EP0611398A1 - Enzymatic preparation of n-(phosphonomethyl)glycine - Google Patents

Enzymatic preparation of n-(phosphonomethyl)glycine

Info

Publication number
EP0611398A1
EP0611398A1 EP92924227A EP92924227A EP0611398A1 EP 0611398 A1 EP0611398 A1 EP 0611398A1 EP 92924227 A EP92924227 A EP 92924227A EP 92924227 A EP92924227 A EP 92924227A EP 0611398 A1 EP0611398 A1 EP 0611398A1
Authority
EP
European Patent Office
Prior art keywords
acid
acid component
process according
glycine
phosphonomethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP92924227A
Other languages
German (de)
English (en)
French (fr)
Inventor
David Leroy Anton
Robert Dicosimo
Earnest William Porta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/788,683 external-priority patent/US5135860A/en
Priority claimed from US07/788,648 external-priority patent/US5180846A/en
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP0611398A1 publication Critical patent/EP0611398A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/373Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in doubly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/3804Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
    • C07F9/3808Acyclic saturated acids which can have further substituents on alkyl
    • C07F9/3813N-Phosphonomethylglycine; Salts or complexes thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids

Definitions

  • This invention relates to a process for the production of mixtures of glyoxylic acid and aminomethylphosphonic acid (AMPA) and the subsequent production of N-(phosphonomethyl)glycine, commonly called glyphosate. More specifically, the present invention relates to an enzymatic process involving the reaction of glycolic acid and oxygen in aqueous solution in the presence of AMPA and catalysts consisting of glycolate oxidase ((S)-2-hydroxy acid oxidase, EC 1.1.3.15) and catalase (EC 1.11.1.6) to produce a mixture containing glyoxylic acid and AMPA in situ which mixture is then hydrogenated to yield N- (phosphonomethyl)glycine, a broad-spectrum, post-emergent phytotoxicant and herbicide useful in controlling the growth of a wide variety of plants.
  • AMPA glyoxylic acid and aminomethylphosphonic acid
  • Glycolate oxidase an enzyme commonly found in leafy green plants and mammalian cells, catalyzes the oxidation of glycolic acid to glyoxylic acid, with the concomitant production of hydrogen peroxide:
  • N-(phosphono- methyl)glycine Numerous methods are known for preparing N-(phosphono- methyl)glycine from aminomethylphosphonic acid and glyoxylic acid.
  • One such method described in Rogers et al., European Patent Application 186,648, involves condensation of glyoxylic acid or a salt thereof with aminomethylphosphonic acid or a salt thereof to form an intermediate product, generally regarded as an aldimine (Schiff base), which without isolation is reduced, as by catalytic hydrogenation, to N-(phosphonomethyl)glycine.
  • a second method described in Gaertner, U.S.
  • Patent 4,094,928 isolates these same intermediate carbonylaldiminomethanephosphonates by the reaction of glyoxylic acid esters with aminomethylphosphonate esters in a non-aqueous solvent; after azeotropic distillation of water and removal of the solvent, the carbonylaldiminomethanephosphonate ester is reduced and the ester groups hydrolyzed to produce N-(phosphonomethyl)glycine.
  • glyoxylic acid is a rather costly starting material, and other less expensive routes to the desired material are practiced.
  • Existing methods for the preparation of glyoxylic acid such as hydrolysis of a dihaloacetic acid, electrolytic reduction of oxalic acid, oxidation of glyoxal, catalytic oxidation of ethylene or acetaldehyde, and ozonolysis of maleic acid, its esters or anhydride, present one or more difficulties in practice, e.g. costly separation/purification steps, low yields, or large waste streams.
  • the method described in Gaertner is also disadvantageous in that it requires several additional steps (with corresponding losses in yield), and the unnecessary isolation of an intermediate.
  • N-(phosphonomethyl)glycine Another method for the synthesis of N-(phosphonomethyl)glycine, disclosed in Kleiner, U.S. Pat. 4,670,191, comprises the reaction of aminomethylphosphonic acid or a salt thereof with about two molar equivalents of glyoxylic acid in aqueous medium.
  • the excess glyoxylic acid evidently functions as a reducing agent, converting an intermediate glyoxylic acid-aminomethylphosphonic acid reaction product to the desired N-(phosphonomethyl)glycine, and is itself oxidized to one or more by-products, including C0 2>
  • Fields et al. in U.S. Pat.
  • N-(phosphonomethyl)glycine by heating an N-acylaminomethylphosphonic acid with glyoxylic acid or a derivative thereof.
  • the mole ratio of the glyoxylic to the N-acylamino component is preferably 2 to 1; otherwise at smaller ratios the yield suffers.
  • the Kleiner and Fields et al. processes entail the disadvantages of not only employing relatively expensive glyoxylic acid but of employing it as a sacrificial reductant (ca. one mole of glyoxylate employed as reductant for every mole of N-(phosphonomethyl)glycine produced) as well as the condensing agent for the amino-(or N-acylamino) methylphosphonic acid.
  • One aspect of the present invention relates to the preparation of mixtures of glyoxylic acid (or a salt thereof) and aminomethylphosphonic acid (AMPA) (or a salt thereof), by oxidizing glycolic acid with oxygen in aqueous solution and in the presence of AMPA and two enzyme catalysts, glycolate oxidase ((S)-2-hydroxy-acid oxidase,. EC 1.13.15) and catalase (EC 1.11.1.6).
  • AMPA aminomethylphosphonic acid
  • this first aspect represents a process for preparing an intermediate for the production of N-(phosphonomethyl) glycine, the intermediate comprising a glyoxylic acid component and an aminomethylphosphonic acid component, the process comprising an enzyme catalyzed conversion of a glycolic acid component into the glyoxylic acid component in the presence of aminomethylphosphonic acid.
  • the inventions provides a process for preparing a mixture useful as an intermediate for the production of N- (phosphonomethyl)glycine comprising the steps of generating a glyoxylic acid component in situ by incorporating into an aqueous solution of a glycolic acid component and an aminomethylphosphonic acid component, a first catalyst adapted to catalyze the oxidation of glycolic acid component with oxygen to a glyoxylic acid component and hydrogen peroxide, and a second catalyst adapted to catalyze the decomposition of hydrogen peroxide, adjusting the pH of the solution to between 6 and about 10, contacting the solution with a source of oxygen at an effective temperature and sufficient time to convert at least a portion of the glycolic acid component to the glyoxylic acid component in the presence of an aminomethylphosphonic acid component, and ceasing contacting the solution with oxygen prior to converting said intermediate to N-(phosphonomethyl)glycine.
  • Another aspect of the invention relates to the preparation of N- (phosphonomethyI)glycine by oxidizing glycolic acid with oxygen in aqueous solution and in the presence of aminomethylphosphonic acid and two enzyme catalysts, glycolate oxidase ((S)-2-hydroxy-acid oxidase, EC 1.1.3.15) and catalase (EC 1.11.1.6), followed by reducing the resulting glyoxylic acid and aminomethyl ⁇ phosphonic acid mixture generated in situ in the aqueous solution to produce the desired N-(phosphonomethyl)gIycine, a post-emergent phytotoxicant and herbicide.
  • N- (phosphonomethyI)glycine by oxidizing glycolic acid with oxygen in aqueous solution and in the presence of aminomethylphosphonic acid and two enzyme catalysts, glycolate oxidase ((S)-2-hydroxy-acid oxidase, EC 1.1.3.15) and catalase (EC 1.11.1.6), followed by reducing the resulting gly
  • the present invention provides a process for preparing N-(phosphonomethyl)glycine comprising the steps of:
  • the second aspect of the present invention involves subjecting the mixtures from the first aspect to hydrogentation, thus producing N- (phosphonomethyl)glycine.
  • the mixtures produced by enzymatic oxidation of glycolic acid in the presence aminomethylphosphonic acid inherently result in a distribution of oxidation by-products in addition to the desired glyoxylic acid component (including by way of example but not limited thereto, oxalate, formate, and carbon dioxide). Also present in such mixtures will be unreacted glycolate as well as various additives such as flavin mononucleotide (hereinafter referred to as FMN) or the like, all of which may or may not influence the desired subsequent hydrogenation reaction
  • FMN flavin mononucleotide
  • the present invention further provides for the removal and recovery of the enzymes from the solution produced as a result of enzymatic oxidation as well as the optional removal of FMN prior to the hydrogenation step.
  • the catalysts are enzymatic; more preferably the first enzyme is glycolate oxidase ((S)-2-hydroxy-acid oxidase, EC 1.1.3.15) and the second enzyme is catalase (EC 1.11.1.6).
  • the catalysts/enzymes are removed, as by filtration or centrifugation, before the solution is subjected to reducing conditions for the production of N-(phosphonomethyl)glycine.
  • the present invention provides for a more efficient and economic process for the production of N-(phosphonomethyl)glycine.
  • the catalytic oxidation of glycolic acid or a suitable salt thereof is conveniently carried out by contacting the glycolic acid with a source of molecular oxygen in the presence of an enzyme catalyst which catalyzes the reaction of glycolic acid with ⁇ 2 to form glyoxylic acid.
  • an enzyme catalyst which catalyzes the reaction of glycolic acid with ⁇ 2 to form glyoxylic acid.
  • One such catalyst is the enzyme glycolate oxidase (EC 1.1.3.15), also known as glycolic acid oxidase.
  • Glycolate oxidase may be isolated from numerous sources well-known to the art.
  • the glycolate oxidase used in the reaction should be present in an effective concentration, usually a concentration of about 0.01 to about 1000 IU/mL, preferably about 0.1 to about 4 IU/mL.
  • An IU International Unit
  • An IU International Unit is defined as the amount of enzyme that will catalyze the transformation of one micromole of substrate per minute. A procedure for the assay of this enzyme is found in I. Zelitch and S. Ochoa. J. Biol. Chem.. Vol. 201, 707-718 (1953). This method is also used to assay the activity of recovered or recycled glycolate oxidase.
  • amines with a pKa approximately equal to or lower than the pH of the reaction mixture produced much higher yields of glyoxylate (and low formate and oxalate production) than amine buffers whose pKas were higher than the pH at which the reaction was performed.
  • the use of AMPA also results in an improvement in recovery of glycolate oxidase and catalase activity when compared to reactions run in the absence of added AMPA (Example 13).
  • Recovery of catalyst for recycle is usually required in processes utilizing enzyme catalysts, where catalyst cost makes a significant contribution to the total cost of manufacture.
  • Optimal results in the use of glycolate oxidase as a catalyst for the oxidative conversion of glycolic acid to glyoxylic acid are obtained by incorporating into the reaction solution a catalyst for the decomposition of hydrogen peroxide.
  • One such peroxide-destroying catalyst which is effective in combination with glycolate oxidase is the enzyme catalase (E.C. 1.11.1.6).
  • Catalase catalyzes the decomposition of hydrogen peroxide to water and oxygen, and it is believed to improve yields of glyoxylic acid in the present process by accelerating the decomposition of the hydrogen peroxide produced along with glyoxylic acid in the glycolate oxidase-catalyzed reaction of glycolic acid with ⁇ 2-
  • concentration of catalase should be 50 to 50,000 IU/m-L, preferably 500 to
  • IU for each enzyme) of catalase to glycolate oxidase is at least about 250:1.
  • FMN flavin mononucleotide
  • concentration of added FMN is in addition to any FMN present with the enzyme, because FMN is often also added to the enzyme during the preparation of the enzyme.
  • the structure of FMN and a method for its analysis is found in K. Yagai, Methods of Biochemical Analysis. Vol. X, Interscience Publishers, New York, 1962, p.
  • Glycolic acid (2-hydroxyacetic acid) is available commercially. In the present reaction its initial concentration is in the range of 0.10 M to 2.0 M, preferably between 0.25 M and 1.0 M. It can be used as such or as a compatible salt thereof, that is, a salt that is water-soluble and whose cation does not interfere with the desired conversion of glycolic acid to glyoxylic acid, or the subsequent reaction of the glyoxylic acid product with the amino-methylphosphonic acid to form N-(phosphonomefhyl)glycine. Suitable and compatible salt-forming cationic groups are readily determined by trial.
  • Such salts are the alkali metal, alkaline earth metal, ammonium, substituted ammonium, phosphonium, and substituted phosphonium salts.
  • the conversion of glycolic acid to glyoxylic acid is conveniently and preferably conducted in aqueous media.
  • Aminomethylphosphonic acid (AMPA), or a suitable salt thereof is added to produce a molar ratio of AMPA/glycolic acid (starting amount) in the range of from 0.01/1.0 to 3.0/1.0, preferably from 0.25/1.0 to 1.05/1.0.
  • the pH of the resulting mixture is adjusted to a value between 6 and 10, preferably between 7.0 and 9.0.
  • the exact value may be adjusted to obtain the desired pH by adding any compatible, non-interfering base, including alkali metal hydroxides, carbonates, bicarbonates and phosphates.
  • the pH of the reaction mixture decreases slightly as the reaction proceeds, so it is often useful to start the reaction near the high end of the maximum enzyme activity pH range, about 9.0 - 8.5, and allow it to drop during the reaction.
  • the pH can optionally be maintained by the separate addition of a non-interfering inorganic or organic buffer, since enzyme activity varies with pH.
  • glycolic and glyoxylic acids are highly dissociated in water, and at pH of between 6 and 10 are largely if not substantially entirely present as glycolate and glyoxylate ions.
  • glyoxylic acid (and its conjugate base, the glyoxylate anion) may also be present as the hydrate, e.g. (HO)2CHCOOH and/or as the hemiacetal, HOOCCH(OH)OCH(OH)COOH, which compositions and their anionic counterparts are equivalent to glyoxylic acid and its anion for the present purpose of being suitable reactants for N-(phosphonomethyl)glycine formation.
  • Oxygen ( ⁇ 2) the oxidant for the conversion of the glycolic acid to glyoxylic acid
  • oxygen can be added to the reaction as air, it is preferred to use a relatively pure form of oxygen, and even use elevated pressures. Although no upper limit of oxygen pressure is known, oxygen pressures up to 50 atmospheres may be used, and an upper limit of 15 atmospheres is preferred.
  • Agitation is important to maintaining a high oxygen dissolution (hence reaction) rate. Any convenient form of agitation is useful, such as stirring. On the other hand, as is well known to those skilled in the enzyme art, high shear agitation or agitation that produces foam may decrease the activity of the enzyme(s), and should be avoided.
  • the reaction temperature is an important variable, in that it affects reaction rate and the stability of the enzymes.
  • a reaction temperature of 0°C to 40°C may be used, but the preferred reaction temperature range is from 5°C to 15°C. Operating in the preferred temperature range maximizes recovered enzyme activity at the end of the reaction.
  • the temperature should not be so low that the aqueous solution starts to freeze.
  • Temperature can be controlled by ordinary methods, such as, but not limited to, by using a jacketed reaction vessel and passing liquid of the appropriate temperature through the jacket.
  • the reaction vessel may be constructed of any material that is inert to the reaction ingredients.
  • the enzymes may be removed by filtration or centrifugation and reused. Alternatively, they can be denatured and precipitated by heating, e.g.
  • flavin mononucleotide may optionally be removed by contacting the solution with activated carbon.
  • the solution containing glyoxylic acid and aminomethyl-phosphonic acid (which are believed to be in equilibrium with the corresponding imine), is reduced, producing N- (phosphonomethyl)glycine.
  • Catalytic hydrogenation is a preferred method for preparing N-(phosphonomethyl)glycine from a mixture of glyoxylic acid and aminomethylphosphonic acid.
  • Catalysts suitable for this purpose include (but are not limited to) the various platinum metals, such as iridium, osmium, rhodium, ruthenium, platinum, and palladium; also various other transition metals such as cobalt, copper, nickel and zinc.
  • the catalyst may be unsupported, for example as Raney nickel or platinum oxide; or it may be supported, for example as platinum on carbon, palladium on alumina, or nickel on kieselguhr. Palladium on carbon, nickel on kieselguhr and Raney nickel are preferred.
  • the hydrogenation can be performed at a pH of from 4 to 11, preferably from 5 to 10. Within this pH range, the exact value may be adjusted to obtain the desired pH by adding any compatible, non-interfering base or acid.
  • Suitable bases include, but are not limited to, alkali metal hydroxides, carbonates, bicarbonates and phosphates, while suitable acids include, but are not limited to, hydrochloric, sulfuric, or phosphoric acid.
  • the hydrogenation temperature and pressure can vary widely.
  • the temperature may generally be in the range of 0°C to 150°C, preferably from
  • the hydrogenation catalyst is employed at a minimum concentration sufficient to obtain the desired reaction rate and total conversion of starting materials under the chosen reaction conditions; this concentration is easily determined by trial.
  • the catalyst may be used in amounts of from 0.001 to 20 or more parts by weight of catalyst per 100 parts of combined weight of the glyoxylic acid and AMPA employed in the reaction.
  • N-(Phosphonomethyl)glycine useful as a post-emergent herbicide, may be recovered from the reduced solution, whatever the reducing method employed, by any of the recovery methods known to the art, including those disclosed in the U.S. Patents 4,851,159 and 4,670,191 and in European Patent Applications 186 648 and 413 672.
  • the yields of glyoxylate, formate and oxalate, and the recovered yield of glycolate are percentages based on the total amount of glycolic acid present at the beginning of the reaction.
  • Analyses of reaction mixtures were performed using high pressure liquid chromatography.
  • Organic acid analyses were performed using a Bio-Rad HPX-87H column, and AMPA and N-(phosphonomethyl)glycine were analyzed using a Bio-Rad Aminex glyphosate analysis column.
  • Reported yields of N-(phosphonomethyl)glycine are based on either glyoxylate or AMPA, depending on which was the limiting reagent in the reaction.
  • Example 1 Into a 3 oz. Fischer-Porter glass aerosol reaction vessel was placed a magnetic stirring bar and 10 mL of an aqueous solution containing glycolic acid (0.25 M), aminomethylphosphonic acid (AMPA, 0.263 M), FMN (0.01 mM), propionic acid (HPLC internal standard, 0.125 M), glycolate oxidase (from spinach, 1.0 IU/mL), and catalase (from Aspergillus niger, 1,400 IU/mL) at pH 8.5. The reaction vessel was sealed and the reaction mixture was cooled to 15°C, then the vessel was flushed with oxygen by pressurizing to 70 psig and venting to atmospheric pressure five times with stirring.
  • AMPA aminomethylphosphonic acid
  • FMN 0.01 mM
  • HPLC internal standard 0.125 M
  • glycolate oxidase from spinach, 1.0 IU/mL
  • catalase from Aspergillus niger, 1,400 IU/mL
  • the vessel was then pressurized to 70 psig of oxygen and the mixture stirred at 15°C. Aliquots (0.10 mL) were removed by syringe through a sampling port (without loss of pressure in the vessel) at regular intervals for analysis by HPLC to monitor the progress of the reaction. After 5 h, the HPLC yields of glyoxylate, formate, and oxalate were 70.4 %, 19.6 %, and 2.2 %, respectively, and 5.3 % glycolate remained. The remaining activity of glycolate oxidase and catalase were 27 % and 100 %, respectively, of their initial values.
  • Example 2 (Comparative ⁇ ) The reaction in Example 1 was repeated, using 0.33 M K2HPO4 in place of 0.265 M AMPA. After 5 h, the HPLC yields of glyoxylate, formate, and oxalate were 34.1 %, 11.1 %, and 0.2 %, respectively, and 58.7 % glycolate remained. After 23 h, the HPLC yields of glyoxylate, formate, and oxalate were 39.4 %, 44.7 %, and 15.34 %, respectively, and no glycolate remained. The remaining activity of glycolate oxidase and catalase were 85 % and 87 %, respectively, of their initial values.
  • Example 1 The reaction in Example 1 was repeated, using 0.263 M bicine buffer in place of 0.265 M AMPA. After 5 h, the HPLC yields of glyoxylate, formate, and oxalate were 42.5 %, 49.6 %, and 10.1 %, respectively, and 0.2 % glycolate remained. The remaining activity of glycolate oxidase and catalase were 47 % and 100 %, respectively, of their initial values.
  • Example 1 The reaction in Example 1 was repeated using 5,600 IU/mL catalase from Aspergillus niger. After 6 h, the HPLC yields of glyoxylate, formate, and oxalate were 85.5 %, 7.6 %, and 3.3 %, respectively, and 2.5 % glycolate remained. The remaining activity of glycolate oxidase and catalase were 36 % and 100 %, respectively, of their initial values.
  • Example 5 The reaction in Example 1 was repeated using 14,000 IU/mL catalase from Aspergillus niger. After 6 h, the HPLC yields of glyoxylate, formate, and oxalate were 88.0 %, 3.3 %, and 3.0 %, respectively, and 3.4 % glycolate remained. The remaining activity of glycolate oxidase and catalase were 28 % and 96 %, respectively, of their initial values.
  • Example 7 The reaction in Example 1 was repeated using 56,000 IU/mL catalase from Aspergillus niger. After 6 h, the HPLC yields of glyoxylate, formate, and oxalate were 84.0 %, 0.4 %, and 2.5 %, respectively, and 8.4 % glycolate remained. The remaining activity of glycolate oxidase and catalase were 16 % and 76 %, respectively, of their initial values.
  • Example 7 The remaining activity of glycolate oxidase and catalase were 16 % and 76 %, respectively, of their initial values.
  • reaction vessel 1.0 IU/mL
  • catalase from Aspergillus niger, 14,000 IU/mL
  • the reaction vessel was sealed and the reaction mixture was cooled to 5°C, then the vessel was flushed with oxygen by pressurizing to 70 psig and venting to atmospheric pressure five times with stirring. The vessel was then pressurized to 70 psig of oxygen and the mixture stirred at 5°C. Aliquots (0.10 mL) were removed by syringe through a sampling port (without loss of pressure in the vessel) at regular intervals for analysis by HPLC to monitor the progress of the reaction.
  • the HPLC yields of glyoxylate, formate, and oxalate were 92.3 %, 4.36 %, and 5.5 %, respectively, and no glycolate remained.
  • the remaining activity of glycolate oxidase and catalase were 87 % and 88 %, respectively, of their initial values.
  • the final pH of the reaction mixture was 6.7.
  • Example 8 Into a 3 oz. Fischer-Porter glass aerosol reaction vessel was placed a magnetic stirring bar and 10 mL of an aqueous solution containing glycolic acid (0.50 M), aminomethylphosphomc acid (AMPA, 0.40 M), FMN (0.01 mM), butyric acid (HPLC internal standard, 0.10 M), glycolate oxidase (from spinach, 1.0 IU/mL), and catalase (from Aspergillus niger, 14,000 IU/mL) at pH 8.5. The reaction vessel was sealed and the reaction mixture was cooled to 5°C (instead of 15°C as described in previous examples), then the vessel was flushed with oxygen by pressurizing to 70 psig and venting to atmospheric pressure five times with stirring.
  • AMPA aminomethylphosphomc acid
  • FMN 0.01 mM
  • HPLC internal standard 0.10 M
  • glycolate oxidase from spinach, 1.0 IU/mL
  • catalase from Aspergillus niger,
  • the vessel was then pressurized to 70 psig of oxygen and the mixture stirred at 5°C. Aliquots (0.10 mL) were removed by syringe through a sampling port (without loss of pressure in the vessel) at regular intervals for analysis by HPLC to monitor the progress of the reaction. After 17.5 h, the HPLC yields of glyoxylate, formate, and oxalate were 91.0%, 2.9%, and 2.9%, respectively, and 4.1% glycolate remained. The final pH of the reaction mixture was 6.7. The remaining activity of glycolate oxidase was 63% and 91%, respectively, of their initial value. The resulting mixture of glyoxylic acid (0.46 M) and AMPA (0.40
  • Example 9 The enzymatic oxidation of glycolic acid in Example 8 was repeated, using 10 mL of an aqueous solution containing glycolic acid (0.75 M), aminomethylphosphomc acid (AMPA, 0.60 M), FMN (0.01 mM), butyric acid (HPLC internal standard, 0.10 M), glycolate oxidase (from spinach, 2.0 IU/mL), and catalase (from Aspergillus niger, 14.000 IU/mL) at pH 8.5. After 40 h, the HPLC yields of glyoxylate, formate, and oxalate were 83.2%, 2.3%, and 7.5%, respectively, and no glycolate remained. The final pH of the reaction mixture was 6.8. The remaining activity of glycolate oxidase and catalase were 65 % and 86 %, respectively, of their initial values.
  • AMPA aminomethylphosphomc acid
  • FMN 0.01 mM
  • HPLC internal standard 0.10 M
  • glycolate oxidase
  • the resulting mixture of glyoxylic acid (0.62 M) and AMPA (0.60 M) was filtered using an Amicon Centriprep 10 concentrator (10,000 molecular weight cutoff) to remove the soluble enzymes, then the filtrate was placed in a 3-oz. Fischer-Porter bottle equipped with a magnetic stirrer bar. To the bottle was then added 0.100 g of 10% Pd/C and the bottle sealed, flushed with nitrogen gas, then pressurized to 50 psi with hydrogen and stirred at 25°C. After 24 h, the concentration of N-(phosphonomethyl)glycine (determined by HPLC) was 0.42 M (70% yield based on AMPA).
  • Example 8 The enzymatic oxidation of glycolic acid in Example 8 was repeated, using 10 mL of an aqueous solution containing glycolic acid (1.0 M), aminomethylphosphonic acid (AMPA, 0.80 M), FMN (0.01 mM), butyric acid
  • Example 11 The reaction in Example 8 was repeated at pH 8.0. After 17.5 h, the HPLC yields of glyoxylate, formate, and oxalate were 87.0 %, 2.2 %, and 1.9 %, respectively, and 8.5 % glycolate remained. The remaining activity of glycolate oxidase and catalase were 44 % and 97 %, respectively, of their initial values.
  • Example 12 The reaction in Example 8 was repeated at pH 7. After 17.5 h, the HPLC yields of glyoxylate, formate, and oxalate were 88.0 %, 1.4 %, and 1.9 %, respectively, and 8.2 % glycolate remained. The remaining activity of glycolate oxidase and catalase were 44 % and 93 %, respectively, of their initial values.
  • Example 13 Into a 3 oz. Fischer-Porter glass aerosol reaction vessel was placed a magnetic stirring bar and 10 mL of an aqueous solution containing glycolic acid (0.50 M), FMN (0.01 mM), isobutyric acid (HPLC internal standard, 0.10 M), glycolate oxidase (from spinach, 1.0 IU/mL), and catalase (from Aspergillus niger, 14,000 IU/mL) at pH 8.5. The reaction vessel was sealed and the reaction mixture was cooled to 5°C, then the vessel was flushed with oxygen by pressurizing to 70 psig and venting to atmospheric pressure five times with stirring. The vessel was then pressurized to 70 psig of oxygen and the mixture stirred at 5°C.
  • glycolic acid (0.50 M
  • FMN 0.01 mM
  • isobutyric acid HPLC internal standard, 0.10 M
  • glycolate oxidase from spinach, 1.0 IU/mL
  • catalase from Aspergill
  • Example 14 The enzymatic oxidation of glycolic acid in Example 8 was repeated, using 10 mL of an aqueous solution containing glycolic acid (0.25 M), aminomethylphosphonic acid (AMPA, 0.263 M), FMN (0.01 mM), butyric acid (HPLC internal standard, 0.25 M), glycolate oxidase (from spinach, 1.0 IU/mL), and catalase (from Aspergillus niger, 14,000 IU/mL) at pH 7.0 and 15°C. After 8 h, the HPLC yields of glyoxylate, formate, and oxalate were 82.8%, 0.9%, and 2.1%, respectively, and 13.9% glycolate remained. The final pH of the reaction mixture was 6.6.
  • Example 14 The enzymatic oxidation of glycolic acid in Example 14 was repeated at pH 8. After 8 h, the HPLC yields of glyoxylate, formate, and oxalate were 86.7%, 1.8%, and 4.1%, respectively, and 13.2% glycolate remained. The final pH of the reaction mixture was 6.7.
  • Example 16 The enzymatic oxidation of glycolic acid in Example 14 was repeated at pH 9. After 7 h, the HPLC yields of glyoxylate, formate, and oxalate were 70.0%, 5.6%, and 11.1%, respectively, and no glycolate remained. The final pH of the reaction mixture was 6.8.
  • Example 14 The enzymatic oxidation of glycolic acid in Example 14 was repeated at pH 8.5, and using initial concentrations of glycolic acid and AMPA of
  • Example 18 The enzymatic oxidation of glycolic acid in Example 8 was repeated, using 10 mL of an aqueous solution containing glycolic acid (0.50 M), aminomethylphosphomc acid (AMPA, 0375 M), FMN (0.01 mM), butyric acid (HPLC internal standard, 0.10 M), glycolate oxidase (from spinach, 1.0 IU/mL), and catalase (from Aspergillus niger, 14,000 IU/mL) at pH 8.5. After 17 h, the HPLC yields of glyoxylate, formate, and oxalate were 87.1%, 1.9%, and 2.1%, respectively, and 8.9% glycolate remained. The final pH of the reaction mixture was 6.7.
  • the resulting mixture of glyoxylic acid (0.435 M) and AMPA (0375 M) was filtered using an Amicon Centriprep 10 concentrator (10,000 molecular weight cutoff) to remove the soluble enzymes, then the filtrate was mixed with 50 mg of decolorizing carbon (to remove FMN) and again filtered. The resulting filtrate was placed in a 3-oz. Fischer-Porter bottle equipped with a magnetic stirrer bar. To the bottle was then added 0.100 g of 10% Pd/C and the bottle sealed, flushed with nitrogen gas, then pressurized to 50 psi with hydrogen and stirred at 25°C. After 17 h, the concentration of N-(phosphonomethyl)- glycine (determined by HPLC) was 0.372 M (99% yield based on AMPA).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
EP92924227A 1991-11-06 1992-11-03 Enzymatic preparation of n-(phosphonomethyl)glycine Pending EP0611398A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US78864091A 1991-11-06 1991-11-06
US07/788,683 US5135860A (en) 1991-11-06 1991-11-06 Process for preparing glyoxylic acid/aminomethylphosphonic acid mixtures
US07/788,648 US5180846A (en) 1991-11-06 1991-11-06 Hydrogenation of enzymatically-produced glycolic acid/aminomethylphosphonic acid mixtures
US788648 1991-11-06
US788683 1991-11-06
US788640 1991-11-06
PCT/US1992/009419 WO1993009242A1 (en) 1991-11-06 1992-11-03 Enzymatic preparation of n-(phosphonomethyl)glycine

Publications (1)

Publication Number Publication Date
EP0611398A1 true EP0611398A1 (en) 1994-08-24

Family

ID=27419857

Family Applications (4)

Application Number Title Priority Date Filing Date
EP92310063A Expired - Lifetime EP0545553B1 (en) 1991-11-06 1992-11-03 Enzymatic preparation of N-(phosphonomethyl)glycine
EP92924228A Pending EP0611399A1 (en) 1991-11-06 1992-11-03 Hydrogenation of enzymatically-produced glyoxylic acid/aminomethyl-phosphonic acid mixtures
EP92924227A Pending EP0611398A1 (en) 1991-11-06 1992-11-03 Enzymatic preparation of n-(phosphonomethyl)glycine
EP92310064A Withdrawn EP0541333A1 (en) 1991-11-06 1992-11-03 Hydrogenation of enzymatically-produced glyoxylic acid/aminomethylphosphonic acid mixtures

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP92310063A Expired - Lifetime EP0545553B1 (en) 1991-11-06 1992-11-03 Enzymatic preparation of N-(phosphonomethyl)glycine
EP92924228A Pending EP0611399A1 (en) 1991-11-06 1992-11-03 Hydrogenation of enzymatically-produced glyoxylic acid/aminomethyl-phosphonic acid mixtures

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP92310064A Withdrawn EP0541333A1 (en) 1991-11-06 1992-11-03 Hydrogenation of enzymatically-produced glyoxylic acid/aminomethylphosphonic acid mixtures

Country Status (16)

Country Link
EP (4) EP0545553B1 (hu)
JP (2) JP3315119B2 (hu)
CN (2) CN1073481A (hu)
AU (2) AU658956B2 (hu)
BR (2) BR9206882A (hu)
CA (2) CA2123081C (hu)
CZ (2) CZ111494A3 (hu)
DE (1) DE69210771T2 (hu)
ES (1) ES2087460T3 (hu)
HU (2) HUT71271A (hu)
ID (1) ID1002B (hu)
IL (2) IL103646A (hu)
MX (2) MX9206362A (hu)
MY (1) MY130099A (hu)
NZ (2) NZ245011A (hu)
WO (2) WO1993009243A1 (hu)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69210771T2 (de) * 1991-11-06 1996-12-12 E.I. Du Pont De Nemours & Co., Wilmington, Del. Enzymatische Herstellung von N-(Phosphonemethyl)glycin
WO1996000793A1 (en) * 1993-03-03 1996-01-11 E.I. Du Pont De Nemours And Company Glyoxylic acid/aminomethylphosphonic acid mixtures prepared using a microbial transformant
JP3937445B2 (ja) * 1993-05-28 2007-06-27 ユニバーシテイ・オブ・アイオワ・リサーチ・フアウンデーシヨン グリオキシル酸/アミノメチルホスホン酸ジアルキル混合物の製造法
WO1995001443A1 (en) * 1993-07-01 1995-01-12 E.I. Du Pont De Nemours And Company Microbial transformants of hansenula that express glycolate oxidase and catalase
AU7211994A (en) * 1993-07-01 1995-01-24 E.I. Du Pont De Nemours And Company Glycolate oxidase production
AU674619B2 (en) * 1994-12-15 1997-01-02 Jack Newman Stereoscopic micromirror display

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL48619A (en) * 1974-12-11 1978-04-30 Monsanto Co Process for the production of n-(phosphonomethyl)-glycine compounds
IL48639A (en) * 1974-12-11 1978-06-15 Monsanto Co Process for the production of carbonylaldiminomethanephosphosphonates
HUT41415A (en) * 1984-12-28 1987-04-28 Monsanto Co Process for preparing n-phosphono-methyl-glycine derivatives
DE69003247T2 (de) * 1989-10-16 1994-04-07 Du Pont Verfahren zur herstellung von glyoxylsäure durch enzymatische oxydation von glykolsäure.
DE69210771T2 (de) * 1991-11-06 1996-12-12 E.I. Du Pont De Nemours & Co., Wilmington, Del. Enzymatische Herstellung von N-(Phosphonemethyl)glycin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9309242A1 *

Also Published As

Publication number Publication date
JPH07504084A (ja) 1995-05-11
NZ245011A (en) 1995-05-26
JP3315119B2 (ja) 2002-08-19
AU3061792A (en) 1993-06-07
EP0541333A1 (en) 1993-05-12
HUT71955A (en) 1996-02-28
HU9401419D0 (en) 1994-08-29
CA2123081C (en) 2003-02-25
HUT71271A (en) 1995-11-28
ES2087460T3 (es) 1996-07-16
HU9401416D0 (en) 1994-08-29
AU673146B2 (en) 1996-10-31
DE69210771T2 (de) 1996-12-12
IL103646A (en) 1996-10-16
BR9206884A (pt) 1995-07-11
CA2123079C (en) 2005-01-25
CN1073481A (zh) 1993-06-23
AU658956B2 (en) 1995-05-04
MX9206363A (es) 1994-02-28
MX9206362A (es) 1993-06-01
CA2123079A1 (en) 1993-05-13
ID1002B (id) 1996-10-10
NZ245012A (en) 1995-05-26
IL103645A0 (en) 1993-04-04
WO1993009243A1 (en) 1993-05-13
CZ111494A3 (en) 1994-12-15
IL103645A (en) 1996-10-31
WO1993009242A1 (en) 1993-05-13
EP0545553A1 (en) 1993-06-09
CA2123081A1 (en) 1993-05-13
DE69210771D1 (de) 1996-06-20
IL103646A0 (en) 1993-04-04
MY130099A (en) 2007-06-29
EP0611399A1 (en) 1994-08-24
EP0545553B1 (en) 1996-05-15
CN1073482A (zh) 1993-06-23
JPH07501940A (ja) 1995-03-02
BR9206882A (pt) 1995-06-13
CZ111394A3 (en) 1994-12-15
AU3061692A (en) 1993-06-07

Similar Documents

Publication Publication Date Title
EP0705345B1 (en) Process for the preparation of pyruvic acid
EP0545553B1 (en) Enzymatic preparation of N-(phosphonomethyl)glycine
US5135860A (en) Process for preparing glyoxylic acid/aminomethylphosphonic acid mixtures
CZ11194A3 (en) Module differential switch
US5559020A (en) Process for preparing glyoxylic acid/dialkyl aminomethylphosphonate mixtures
US5180846A (en) Hydrogenation of enzymatically-produced glycolic acid/aminomethylphosphonic acid mixtures
US5262314A (en) Enzymatic oxidation of glycolic acid in the presence of non-enzymatic catalyst for decomposing hydrogen peroxide
US5538875A (en) Process for the preparation of pyruvic acid using permeabilized transformants of H. polymorha and P. pastoris which express glycolate oxidase and catalase
WO1996000793A1 (en) Glyoxylic acid/aminomethylphosphonic acid mixtures prepared using a microbial transformant
EP0706577B1 (en) An improved method of preparing glyoxylic acid/aminomethylphosphonic acid mixtures using a microbial double-transformant
CN1153532A (zh) 用微生物转化体制备的乙醛酸和氨甲基膦酸混合物

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PROCEEDINGS CLOSED FOLLOWING CONSOLIDATION WITH EP92310063.0

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IE IT NL

XX Miscellaneous (additional remarks)

Free format text: VERFAHREN ABGESCHLOSSEN INFOLGE VERBINDUNG MIT 92310063.0/0545553 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 29.12.94.