dazu ist der Quenchgaseinführungsspalt 13 zusätzlich als Wärmedehnungsausgleichsspalt dimensioniert.In particular, from FIG. 4 it can be seen that a circumferential quench gas introduction gap 13 is arranged between the gasification reactor 1 and the quench tube 2. This separates the quench tube 2 and the gasification reactor 1. The arrangement is such that between the quench tube area below the load transfer elements 10, on the one hand, and the gasification reactor 1 above its fixed point bearing 9, on the other hand, different, also pressure-vessel-related, thermal expansions are permitted. For this purpose, the quench gas introduction gap 13 is additionally dimensioned as a thermal expansion compensation gap.

Im Ausführungsbeispiel und nach bevorzugter Ausführungsform der Erfindung ist der Druckbehälter 6 zugleich als Tragwerk für den Vergasungsreaktor 1, das Quenchrohr 2 und den Konvektionskessel 3 mit Kesseleinhausung 5 und statisch sowie stabiiitätsmäßig entsprechend eingerichtet. Die schon erwähnte Umlenkeinrichtung 7 ist im Ausführungsbeispiel als eine haubenförmige Prallumlenkeinrichtung ausgeführt. Die Rohgasaustrittseinrichtung 8 weist eine Vorrichtung 14 für die Austragung von Schlacke- und/oder Aschepartikel auf, die im einzelnen weiter unten beschrieben wird.In the exemplary embodiment and according to a preferred embodiment of the invention, the pressure vessel 6 is at the same time set up as a supporting structure for the gasification reactor 1, the quench tube 2 and the convection boiler 3 with boiler housing 5 and statically and in terms of stability. The already mentioned deflection device 7 is designed in the exemplary embodiment as a hood-shaped impact deflection device. The raw gas outlet device 8 has a device 14 for the discharge of slag and / or ash particles, which is described in detail below.

Insbesondere aus der Fig. 4 entnimmt man, wie der Vergasungsreaktor 1 in seinem unteren Bereich auf Konsolen 15 des Druckbehälters 6 festpunktgelagert ist.In particular, from FIG. 4 it can be seen how the gasification reactor 1 is fixed in its lower region on brackets 15 of the pressure vessel 6.

Die Konvektionsheizflächen 4 sind einseitig an tragenden Traversen 16 befestigt. Die Traversen 16 sind an die Kesseleinhausung 5 und an das Quenchrohr 2 einspannungsfrei angeschlossen, um Zwänge aus unterschiedlicher Wärmedehnung der Kesseleinhausung bzw. des Quenchrohres zu vermeiden. Im einfachsten Falle sind die Traversen 16 statisch als Balken auf zwei Stützen zwangfrei aufgelagert.The convection heating surfaces 4 are fastened on one side to supporting cross members 16. The cross members 16 are connected to the boiler housing 5 and the quench tube 2 without tension in order to avoid constraints from different thermal expansion of the boiler housing or the quench tube. In the simplest case, the traverses 16 are statically supported as beams on two supports.

Insbesondere aus den Fig. 5 und 6 entnimmt man die Einzelheiten der Lastabtragungselemente 10. Diese sind als starre, metallische Bauteile mit Innenring 17, Außenring 18 und Speichen 19 ausgeführt. Die Speichenzwischenräume bilden die Rohgasdurchlässe 11. Die beschriebenen Bauteile 17, 18, 19 sind einteilig ausgeführt, z. B. als Schmiedestücke. Die Lastabtragungselemente 10 sind an die lastaufnehmenden Elemente im Druckbehälter 6 über beheizte Stützen oder eine beheizte Zarge 20 an der Kesseleinhausung 5 angeschlossen. Angedeutet wurde in der Fig. 5, daß die Lastabtragungselemente 10 zugleich als Zuführungseinrichtung für das Siedewasser einer Siedewasserkühlung der quenchrohrbildenden Rohrleitungen der Rohrwand des Quenchrohres 2 ausgeführt sind. Dazu wird auf die Rohrleitungen oder Kanäle 21 verwiesen. Die Abführung des Siedewassers erfolgt über oben an das Quenchrohr 2 bzw. dessen Rohrleitungen angeschlossene, wärmedehnungsverformbare Ableitungsrohre 22. Insoweit sind, abgesehen von den Rohrleitungen an und in den Lastabtragungselementen 10, alle Rohrleitungsverbindungen zwischen dem Quenchrohr 2 und der Kesseleinhausung 5 elastisch wärmedehnungsverformbar ausgelegt und angeordnet.The details of the load transfer elements 10 can be seen in particular from FIGS. 5 and 6. These are designed as rigid, metallic components with an inner ring 17, outer ring 18 and spokes 19. The intermediate spaces form the raw gas passages 11. The components 17, 18, 19 described are made in one piece, for. B. as forgings. The load transfer elements 10 are connected to the load-bearing elements in the pressure vessel 6 via heated supports or a heated frame 20 on the boiler housing 5. It was indicated in FIG. 5 that the load transfer elements 10 are at the same time designed as a feed device for the boiling water of a boiling water cooling of the quench tube-forming pipelines of the tube wall of the quench tube 2. For this purpose, reference is made to the pipes or channels 21. The boiling water is discharged via heat expansion deformable discharge pipes 22 connected to the top of the quench pipe 2 or its pipes. In this respect, apart from the pipes on and in the load transfer elements 10, all pipe connections between the quench pipe 2 and the boiler housing 5 are designed and arranged to be elastically deformable .

Der Vergasungsreaktor 1 bildet gegenüber der Wand des Druckbehälters 6 einen Ringraum 23. Die zuzuführenden Quenchgase werden über diesen Ringraum 23 zu dem Quenchgaseinführungsspalt 13 geführt. Der Ringraum 23 ist außerdem mit einem Druckausgleichsraum 24 verbunden, der zwischen Kesseleinhausung 5 und Druckbehälter 6 freigeblieben ist.The gasification reactor 1 forms an annular space 23 opposite the wall of the pressure vessel 6. The quench gases to be supplied become via this annular space 23 to the quench gas introduction gap 13. The annular space 23 is also connected to a pressure compensation space 24 which has remained free between the boiler housing 5 and the pressure vessel 6.

Der Quenchgaseinführungsspalt 13 ist im Ausführungsbeispiel besonders vorteilhaft gestaltet. Er ist gebildet zwischen einem kegelförmig eingezogenen Ausgangsbauteil 25 des Vergasungsreaktors 1 und einer dazu komplementären Schürze 26 des Quenchrohres 2. Das Ausgangsbauteil 25 ist vergasungsreaktorraumseitig frei von einer feuerfesten Auskleidung metallisch blank gestaltet. Der Kegelwinkel beträgt etwa 60°. Alle stromabwärts von dem Ausgangsbauteil 25 angeordneten Flächen sind ebenfalls frei von einer feuerfesten Auskleidung. Angedeutet wurde in der Fig. 7, daß das Ausgangsbauteil 25 des Vergasungsreaktors 1 mit einem Reinigungsring 27 versehen und dieser periodisch, z. B. mittels Klopfeinrichtung, bewegbar ist.The quench gas introduction gap 13 is particularly advantageous in the exemplary embodiment. It is formed between a conically drawn-in output component 25 of the gasification reactor 1 and a skirt 26 of the quench tube 2 which is complementary thereto. The output component 25 is designed on the gasification reactor chamber side free of a refractory lining with a metallic blank. The cone angle is approximately 60 °. All surfaces located downstream of the output component 25 are also free of a refractory lining. Was indicated in Fig. 7 that the output member 25 of the gasification reactor 1 is provided with a cleaning ring 27 and this periodically, for. B. is movable by means of tapping.

Um eine eindeutige Strömungsrichtung des Quenchgases durch den Spalt 13 sicherzustellen, ist der Ringraum zwischen Umfangswand des Vergasungsreaktors 1 und Druckbehälter 6 durch eine Membran 28 verschlossen. Der Druckausgleich im Bereich unterhalb der Membram wird über die Schlackeabführöffnung im Boden des Vergasungsreaktors 1 hergestellt.In order to ensure a clear flow direction of the quench gas through the gap 13, the annular space between the peripheral wall of the gasification reactor 1 and the pressure vessel 6 is closed by a membrane 28. The pressure compensation in the area below the membrane is established via the slag discharge opening in the bottom of the gasification reactor 1.

Aus einer vergleichenden Betrachtung der Fig. 1 bis 7 entnimmt man, daß das folgende Verfahren verwirklicht wird:
In dem Druckbehälter 6, der für den Druck der Druckvergasung ausgelegt ist, werden ein Vergasungsreaktor 1, ein Quenchrohr 2 und ein Konvektionskessel 3 konzentrisch angeordnet. Das aus dem Vergasungsreaktor 1 nach oben axial austretende Rohgas wird in das nach oben angeschlossene Quenchrohr 2 eingeführt. Ein Quenchgas wird zugeführt. Der Mischgasstrom aus Rohgas und Quenchgas, der im folgenden wieder als Rohgas bezeichnet wird, wird oberhalb des Quenchrohres 2 mit einer in bezug auf die Achse des Quenchrohres 2 rotationssymmetrischen Umlenkeinrichtung 7 in Form eines Umlenkschirmes um 180° umgelenkt und zu einem hohlzylindrischen Rohgasstrom umgeformt. Der hohlzylindrische Rohgasstrom wird in den hohlzylindrisch ausgebildeten Konvektionskessel 3 eingeführt, der das Quenchrohr 2 konzentrisch umgibt. Der Rohgasstrom wird beim Austritt aus dem Konvektionskessel 3 mit Hilfe einer Rohgasaustrittseinrichtung 8 aus dem Konvektionskessel 3 abgezogen. Die Strömungsgeschwindigkeit des Rohgases wird zunächst so eingerichtet, daß von dem Rohgas mitgerissene Schlacken- und Aschenteile über die 180°-Umlenkung in den hohlzylindrischen Konvektionskessel 3 getragen werden, in dem sie eine Abkühlung bis zum Verlust ihrer Klebfähigkeit erfahren. Die Strömung in der Rohgasaustrittseinrichtung 8 wird so eingerichtet, daß die mitgerissenen Schlacken- und Aschenteile ausgetragen werden. Das Ausführungsbeispiel zeigt, daß in dem Konvektionskessel 3 der umgelenkte Rohgasstrom an konzentrischen Konvektionsheizflächen 4 vorbeigeführt und auf eine Temperatur von 400 bis 200°C bei Eintritt in die Rohgasaustrittseinrichtung 8 abgekühlt wird. Das Quenchgas wird mit Hilfe eines umlaufenden Quenchgaseinführungsspaltes 13 zwischen Vergasungsreaktor 1 und Quenchrohr 2 in gleichmäßiger Verteilung über den gesamten Umfang und im Kreuzstrom zum Rohgas in das Quenchrohr 2 eingeführt. Dem Rohgasstrom wird beim Austritt aus dem Konvektionskessel 3 in der Rohgasaustrittseinrichtung 8 eine Drallströmung eingeprägt. Die Strömungsgeschwindigkeit und der Drall in der Rohgasaustrittseinrichtung 8 werden so eingerichtet, daß mitgerissene Schlacken- und Aschenpartikel ausgetragen werden.
From a comparative examination of FIGS. 1 to 7 it can be seen that the following method is implemented:
In the pressure vessel 6, which is designed for the pressure of the pressure gasification, a gasification reactor 1, a quench tube 2 and a convection boiler 3 are arranged concentrically. The raw gas emerging axially upward from the gasification reactor 1 is introduced into the quench tube 2 connected upward. A quench gas is supplied. The mixed gas stream of raw gas and quench gas, which is referred to again below as raw gas, is deflected above the quench tube 2 by means of a deflection device 7 which is rotationally symmetrical with respect to the axis of the quench tube 2 in the form of a deflecting screen and is converted into a hollow cylindrical raw gas stream. The hollow-cylindrical raw gas flow is introduced into the hollow-cylindrical convection boiler 3, which concentrically surrounds the quench tube 2. The raw gas stream is withdrawn from the convection boiler 3 when it leaves the convection boiler 3 with the aid of a raw gas outlet device 8. The flow rate of the raw gas is first set up in such a way that slag and ash parts entrained by the raw gas are carried via the 180 ° deflection into the hollow cylindrical convection boiler 3, in which they cool down until they lose their adhesiveness. The flow in the raw gas outlet device 8 is set up so that the entrained slag and ash parts are discharged. The exemplary embodiment shows that the deflected raw gas stream is guided past concentric convection heating surfaces 4 in the convection boiler 3 and is cooled to a temperature of 400 to 200 ° C. upon entry into the raw gas outlet device 8. The quench gas is in a circulating quench gas introduction gap 13 between the gasification reactor 1 and the quench tube 2 in uniform distribution over the entire circumference and introduced into the quench tube 2 in cross flow to the raw gas. A swirl flow is impressed on the raw gas flow when it leaves the convection boiler 3 in the raw gas outlet device 8. The flow rate and the swirl in the raw gas outlet device 8 are set up so that entrained slag and ash particles are discharged.

Claims (5)

Verfahren für die Druckvergasung von feinteiligen Brennstoffen mit den folgenden Verfahrensschritten: a) in einem Druckbehälter, der für den Druck der Druckvergasung ausgelegt ist, werden ein Vergasungsreaktor, ein Quenchrohr und ein Konvektionskessel konzentrisch angeordnet, b) das aus dem Vergasungsreaktor nach oben axial austretende Rohgas wird in das nach oben angeschlossene Quenchrohr eingeführt, welches von dem Konvektionskessel umgeben ist, c) ein Quenchgas wird zugeführt, d) der Mischgasstrom aus Rohgas und Quenchgas (im folgenden wieder Rohgas) wird oberhalb des Quenchrohres mit einem in bezug auf die Achse des Quenchrohres rotationssymmetrischen Umlenkschirm um 180° umgelenkt und zu einem hohlzylindrischen Gasstrom umgeformt, e) der hohlzylindrische Gasstrom wird in den hohlzylindrisch ausgebildeten Konvektionskessel eingeführt, der das Quenchrohr konzentrisch umgibt, f) der Rohgasstrom wird beim Austritt aus dem Konvektionskessel mit Hilfe einer Rohgasabzugseinrichtung aus dem Konvektionskessel abgezogen, wobei die Strömungsgeschwindigkeit des Rohgases so eingerichtet wird, daß von dem Rohgas mitgerissene Schlacken- und Aschenteile über die 180°-Umlenkung in den hohlzylindrischen Konvektionskessel getragen werden, in dem sie eine Abkühlung bis zum Verlust ihrer Klebfähigkeit erfahren, und wobei die Strömungsgeschwindigkeit in der Rohgasabzugseinrichtung so eingerichtet wird, daß die mitgerissenen Schlacken- und Aschenpartikel ausgetragen werden.Process for the pressure gasification of fine-particle fuels with the following process steps: a) a gasification reactor, a quench tube and a convection boiler are arranged concentrically in a pressure vessel which is designed for the pressure of the pressure gasification, b) the raw gas emerging axially upward from the gasification reactor is introduced into the quench tube connected upward, which is surrounded by the convection boiler, c) a quench gas is supplied, d) the mixed gas stream of raw gas and quench gas (in the following again raw gas) is deflected above the quench tube with a deflection screen which is rotationally symmetrical with respect to the axis of the quench tube and is converted into a hollow cylindrical gas stream, e) the hollow-cylindrical gas flow is introduced into the hollow-cylindrical convection vessel which concentrically surrounds the quench tube, f) the raw gas stream is withdrawn from the convection boiler on leaving the convection boiler with the aid of a raw gas extraction device, wherein the flow rate of the raw gas is set up so that slag and ash parts entrained by the raw gas are carried over the 180 ° deflection into the hollow cylindrical convection boiler, in which they are cooled until their tackiness is lost, and wherein the flow rate in the raw gas extraction device is set up so that the entrained slag and ash particles are discharged. Verfahren nach Anspruch 1, wobei in dem Konvektionskessel der umgelenkte Rohgasstrom an konzentrischen Konvektionsheizflächen vorbeigeführt und auf eine Temperatur von 200° bis 400°C bei Eintritt in die Rohgasabzugseinrichtung abgekühlt wird.A method according to claim 1, wherein the deflected raw gas stream is guided past concentric convection heating surfaces in the convection boiler and is cooled to a temperature of 200 ° to 400 ° C upon entry into the raw gas extraction device. Verfahren nach einem der Ansprüche 1 oder 2, wobei das Quenchgas mit Hilfe eines umlaufenden Quenchgaszuführungsspaltes zwischen Vergasungsreaktor und Quenchrohr in gleichmäßiger Verteilung über den gesamten Umfang und im Kreuzstrom zum Rohgas in das Quenchrohr eingeführt wird.Method according to one of claims 1 or 2, wherein the quench gas is introduced into the quench tube with the aid of a circulating quench gas supply gap between the gasification reactor and the quench tube in a uniform distribution over the entire circumference and in cross-flow with the raw gas. Verfahren nach Anspruch 3, wobei das Quenchgas über einen einbautenfreien Quenchgaszuführungsspalt in das Quenchrohr eingeführt wird.The method of claim 3, wherein the quench gas is introduced into the quench tube via a built-in quench gas supply gap. Verfahren nach einem der Ansprüche 1 bis 4, wobei dem Rohgasstrom beim Austritt aus dem Konvektionskessel in der Rohgasabzugseinrichtung eine Drallströmung eingeprägt wird und die Strömungsgeschwindigkeit sowie der Drall in der Rohgasabzugseinrichtung so eingerichtet werden, daß mitgerissene Schlacken- und Aschenpartikel ausgetragen werden.Method according to one of claims 1 to 4, wherein a swirl flow is impressed on the raw gas flow when it emerges from the convection boiler in the raw gas extraction device and the flow velocity and the swirl in the raw gas extraction device are set up in such a way that entrained slag and ash particles are discharged.
EP93104291A 1993-03-16 1993-03-16 Process for pressure gasification of fine particulate fuels Expired - Lifetime EP0616022B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE59300598T DE59300598D1 (en) 1993-03-16 1993-03-16 Process for the pressure gasification of fine-particle fuels.
EP93104291A EP0616022B1 (en) 1993-03-16 1993-03-16 Process for pressure gasification of fine particulate fuels
ES93104291T ES2078078T3 (en) 1993-03-16 1993-03-16 PROCEDURE FOR GASIFICATION UNDER THE PRESSURE OF FINALLY DIVIDED FUELS.
DK93104291.5T DK0616022T3 (en) 1993-03-16 1993-03-16 Process for gasification of particulate fuels
ZA939354A ZA939354B (en) 1993-03-16 1993-12-14 Process for elevated-pressure gasification of finely particulate fuels
US08/201,364 US5441547A (en) 1993-03-16 1994-02-24 Method for gasification of a finely divided combustible material
CN94102284A CN1041107C (en) 1993-03-16 1994-03-10 Method of production of gas with fine fuel
PL94302608A PL173329B1 (en) 1993-03-16 1994-03-14 Method of gasifying under pressure finely grained solids
RU94008855A RU2122565C1 (en) 1993-03-16 1994-03-15 Method of gasifying fine fuels under pressure
GR950403163T GR3018065T3 (en) 1993-03-16 1995-11-10 Process for pressure gasification of fine particulate fuels.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP93104291A EP0616022B1 (en) 1993-03-16 1993-03-16 Process for pressure gasification of fine particulate fuels

Publications (2)

Publication Number Publication Date
EP0616022A1 true EP0616022A1 (en) 1994-09-21
EP0616022B1 EP0616022B1 (en) 1995-09-13

Family

ID=8212704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93104291A Expired - Lifetime EP0616022B1 (en) 1993-03-16 1993-03-16 Process for pressure gasification of fine particulate fuels

Country Status (10)

Country Link
US (1) US5441547A (en)
EP (1) EP0616022B1 (en)
CN (1) CN1041107C (en)
DE (1) DE59300598D1 (en)
DK (1) DK0616022T3 (en)
ES (1) ES2078078T3 (en)
GR (1) GR3018065T3 (en)
PL (1) PL173329B1 (en)
RU (1) RU2122565C1 (en)
ZA (1) ZA939354B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562698B2 (en) 2008-03-27 2013-10-22 Thyssenkrupp Uhde Gmbh Device for production of synthesis gas with a gasification reactor with a subsequent quenching space
RU2534081C2 (en) * 2009-07-27 2014-11-27 Тиссенкрупп Уде Гмбх Gasification reactor
DE102008057410B4 (en) 2008-11-14 2019-07-04 Thyssenkrupp Industrial Solutions Ag Apparatus for the production of synthesis gas with a gasification reactor followed by quenching

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803937A (en) * 1993-01-14 1998-09-08 L. & C. Steinmuller Gmbh Method of cooling a dust-laden raw gas from the gasification of a solid carbon-containing fuel
DE102007027601A1 (en) 2007-06-12 2008-12-18 Uhde Gmbh Production and cooling of gaseous coal gasification products
US9290709B2 (en) * 2007-09-18 2016-03-22 Thyssenkrupp Industrial Solutions Ag Gasification reactor and process for entrained-flow gasification
DE102008012734A1 (en) 2008-03-05 2009-09-10 Uhde Gmbh Method for obtaining synthesis gas by gasification of liquid or finely comminuted solid fuels, involves producing synthesis gas in reaction chamber arranged over reactor, in which ingredients are supplied
DE102007044726A1 (en) 2007-09-18 2009-03-19 Uhde Gmbh Synthesis gas producing method, involves drying and cooling synthesis gas in chamber, arranging water bath below another chamber, and extracting produced and cooled synthesis gas from pressure container below or lateral to latter chamber
DE102008012732A1 (en) * 2008-03-05 2009-09-10 Uhde Gmbh Gasification device with slag removal
DE102009005464A1 (en) 2009-01-21 2010-08-05 Uhde Gmbh Device for producing crude gas containing carbon monoxide or hydrogen by gasification of an ash-containing fuel with oxygen-containing gas in a gasification reactor, comprises connected gas cooling chamber, and tapered connecting channel
DE102008015801B4 (en) 2008-03-27 2019-02-28 Thyssenkrupp Industrial Solutions Ag Apparatus for the production of synthesis gas with a gasification reactor followed by a quenching chamber
US8357215B2 (en) * 2009-03-04 2013-01-22 General Electric Company Method and apparatus of particulate removal from gasifier components
US20100325956A1 (en) * 2009-06-30 2010-12-30 General Electric Company Cooling chamber assembly for a gasifier
DE102011107726B4 (en) 2011-07-14 2016-06-30 Thyssenkrupp Industrial Solutions Ag Apparatus and method for introducing renewable fuels into the region of the radiation vessel wall of gasification reactors
DE102011110213A1 (en) 2011-08-16 2013-02-21 Thyssenkrupp Uhde Gmbh Method and device for recirculating exhaust gas from a gas turbine with subsequent waste heat boiler
JP5518161B2 (en) * 2012-10-16 2014-06-11 三菱重工業株式会社 Gasifier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1070615A (en) * 1951-12-12 1954-08-03 Babcock & Wilcox France Steam generator combined with a syngas production device
DE1596323A1 (en) * 1967-06-06 1970-04-02 Walther & Cie Ag Synthesis gas generator with gas cooler, which are arranged in a pressure cylinder
FR2500470A1 (en) * 1981-02-26 1982-08-27 Steinmueller Gmbh L & C INSTALLATION FOR PRODUCING GAS PRODUCTS
EP0099833A1 (en) * 1982-07-21 1984-02-01 Creusot-Loire Device for the conversion and recovery of thermal energy
EP0115094A2 (en) 1982-12-29 1984-08-08 Shell Internationale Researchmaatschappij B.V. Process and apparatus for the production of synthesis gas
DE3809313A1 (en) * 1988-03-19 1989-10-05 Krupp Koppers Gmbh METHOD AND DEVICE FOR COOLING PARTIAL OXIDATION GAS

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH656637A5 (en) * 1981-10-26 1986-07-15 Sulzer Ag GAS COOLER ARRANGEMENT TO COAL GASIFICATION SYSTEM.
GB2164951A (en) * 1984-09-26 1986-04-03 Shell Int Research Method and apparatus for producing synthesis gas
DE3711314A1 (en) * 1987-04-03 1988-10-13 Babcock Werke Ag DEVICE FOR COOLING A SYNTHESIS GAS IN A QUENCH COOLER
DE3816340A1 (en) * 1988-05-13 1989-11-23 Krupp Koppers Gmbh METHOD AND DEVICE FOR COOLING A HOT PRODUCT GAS THAT STICKY OR. MELT-LIQUID PARTICLES INCLUDED
US4859213A (en) * 1988-06-20 1989-08-22 Shell Oil Company Interchangeable quench gas injection ring
US4859214A (en) * 1988-06-30 1989-08-22 Shell Oil Company Process for treating syngas using a gas reversing chamber
DE3824233A1 (en) * 1988-07-16 1990-01-18 Krupp Koppers Gmbh PLANT FOR THE PRODUCTION OF A PRODUCT GAS FROM A FINE-PARTIC CARBON SUPPORT
DD280975B3 (en) * 1989-03-31 1993-03-04 Noell Dbi Energie Entsorgung METHOD AND DEVICE FOR COOLING AND CLEANING GASES LOADED WITH SLUDGE OR DUST
JP2659849B2 (en) * 1990-05-30 1997-09-30 三菱重工業株式会社 Pressurized gasifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1070615A (en) * 1951-12-12 1954-08-03 Babcock & Wilcox France Steam generator combined with a syngas production device
DE1596323A1 (en) * 1967-06-06 1970-04-02 Walther & Cie Ag Synthesis gas generator with gas cooler, which are arranged in a pressure cylinder
FR2500470A1 (en) * 1981-02-26 1982-08-27 Steinmueller Gmbh L & C INSTALLATION FOR PRODUCING GAS PRODUCTS
EP0099833A1 (en) * 1982-07-21 1984-02-01 Creusot-Loire Device for the conversion and recovery of thermal energy
EP0115094A2 (en) 1982-12-29 1984-08-08 Shell Internationale Researchmaatschappij B.V. Process and apparatus for the production of synthesis gas
DE3809313A1 (en) * 1988-03-19 1989-10-05 Krupp Koppers Gmbh METHOD AND DEVICE FOR COOLING PARTIAL OXIDATION GAS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562698B2 (en) 2008-03-27 2013-10-22 Thyssenkrupp Uhde Gmbh Device for production of synthesis gas with a gasification reactor with a subsequent quenching space
DE102008057410B4 (en) 2008-11-14 2019-07-04 Thyssenkrupp Industrial Solutions Ag Apparatus for the production of synthesis gas with a gasification reactor followed by quenching
RU2534081C2 (en) * 2009-07-27 2014-11-27 Тиссенкрупп Уде Гмбх Gasification reactor
US9200222B2 (en) 2009-07-27 2015-12-01 Thyssenkrupp Uhde Gmbh Gasification reactor having direct or indirect support at coolant inlet lines or mixture outlet lines

Also Published As

Publication number Publication date
DE59300598D1 (en) 1995-10-19
GR3018065T3 (en) 1996-02-29
DK0616022T3 (en) 1996-01-15
CN1093738A (en) 1994-10-19
PL173329B1 (en) 1998-02-27
ES2078078T3 (en) 1995-12-01
EP0616022B1 (en) 1995-09-13
ZA939354B (en) 1994-06-21
US5441547A (en) 1995-08-15
RU2122565C1 (en) 1998-11-27
CN1041107C (en) 1998-12-09

Similar Documents

Publication Publication Date Title
EP0616023B1 (en) Gasification apparatus for gasification under pressure of fine particulate fuels
EP0616022B1 (en) Process for pressure gasification of fine particulate fuels
DE19714376C1 (en) Synthesis gas generator with combustion and quench chamber
EP0459023B1 (en) Apparatus for gasifying carbon containing materials
DE2425962B2 (en) Gas generator for the gasification of finely divided fuels
DE2952065A1 (en) METHOD FOR DRY COOLING COCKS AND COOKING COOLING DEVICE FOR CARRYING OUT THE METHOD
DE2918859A1 (en) PLANT FOR DEGASSING AND / OR GASIFYING COAL
DE3601786A1 (en) DEVICE FOR COOLING THE HOT GAS PRODUCTION GAS LEAVING FROM A PRESSURIZED PRESSURE
EP0416242B1 (en) Apparatus for the production of product gas from a finely divided carbon carrier
CH638296A5 (en) METHOD AND SYSTEM FOR BURNING CARBONOUS RAW MATERIALS BY MEANS OF SOLID FUELS IN A DC-REGENERATIVE CHAMBER.
DE3628866C2 (en)
DE2845593A1 (en) METHOD AND DEVICE FOR COOLING AND HUMIDIFYING DUSTY HOT GAS OR EXHAUST GAS
DE1952347A1 (en) Device for breaking high-boiling hydrocarbons into olefins
EP0662506B1 (en) Process and apparatus for cooling rough gas from partial oxidation
DE3406893C2 (en)
EP0314929A1 (en) Waste heat boiler for cooling partial oxidation gases
DE2836345A1 (en) SOOT PRODUCTION PLANT
DE2947128A1 (en) METHOD FOR CONTINUOUSLY GENERATING A HIGH TEMPERATURE REDUCING GAS
DE4307462C2 (en) Device for the gasification of fine-grained to dusty fuels and process for their operation
EP0433579B1 (en) Process and apparatus for cooling rough gas from partial oxidation
EP0630397B1 (en) Process for cooling a dust-laden raw gas from the gasification of a solid carbon-containing fuel
EP0716138A1 (en) Device for pressure gasification of fine particulate fuels to obtain a gaseous product
EP0416238A1 (en) Fluidized bed reactor and method of operating same
EP0683219A2 (en) Process for air blast gasification of carbonaceous fuels
DE2810887A1 (en) Cooler for industrial gas streams - using natural circulation boiler with faller tubes, mounted inside riser tubes exposed to hot gases, passing through collection space

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FR GB GR IT NL

17Q First examination report despatched

Effective date: 19950306

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FR GB GR IT NL

REF Corresponds to:

Ref document number: 59300598

Country of ref document: DE

Date of ref document: 19951019

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951025

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2078078

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3018065

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: L. & C. STEINMUELLER GMBH

Effective date: 19960613

NLR1 Nl: opposition has been filed with the epo

Opponent name: L. & C. STEINMUELLER GMBH

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19970502

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980213

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19980218

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19980227

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980320

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990322

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

BERE Be: lapsed

Owner name: KRUPP KOPPERS G.M.B.H.

Effective date: 19990331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990316

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010313

Year of fee payment: 9

Ref country code: DE

Payment date: 20010313

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050316