EP0611584B1 - Apparatus for the generation of air in a closed container - Google Patents

Apparatus for the generation of air in a closed container Download PDF

Info

Publication number
EP0611584B1
EP0611584B1 EP19940400259 EP94400259A EP0611584B1 EP 0611584 B1 EP0611584 B1 EP 0611584B1 EP 19940400259 EP19940400259 EP 19940400259 EP 94400259 A EP94400259 A EP 94400259A EP 0611584 B1 EP0611584 B1 EP 0611584B1
Authority
EP
European Patent Office
Prior art keywords
air
regenerated
heat exchanger
use according
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19940400259
Other languages
German (de)
French (fr)
Other versions
EP0611584A1 (en
Inventor
Albert James Kussener
Pierre Résidence Le Sintonia Rouzies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Direction General pour lArmement DGA
Etat Francais
Original Assignee
Direction General pour lArmement DGA
Etat Francais
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Direction General pour lArmement DGA, Etat Francais filed Critical Direction General pour lArmement DGA
Publication of EP0611584A1 publication Critical patent/EP0611584A1/en
Application granted granted Critical
Publication of EP0611584B1 publication Critical patent/EP0611584B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B11/00Devices for reconditioning breathing air in sealed rooms

Definitions

  • the present invention relates to a device for air regeneration in a closed or almost closed enclosure with autonomous operating energy whose production requires the use of a material stored in cryogenic form.
  • air regeneration in the cabin of the submarines is carried out by means of processes chemical or electrochemical performing the functions of oxygen production and carbon dioxide removal and pollutants.
  • Oxygen is also generated, either by electrolysis of water, either from liquid oxygen or by chemical reaction using a metal chlorate alkali or an alkali metal superoxide.
  • Elimination carbon dioxide is usually done using molecular sieves or by absorption, for example with amines.
  • the removal of pollutants is carried out at using activated carbon absorbers or beds catalytic.
  • US Patent 3,775,976 uses for the operation of a motor to combustion a cryogenic source which, by heating, allows the solidification of carbon dioxide from combustion gases.
  • Patent EP 0041702 used for aerobic culture of microorganisms liquid oxygen which, when contacted with carbon dioxide produced during the fermentation of microorganisms, allows the solidification of it.
  • the object of the invention is therefore to apply this principle to regeneration air from a space confined in breathing air, in order to have a reduced energy consumption, especially for an anaerobic system such than a submarine that has limited energy.
  • the object of the invention is therefore the application to the regeneration of air polluted in breathing air in a closed or almost closed enclosure, device with autonomous operating energy, comprising conventionally a tank (12) containing a cryogenic material used for the production of operating energy and an exchanger main thermal (10) operating at atmospheric pressure for exchanging heat between a gaseous medium containing carbon dioxide carbon, on the one hand, and the cryogenic material, on the other hand, characterized in that the gaseous medium consists of air at regenerate and in that the heating of the cryogenic material until its operating temperature in energy production allows lower the temperature of the air to be regenerated to a value below the solidification temperature of carbon dioxide.
  • the device according to the invention as defined above can thus be used in a submarine, the cold source being constituted by all or part of the mass of liquid oxygen on board which has a sufficient cooling capacity to cool the air to regenerate and condense carbon dioxide.
  • the oxidizer used for combustion is oxygen stored in cryogenic form in a tank, intended for use in batteries with fuels, internal combustion engines such as diesel engines, internal combustion engines external combustion such as Stirling engines or others systems implementing oxidation reactions of a fuel.
  • This oxygen which is at a temperature of about -170 ° C, must therefore be reheated before it can be used. The temperature of the gaseous oxygen is thus raised to -20 ° C at the entry of the submarine engine.
  • the principle of the invention consists in using a heat exchanger 10 which receives cryogenic oxygen from of the storage tank 12, and on the other hand the air to regenerate by air inlet 14 at pressure atmospheric.
  • the liquid oxygen loses its frigories (or acquires calories) and therefore heats up to reach a temperature of around -20 ° C at the outlet oxygen 16.
  • the air to be regenerated cools in exchanger 10 to a temperature about -135 ° C and is evacuated by the outlet of regenerated air 18.
  • the temperature reached by the air being lower than the solidification temperature (-78.5 ° C) of the dioxide carbon gas at atmospheric pressure, carbon dioxide carbon solidifies with the passage of air in the exchanger and can therefore be easily retrieved from this latest.
  • the air at outlet 18 is therefore rid of the excess carbon dioxide due mainly to the human respiration in the closed enclosure.
  • FIG. 2 shows schematically the mode of preferred embodiment of the invention.
  • Air to regenerate powered by a fan 20 is first sent to a Annex heat exchanger or cold recuperator 22 before reaching the heat exchanger 10.
  • the air which enter the latter by entrance 14 is therefore an air pre-cooled.
  • the cooled air at outlet 18 of the exchanger 10 is therefore heated in contact with the air at room temperature in the cold recuperator 22.
  • the air to be regenerated contains various pollutants which are either dissolved in the recovered water, either condensed at the same time as the carbon dioxide at low temperature.
  • pollutants are pentane, molecular weight hydrocarbons benzene and benzene derivatives, the carbon tetrachloride, certain nitrogen oxides, certain freons ...
  • a solution consists in reheating it with a hot source such as Seawater.
  • the heat transfer in the exchanger 10 can take place, for safety reasons, by means of a fluid heat transfer intermediate so as to avoid convey liquid oxygen near the air circuits.
  • a first solution consists in evacuating to carbon dioxide outside: we isolate the exchanger thermal and we stop the oxygen supply. Temperature increases and the pressure rises until reaching a sufficient pressure to eject the carbon dioxide at outside or store it in a compressed form.
  • a second solution consists in reheating the isolated exchanger until the CO2 is liquefied, for example at 5 bars and -52 ° C. Liquid CO 2 can be pumped out.
  • the exchanger is heated to a temperature between -105 ° C and -75 ° C. At this time the CO 2 is gaseous at a pressure between 0.1 and 1 bar. It can then be compressed outwards by means of a compressor.
  • the fourth solution consists in heating the exchanger to a temperature such that the vapor pressure is sufficient to supply a primary vacuum pump.
  • the CO 2 vapor pressure is of the order of 0.01 bar. CO 2 can therefore be compressed to atmospheric pressure and then discharged to the outside by a compressor. This solution is preferably used.
  • the device of the invention has been described in conjunction with a submarine it can be obviously used for any system with a closed or almost closed enclosure with a source autonomous energy using a material stored at very low temperature, the energy source being used for propulsion or something else.
  • a source autonomous energy using a material stored at very low temperature the energy source being used for propulsion or something else.
  • the device of the invention it is possible to use the device of the invention in a aircraft for which we are trying to reduce the cabin air renewal for reasons fuel economy.
  • the source of cold that constitutes the atmosphere can be sufficient for pollutants and water vapor.
  • Another application of the device of the invention is its use in an aircraft or shuttle spatial.
  • this type of machine it is planned to take a large quantity (several tens of tonnes) liquid hydrogen and sometimes liquid oxygen. Through Therefore, it is easy to use the the invention to obtain a regeneration of the atmosphere of the closed cabin, thanks to the frigories recovered by warming of cryogenic materials.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Peptides Or Proteins (AREA)
  • Gas Separation By Absorption (AREA)

Description

La présente invention concerne un dispositif de régénération de l'air dans une enceinte fermée ou quasi-fermée disposant d'une énergie de fonctionnement autonome dont la production nécessite l'utilisation d'un matériau stocké sous forme cryogénique.The present invention relates to a device for air regeneration in a closed or almost closed enclosure with autonomous operating energy whose production requires the use of a material stored in cryogenic form.

Le maintien de la qualité de l'air dans une enceinte fermée telle que l'habitacle d'un sous-marin est une opération complexe puisqu'elle exige de produire l'oxygène nécessaire à la respiration des hommes d'équipage, de réduire la quantité de dioxyde de carbone dans l'air qui a tendance à nettement augmenter du fait de la respiration humaine et d'éliminer les polluants organiques de l'air produits par l'activité humaine.Maintaining air quality in a closed enclosure such that the interior of a submarine is a complex operation since it requires producing the oxygen needed for men's breathing crew, reduce the amount of carbon dioxide in the air which tends to increase significantly due to human respiration and eliminate pollutants air organic matter produced by human activity.

Jusqu'à maintenant, la régénération de l'air dans l'habitacle des sous-marins s'effectue au moyen de procédés chimiques ou électrochimiques assurant les fonctions de production d'oxygène et d'élimination du dioxyde de carbone et des polluants. L'oxygène est aussi généré, soit par electrolyse de l'eau, soit à partir d'oxygène liquide, soit par réaction chimique à l'aide d'un chlorate de métal alcalin ou d'un superoxyde de métal alcalin. L'élimination du dioxyde de carbone se fait généralement à l'aide de tamis moléculaires ou par absorption, par exemple avec des amines. Enfin, l'élimination des polluants est effectué à l'aide d'absorbeurs à charbons actifs ou de lits catalytiques.Until now, air regeneration in the cabin of the submarines is carried out by means of processes chemical or electrochemical performing the functions of oxygen production and carbon dioxide removal and pollutants. Oxygen is also generated, either by electrolysis of water, either from liquid oxygen or by chemical reaction using a metal chlorate alkali or an alkali metal superoxide. Elimination carbon dioxide is usually done using molecular sieves or by absorption, for example with amines. Finally, the removal of pollutants is carried out at using activated carbon absorbers or beds catalytic.

Cependant, les installations de régénération de l'air restent des matériels souvent encombrants, complexes, consommant une grande quantité d'énergie. Par ailleurs les générateurs d'oxygène électrochimique produisent également, à la suite des réactions d'électrolyse, de grandes quantités d'hydrogène qu'il faut ensuite traiter.However, the regeneration facilities of the air remains often bulky, complex materials, consuming a large amount of energy. In addition, electrochemical oxygen generators also produce, as a result of electrolysis reactions, large quantities of hydrogen which must then be treated.

Enfin, il faut signaler que l'élimination de certains polluants organiques par charbons actifs bien que très efficace, pose quelques problèmes liés au fait que les polluants les plus légers sont désorbés par les polluants les plus lourds. Cette propriété fait qu'il est extrêmement Finally, it should be noted that the elimination of certain organic pollutants by active carbon although very effective, poses some problems related to the fact that the lighter pollutants are desorbed by pollutants the heaviest. This property makes it extremely

Difficile de déterminer un bilan matière précis du système atmosphérique, d'autant que des réactions de décomposition ou de synthèse sont toujours possibles entre les divers polluants.Difficult to determine a precise material balance of the atmospheric system, especially as decomposition or synthesis reactions are always possible between the various pollutants.

Pour les installations de traitement de l'air en service, on a su s'accommoder de ces différents inconvénients.For the air treatment installations in service, we have known accommodate these various disadvantages.

Cependant, la plupart des systèmes actuellement développés ne sont pas utilisables pour les sous-marins utilisant une source anaérobie d'énergie d'origine chimique ; ces systèmes sont généralement de trop gros consommateurs d'énergie par rapport à la quantité d'énergie embarquée.However, most of the systems currently developed are not usable for submarines using an anaerobic source of energy chemical origin; these systems are usually too big energy consumers in relation to the amount of energy on board.

Le brevet US 3 775 976 utilise pour le fonctionnement d'un moteur à combustion une source cryogénique qui, en se réchauffant, permet la solidification du dioxyde de carbone issu des gaz de combustion.US Patent 3,775,976 uses for the operation of a motor to combustion a cryogenic source which, by heating, allows the solidification of carbon dioxide from combustion gases.

Le brevet EP 0041702 utilise pour la culture aérobie de micro-organismes de l'oxygène liquide qui, mis en contact avec le dioxyde de carbone produit au cours de la fermentation des micro-organismes, permet la solidification de celui-ci.Patent EP 0041702 used for aerobic culture of microorganisms liquid oxygen which, when contacted with carbon dioxide produced during the fermentation of microorganisms, allows the solidification of it.

Le but de l'invention est donc d'appliquer ce principe à la régénération de l'air d'un espace confiné en air respirable, afin d'avoir une consommation d'énergie réduite, notamment pour un système anaérobie tel qu'un sous-marin qui dispose d'une énergie limitée.The object of the invention is therefore to apply this principle to regeneration air from a space confined in breathing air, in order to have a reduced energy consumption, especially for an anaerobic system such than a submarine that has limited energy.

L'objet de l'invention est donc l'application à la régénération d'un air pollué en air respirable dans une enceinte fermée ou quasi-fermée, d'un dispositif disposant d' une énergie de fonctionnement autonome, comprenant classiquement un réservoir (12) contenant un matériau cryogénique utilisé pour la production de l'énergie de fonctionnement et un échangeur thermique principal (10) fonctionnant à la pression atmosphérique pour échanger de la chaleur entre un milieu gazeux contenant du dioxyde de carbone, d'une part, et le matériau cryogénique, d'autre part, caractérisée en ce que le milieu gazeux est constitué par de l'air à régénérer et en ce que le réchauffement du matériau cryogénique jusqu'a sa température de fonctionnement dans la production de l'énergie permet d'abaisser la température de l'air à régénérer à une valeur inférieure à la température de solidification du dioxyde de carbone.The object of the invention is therefore the application to the regeneration of air polluted in breathing air in a closed or almost closed enclosure, device with autonomous operating energy, comprising conventionally a tank (12) containing a cryogenic material used for the production of operating energy and an exchanger main thermal (10) operating at atmospheric pressure for exchanging heat between a gaseous medium containing carbon dioxide carbon, on the one hand, and the cryogenic material, on the other hand, characterized in that the gaseous medium consists of air at regenerate and in that the heating of the cryogenic material until its operating temperature in energy production allows lower the temperature of the air to be regenerated to a value below the solidification temperature of carbon dioxide.

Le dispositif selon l'invention tel que défini ci-dessus peut ainsi être utilisé dans un sous-marin, la source de froid étant constituée par tout ou partie de la masse d'oxygène liquide embarquée qui possède une capacité frigorifique largement suffisante pour refroidir l'air à régénérer et condenser le dioxyde de carbone. The device according to the invention as defined above can thus be used in a submarine, the cold source being constituted by all or part of the mass of liquid oxygen on board which has a sufficient cooling capacity to cool the air to regenerate and condense carbon dioxide.

Les buts, objets et caractéristiques de l'invention apparaítront mieux à la lecture de la description qui suit faite en référence aux dessins dans lesquels

  • la figure 1 représente schématiquement le principe utilisé dans le dispositif selon l'invention, et
  • la figure 2 représente un schéma synoptique d'un mode de réalisation de l'invention.
  • The objects, objects and characteristics of the invention will appear better on reading the following description made with reference to the drawings in which
  • FIG. 1 schematically represents the principle used in the device according to the invention, and
  • FIG. 2 represents a block diagram of an embodiment of the invention.
  • Dans un sous-marin utilisant une source chimique anaérobie d'énergie, le comburant utilisé pour la combustion est de l'oxygène stocké sous forme cryogénique dans un réservoir, destiné à être utilisé dans des piles à combustibles, des moteurs thermiques à combustion interne tels que moteurs Diesel, des moteurs thermiques à combustion externe tels que moteurs Stirling ou d'autres systèmes mettant en oeuvre des réactions d'oxydation d'un carburant. Cet oxygène qui est à une température d'environ -170°C, doit donc être réchauffé pour pouvoir être utilisé. On élève ainsi la température de l'oxygène gazeux jusqu'à -20°C à l'entrée du moteur du sous-marin.In a submarine using a chemical source anaerobic energy, the oxidizer used for combustion is oxygen stored in cryogenic form in a tank, intended for use in batteries with fuels, internal combustion engines such as diesel engines, internal combustion engines external combustion such as Stirling engines or others systems implementing oxidation reactions of a fuel. This oxygen which is at a temperature of about -170 ° C, must therefore be reheated before it can be used. The temperature of the gaseous oxygen is thus raised to -20 ° C at the entry of the submarine engine.

    En référence à la figure 1, le principe de l'invention consiste à utiliser un échangeur thermique 10 qui reçoit d'une part l'oxygène cryogénique en provenance du réservoir de stockage 12, et d'autre part l'air à régénérer par l'entrée d'air 14 à la pression atmosphérique.Referring to Figure 1, the principle of the invention consists in using a heat exchanger 10 which receives cryogenic oxygen from of the storage tank 12, and on the other hand the air to regenerate by air inlet 14 at pressure atmospheric.

    Dans l'échangeur 10, l'oxygène liquide perd ses frigories (ou acquiert des calories) et donc se réchauffe pour atteindre une température d'environ -20°C à la sortie d'oxygène 16. Pendant le même temps, l'air a régénérer se refroidit dans l'échangeur 10 jusqu'à une température d'environ -135°C et est évacué par la sortie d'air régénéré 18. La température atteinte par l'air étant inférieure à la température de solidification (-78,5°C) du dioxyde de carbone gazeux à la pression atmosphérique, le dioxyde de carbone se solidifie au passage de l'air dans l'échangeur et peut donc être facilement récupéré en sortie de ce dernier. L'air à la sortie 18 est donc débarrassé du dioxyde de carbone en excès dû principalement à la respiration humaine dans l'enceinte fermée.In the exchanger 10, the liquid oxygen loses its frigories (or acquires calories) and therefore heats up to reach a temperature of around -20 ° C at the outlet oxygen 16. During the same time, the air to be regenerated cools in exchanger 10 to a temperature about -135 ° C and is evacuated by the outlet of regenerated air 18. The temperature reached by the air being lower than the solidification temperature (-78.5 ° C) of the dioxide carbon gas at atmospheric pressure, carbon dioxide carbon solidifies with the passage of air in the exchanger and can therefore be easily retrieved from this latest. The air at outlet 18 is therefore rid of the excess carbon dioxide due mainly to the human respiration in the closed enclosure.

    Bien que le dioxyde de carbone se solidifie (à la pression atmosphérique) à une température de -78,5°C, il est nécessaire d'abaisser la température de l'air à une valeur bien inférieure à -78,5°C, par exemple à -135°C Comme on vient de le voir. Cette température inférieure est en effet nécessaire, à la pression atmosphérique, pour obtenir une tension de vapeur de CO2 dans l'air traité telle que la concentration en CO2 devienne inférieure à la concentration maximale admissible pour la durée d'exposition retenue.Although carbon dioxide solidifies (at atmospheric pressure) at a temperature of -78.5 ° C, it is necessary to lower the air temperature to a value much lower than -78.5 ° C, for example at -135 ° C As we have just seen. This lower temperature is indeed necessary, at atmospheric pressure, to obtain a vapor pressure of CO 2 in the treated air such that the CO 2 concentration becomes lower than the maximum admissible concentration for the duration of exposure selected.

    La figure 2 représente schématiquement le mode de réalisation préféré de l'invention. L'air à régénérer propulsé par un ventilateur 20 est d'abord envoyé dans un échangeur thermique annexe ou récupérateur de froid 22 avant d'atteindre l'échangeur thermique 10. L'air qui penêtre dans ce dernier par l'entrée 14 est donc un air pré-refroidi. Par contre l'air refroidi en sortie 18 de l'échangeur 10 est donc réchauffé au contact de l'air à température ambiante dans le récupérateur de froid 22.Figure 2 shows schematically the mode of preferred embodiment of the invention. Air to regenerate powered by a fan 20 is first sent to a Annex heat exchanger or cold recuperator 22 before reaching the heat exchanger 10. The air which enter the latter by entrance 14 is therefore an air pre-cooled. On the other hand, the cooled air at outlet 18 of the exchanger 10 is therefore heated in contact with the air at room temperature in the cold recuperator 22.

    Comme précédemment, le dioxyde de carbone solide est récupéré en sortie de l'échangeur thermique 10. Par contre l'air propulsé par le ventilateur 20 dans le récupérateur de froid 22, se refroidit suffisamment pour que la vapeur d'eau en excès contenue dans l'air à régénérer soit liquéfiée. L'eau liquide est récupérée à la sortie 24 du récupérateur 22 et une partie de cette eau est alors recyclée dans l'humidificateur 26 pour rétablir le degré d'humidité de l'air régénéré à la sortie, pendant que l'eau en excès est récupérée à la sortie 30.As before, solid carbon dioxide is recovered at the outlet of the heat exchanger 10. By against the air propelled by the fan 20 in the cold recuperator 22, cools sufficiently to that the excess water vapor contained in the air at regenerate either liquefied. Liquid water is collected at the outlet 24 of recuperator 22 and part of this water is then recycled in the humidifier 26 to restore the humidity level of the regenerated air at the outlet, while excess water is collected at outlet 30.

    En plus du dioxyde de carbone, l'air à régénérer contient divers polluants qui sont, soit solubilisés dans l'eau récupérée, soit condensés en même temps que le dioxyde de carbone à basse température. Ces polluants sont le pentane, les hydrocarbures de poids moléculaire supérieur, le benzène et les dérivés benzèniques, le tétrachlorure de carbone, certains oxydes d'azote, certains fréons...In addition to carbon dioxide, the air to be regenerated contains various pollutants which are either dissolved in the recovered water, either condensed at the same time as the carbon dioxide at low temperature. These pollutants are pentane, molecular weight hydrocarbons benzene and benzene derivatives, the carbon tetrachloride, certain nitrogen oxides, certain freons ...

    L'air régénéré à la sortie 28 peut être encore trop froid pour être envoyé dans l'habitacle. Une solution consiste à le réchauffer avec une source chaude telle que l'eau de mer.The air regenerated at outlet 28 may still be too cold to be sent into the passenger compartment. A solution consists in reheating it with a hot source such as Seawater.

    Bien que non représenté sur les figures 1 et 2, le transfert thermique dans l'échangeur 10 peut s'effectuer, pour des raisons de sécurité, au moyen d'un fluide intermédiaire caloporteur de façon à éviter de faire véhiculer l'oxygène liquide à proximité des circuits d'air.Although not shown in Figures 1 and 2, the heat transfer in the exchanger 10 can take place, for safety reasons, by means of a fluid heat transfer intermediate so as to avoid convey liquid oxygen near the air circuits.

    Dans l'échangeur thermique 10, la masse de dioxyde de carbone et de polluants divers augmente peu à peu. A la longue, cette masse peut devenir gênante. C'est pourquoi il est utile de prévoir l'élimination de cette masse de CO2 et de polluants. Diverses solutions existent qui sont liées à la forme du diagramme d'équilibre des phases de CO2 et la présence d'un point triple.In the heat exchanger 10, the mass of carbon dioxide and various pollutants gradually increases. In the long run, this mass can become troublesome. This is why it is useful to plan for the elimination of this mass of CO 2 and of pollutants. Various solutions exist which are linked to the shape of the CO 2 phase balance diagram and the presence of a triple point.

    Une première solution consiste à évacuer à l'extérieur le dioxyde de carbone : on isole l'échangeur thermique et on stoppe l'arrivée d'oxygène. La température augmente et la pression s'élève jusqu'à atteindre une pression suffisante pour éjecter le dioxyde de carbone à l'extérieur ou le stocker sous une forme comprimée.A first solution consists in evacuating to carbon dioxide outside: we isolate the exchanger thermal and we stop the oxygen supply. Temperature increases and the pressure rises until reaching a sufficient pressure to eject the carbon dioxide at outside or store it in a compressed form.

    Une deuxième solution consiste à réchauffer l'échangeur isolé jusqu'à liquéfaction du CO2, par exemple à 5 bars et -52°C. Le CO2 liquide peut être pompé vers l'extérieur.A second solution consists in reheating the isolated exchanger until the CO2 is liquefied, for example at 5 bars and -52 ° C. Liquid CO 2 can be pumped out.

    Dans une troisième solution, l'échangeur est réchauffé à une température comprise entre -105°C et -75°C. A ce moment le CO2 est gazeux à une pression comprise entre 0,1 et 1 bar. Il peut alors être comprimé vers l'extérieur au moyen d'un compresseur.In a third solution, the exchanger is heated to a temperature between -105 ° C and -75 ° C. At this time the CO 2 is gaseous at a pressure between 0.1 and 1 bar. It can then be compressed outwards by means of a compressor.

    Enfin, la quatrième solution consiste à réchauffer l'échangeur à une température telle que la pression de vapeur soit suffisante pour alimenter une pompe à vide primaire. Par exemple à -120°C, la pression de vapeur de CO2 est de l'ordre de 0,01 bar. Le CO2 peut donc être comprimé jusqu'à la pression atmosphérique puis rejeté à l'extérieur par un compresseur. Cette solution est utilisée de préférence.Finally, the fourth solution consists in heating the exchanger to a temperature such that the vapor pressure is sufficient to supply a primary vacuum pump. For example at -120 ° C, the CO 2 vapor pressure is of the order of 0.01 bar. CO 2 can therefore be compressed to atmospheric pressure and then discharged to the outside by a compressor. This solution is preferably used.

    La mise en oeuvre de l'invention dans un sous-marin à propulsion par un moteur chimique Bertin type Mesma s'appuie sur les valeurs suivantes:

  • consommation 02 du moteur: 100kg/heure
  • température de 02 à l'entrée du moteur : -20°C
  • nombre de personnes: 30
  • consommation humaine de O2: 25 l/homme/ heure
  • production humaine de CO2: 20 l/homme/heure
  • teneur en CO2 dans l'habitacle: <0,7%
  • température moyenne: 20°C
  • The implementation of the invention in a submarine powered by a Bertin Mesma type chemical engine is based on the following values:
  • motor consumption 0 2 : 100kg / hour
  • 0 2 temperature at the motor inlet: -20 ° C
  • number of people: 30
  • human consumption of O 2 : 25 l / man / hour
  • human CO 2 production : 20 l / man / hour
  • CO 2 content in the passenger compartment: <0.7%
  • average temperature: 20 ° C
  • En régime permanent, les débits à respecter sont donc les suivants:

  • débit de CO2 à éliminer: 600 l/heure soit 1178g/h
  • débit de 02 au moteur: 100kg/heure
  • débit d'air à traiter: 600/0,007.10/9(coefficient de sécurité)soit 114 Kg/h
  • débit d'eau à éliminer:1809 g/h
  • In steady state, the flow rates to be observed are therefore as follows:
  • CO 2 flow rate to be eliminated: 600 l / hour or 1178 g / h
  • 0 2 flow to the motor: 100kg / hour
  • air flow to be treated: 600 / 0.007.10 / 9 (safety coefficient) or 114 Kg / h
  • water flow rate to be eliminated: 1809 g / h
  • Compte tenu des chaleurs spécifiques des différents produits impliqués dans la régénération, les quantités de chaleur mises en jeu sont les suivantes:

  • 1) refroidissement de l'air à régénérer d'une température de +20°C à une température de 0°C.
  • air: 570 kcal/h
  • eau: 36 kcal/h
  • CO2: négligeable
  • Total → 600 kcal/h
  • 2) condensation de H2O et élimination à 0°C
  • eau: 1128 kcal/h
  • 3) refroidissement de l'air de 0°C à -135°C
  • air: 3848 kcal/h
  • 4) congélation du CO2
  • CO2: 160,5 kcal/h
  • Taking into account the specific heats of the different products involved in regeneration, the quantities of heat involved are as follows:
  • 1) cooling the air to be regenerated from a temperature of + 20 ° C to a temperature of 0 ° C.
  • air: 570 kcal / h
  • water: 36 kcal / h
  • CO 2 : negligible
  • Total → 600 kcal / h
  • 2) condensation of H 2 O and elimination at 0 ° C
  • water: 1128 kcal / h
  • 3) air cooling from 0 ° C to -135 ° C
  • air: 3848 kcal / h
  • 4) freezing of CO 2
  • CO 2 : 160.5 kcal / h
  • Ce qui correspond à un total de 5743 kcal/h. Cette valeur est nettement inférieure à la quantité de frigories disponibles pour faire passer l'oxygène cryogénique (-70°C) à la température de - 20°C, soit vaporisation= 5000 kcal/h.

  • réchauffage à -20°C= 3821 kcal/h
  • donc un total de 8281 kcal/h
  • This corresponds to a total of 5743 kcal / h . This value is much lower than the quantity of frigories available to pass the cryogenic oxygen (-70 ° C) to the temperature of - 20 ° C, or vaporization = 5000 kcal / h.
  • reheating to -20 ° C = 3821 kcal / h
  • so a total of 8281 kcal / h
  • Bien que le dispositif de l'invention ait été décrit en liaison avec un sous-marin, il peut être évidemment utilisé pour tout système comportant une enceinte fermée ou quasi-fermée et disposant d'une source d'énergie autonome utilisant un matériau stocké à très basse température, la source d'énergie étant utilisée pour la propulsion ou pour autre chose. Par exemple, il est possible d'utiliser le dispositif de l'invention dans un avion pour lequel on cherche à réduire au maximum le renouvellement de l'air de la cabine pour des raisons d'économie en carburant. Dans ce cas la source de froid que constitue l'atmosphère (à environ -50°C) peut être suffisante pour les polluants et la vapeur d'eau.Although the device of the invention has been described in conjunction with a submarine it can be obviously used for any system with a closed or almost closed enclosure with a source autonomous energy using a material stored at very low temperature, the energy source being used for propulsion or something else. For example, it is possible to use the device of the invention in a aircraft for which we are trying to reduce the cabin air renewal for reasons fuel economy. In this case the source of cold that constitutes the atmosphere (at around -50 ° C) can be sufficient for pollutants and water vapor.

    Une autre application du dispositif de l'invention est son utilisation dans un aéronef ou une navette spatiale. Dans ce type d'engin, il est prévu d'emporter une quantité importante (plusieurs dizaines de tonnes) d'hydrogène liquide et parfois d'oxygène liquide. Par conséquent, il est aisé d'utiliser le dispositif de l'invention pour obtenir une régénération de l'atmosphère de la cabine fermée, grâce aux frigories récupérées par réchauffement des matériaux cryogéniques.Another application of the device of the invention is its use in an aircraft or shuttle spatial. In this type of machine, it is planned to take a large quantity (several tens of tonnes) liquid hydrogen and sometimes liquid oxygen. Through Therefore, it is easy to use the the invention to obtain a regeneration of the atmosphere of the closed cabin, thanks to the frigories recovered by warming of cryogenic materials.

    Claims (9)

    1. The use of apparatus for the purpose of regenerating polluted air so as to transform it into breathable air in a closed or almost closed enclosure, said apparatus being provided with a stand-alone source of operating energy, said apparatus comprising, conventionally, a tank (12) containing a cryogenic material used to produce operating energy and a main heat exchanger (10) operating at atmospheric pressure for exchanging heat between the cryogenic material and a gaseous medium containing carbon dioxide, said use being characterized in that the gaseous medium is constituted by the air to be regenerated, and in that, by heating the cryogenic material to its energy-production operating temperature, it is possible to lower the temperature of the air to be regenerated to a value lower than the solidification temperature of carbon dioxide.
    2. The use according to claim 1, characterized in that the temperature of the air to be regenerated is lowered to a temperature of -135°C.
    3. The use according to claim 1 or 2, characterized in that it further implements an accessory heat exchanger (22) through which the air to be regenerated passes and through which the regenerated air passes, so that heat is exchanged between the air to be regenerated and the regenerated air (18) coming from the main heat exchanger (10), so that the air to be regenerated is pre-cooled prior to entering the main heat exchanger, and the regenerated air is pre-heated prior to being released into the enclosure.
    4. The use according to claim 3, characterized in that the excess water vapor in the air to be regenerated is liquefied by passing the regenerated air through the accessory heat exchanger (22), and in that a portion of the water recovered in this way is sent to a humidifier (26) at the outlet of the accessory heat exchanger so as to restore suitable humidity to the regenerated air.
    5. The use according to any one of claims 1 to 4, characterized in that it further implements means for removing the solid carbon dioxide recovered in the main heat exchanger (10), which means are made up of means for heating the heat exchanger that is not operating, of a vacuum pump, and of a compressor, the heating making it possible to obtain a carbon dioxide vapor pressure that is sufficient for feeding the pump, and the compressor serving to compress the carbon dioxide so as to expel it to the outside.
    6. The use according to any preceding claim, characterized in that the main heat exchanger (10) also serves to condense the pollutants contained in the regenerated air.
    7. The use according to any one of claims 1 to 6, characterized in that the cryogenic material is liquid oxygen.
    8. The use according to any one of claims 1 to 7, characterized in that the closed enclosure is constituted by the manned quarters of a submarine propelled by an energy source whose oxidant is oxygen stored in cryogenic form in the tank (2).
    9. The use according to any one of claims 1 to 8, characterized in that the closed enclosure is constituted by the cockpit and/or cabin of an aircraft.
    EP19940400259 1993-02-15 1994-02-08 Apparatus for the generation of air in a closed container Expired - Lifetime EP0611584B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9301677A FR2701547B1 (en) 1993-02-15 1993-02-15 Air regeneration device in a closed enclosure.
    FR9301677 1993-02-15

    Publications (2)

    Publication Number Publication Date
    EP0611584A1 EP0611584A1 (en) 1994-08-24
    EP0611584B1 true EP0611584B1 (en) 2000-08-23

    Family

    ID=9444064

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP19940400259 Expired - Lifetime EP0611584B1 (en) 1993-02-15 1994-02-08 Apparatus for the generation of air in a closed container

    Country Status (6)

    Country Link
    EP (1) EP0611584B1 (en)
    CA (1) CA2115632C (en)
    DE (1) DE69425596T2 (en)
    ES (1) ES2149848T3 (en)
    FR (1) FR2701547B1 (en)
    PT (1) PT611584E (en)

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN102720531A (en) * 2012-07-02 2012-10-10 北京科技大学 System and method for refrigeration and dehumidification of mine refuge chamber
    RU2499622C1 (en) * 2012-08-30 2013-11-27 Военный институт (военно-морской политехнический) федерального государственного казенного военного образовательного учреждения высшего профессионального образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. Кузнецова" Method for controlling degree of electrolyte depletion in combined electrochemical air regeneration systems for submarines

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3775976A (en) * 1972-05-26 1973-12-04 Us Navy Lox heat sink system for underwater thermal propulsion system
    FR2209597A1 (en) * 1972-12-08 1974-07-05 Comp Generale Electricite Electrolytic separator of carbon dioxide from oxygen - to purify air for re-use in submarines etc.
    JPS572678A (en) * 1980-06-06 1982-01-08 Hitachi Ltd Device for aerated cultivation
    DE3235564A1 (en) * 1982-09-25 1984-04-26 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Device for separating carbon dioxide from room air
    IT1223213B (en) * 1987-12-04 1990-09-19 Tecnomare Spa SYSTEM FOR THE CRYOGENIC TREATMENT AND STORAGE OF COMBUSTION PRODUCTS OF HEAT ENGINES

    Also Published As

    Publication number Publication date
    CA2115632A1 (en) 1994-08-16
    FR2701547A1 (en) 1994-08-19
    PT611584E (en) 2001-01-31
    CA2115632C (en) 2005-05-10
    ES2149848T3 (en) 2000-11-16
    EP0611584A1 (en) 1994-08-24
    FR2701547B1 (en) 1995-03-31
    DE69425596D1 (en) 2000-09-28
    DE69425596T2 (en) 2001-01-04

    Similar Documents

    Publication Publication Date Title
    US3775976A (en) Lox heat sink system for underwater thermal propulsion system
    NO980530D0 (en) Hydrogen storage on curved carbon surfaces (graphite-containing cones)
    FR2665303A1 (en) PRODUCTION OF ELECTRICAL ENERGY WITH TWO OPERATING MODES.
    NO172080B (en) PROCEDURE FOR THE PREPARATION OF GAS HYDRATES AND APPLIANCES FOR PERFORMING THE SAME
    EP0451050A1 (en) Process and equipment for thermal treatment with gas quenching
    FR2664746A1 (en) Installation for producing electrical energy
    EP0611584B1 (en) Apparatus for the generation of air in a closed container
    JPS594536B2 (en) Internal combustion engine with exhaust gas recirculation
    KR20150084058A (en) Systems and methods for utilizing alcohol fuels
    US5376352A (en) Oxygen storage and retrieval system
    RU2187680C1 (en) Anaerobic power plant with stirling engine for submarine
    KR20180086566A (en) Nitrogenous compound emission reduction apparatus and operation method in ship
    JP7466747B1 (en) Ammonia gas treatment device and treatment method
    CN218553615U (en) Marine ammonia unloading recovery system
    KR101823028B1 (en) Handling System And Method Of Boil Off Gas
    JP2024112266A (en) Ammonia gas treatment device and treatment method
    JP2000212644A (en) Regeneration of furnace gas and apparatus therefor
    WO2020128371A2 (en) Method and device for reducing the increase in temperature at the surface of the terrestrial globe, vehicle and station for implementing said method
    Mazurek Current submarine atmosphere control technology
    RU2269371C2 (en) Method for refreshing air
    WO2024200165A1 (en) Coupling secondary-refrigerant and heat-transfer effects in a method and a device for treating flue gases
    CN118640392A (en) Method for increasing boiling point temperature of methane propellant
    CN118204031A (en) Inerting system of methanol power ship utilizing decarburization device
    FR2866474A1 (en) Fuel cell system, especially for use in automobiles, with oxygen enrichment device upstream of compressor in oxygen feed line to cathode, to maximize amount of power available for traction
    FR2962518A1 (en) INTEGRATED CARBON DIOXIDE LIQUEFACTION APPARATUS AND LIQUID CARBON DIOXIDE STORAGE SYSTEM AND METHOD FOR STORAGE PRESSURE REGULATION OF SUCH AN APPARATUS

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES GB IT NL PT SE

    17P Request for examination filed

    Effective date: 19940608

    17Q First examination report despatched

    Effective date: 19960410

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES GB IT NL PT SE

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000831

    REF Corresponds to:

    Ref document number: 69425596

    Country of ref document: DE

    Date of ref document: 20000928

    ITF It: translation for a ep patent filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2149848

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20001018

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20110224

    Year of fee payment: 18

    Ref country code: NL

    Payment date: 20110225

    Year of fee payment: 18

    Ref country code: SE

    Payment date: 20110228

    Year of fee payment: 18

    Ref country code: PT

    Payment date: 20110222

    Year of fee payment: 18

    Ref country code: DE

    Payment date: 20110228

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20110224

    Year of fee payment: 18

    Ref country code: GB

    Payment date: 20110228

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20120808

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20120901

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20120208

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120209

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120208

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120808

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69425596

    Country of ref document: DE

    Effective date: 20120901

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120901

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120208

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120901

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20130708

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120209