EP0611218A1 - Verfahren und Anlage zur Herstellung von Drucksauerstoff - Google Patents
Verfahren und Anlage zur Herstellung von Drucksauerstoff Download PDFInfo
- Publication number
- EP0611218A1 EP0611218A1 EP94400300A EP94400300A EP0611218A1 EP 0611218 A1 EP0611218 A1 EP 0611218A1 EP 94400300 A EP94400300 A EP 94400300A EP 94400300 A EP94400300 A EP 94400300A EP 0611218 A1 EP0611218 A1 EP 0611218A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- pressure
- fraction
- column
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04018—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04024—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04145—Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/042—Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04236—Integration of different exchangers in a single core, so-called integrated cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04278—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/10—Mathematical formulae, modeling, plot or curves; Design methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/912—External refrigeration system
- Y10S62/913—Liquified gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/939—Partial feed stream expansion, air
- Y10S62/94—High pressure column
Definitions
- the present invention relates to a process for the production of gaseous oxygen under a high oxygen pressure by air distillation in a double column installation comprising a medium pressure column which operates under a so-called medium pressure, and a low column. pressure which operates under a pressure known as low pressure, pumping of liquid oxygen withdrawn from the bottom of the low pressure column, and vaporization of the compressed liquid oxygen by heat exchange with air in the heat exchange line of the 'installation.
- FR-A-2 674 011 describes a process of this type in which all of the air is brought to a single high pressure, then is cooled and partially turbined at medium pressure.
- the object of the invention is to improve this known process so as to increase its thermodynamic performance without increasing the corresponding investment.
- the air distillation installation shown in Figure 1 essentially comprises: an air compressor 1; an apparatus 2 for purifying the compressed air into water and CO2 by adsorption, this apparatus comprising two adsorption bottles 2A, 2B, one of which operates in adsorption while the other is being regenerated; a turbine-blower assembly 3 comprising an expansion turbine 4 and a blower or blower 5 whose shafts are coupled, the blower being optionally equipped with a refrigerant (not shown); a heat exchanger 6 constituting the heat exchange line of the installation; a double distillation column 7 comprising a medium pressure column 8 surmounted by a low pressure column 9, with a vaporizer-condenser 10 putting the overhead vapor (nitrogen) from column 8 in heat exchange relation with the tank liquid (oxygen) from column 9; a liquid oxygen tank 11, the bottom of which is connected to a liquid oxygen pump 12; and a liquid nitrogen tank 13, the bottom of which is connected to a liquid nitrogen pump 14.
- This installation is intended to supply, via a pipe 15, gaseous oxygen under a predetermined high pressure, which can be between a few bars and a few tens of bars (in the present specification, the pressures considered are absolute pressures).
- liquid oxygen withdrawn from the tank of the column 9 via a pipe 16 and stored in the tank 11, is brought to high pressure by the pump 12 in the liquid state, then vaporized and heated under this high pressure in passages 17 of exchanger 6.
- the heat necessary for this vaporization and this reheating, as well as for the reheating and possibly for the vaporization of other fluids drawn from the double column, is supplied by the air to be distilled, under the following conditions.
- All of the air to be distilled is compressed by compressor 1 at a first high pressure markedly higher than the medium pressure of column 8, in practice greater than 9 bars. Then the air, precooled in 18 and cooled to around room temperature in 19, is purified in one, 2A for example, adsorption bottles, and divided into two fractions.
- the first fraction representing at least 70% of the flow of treated air, is boosted at a second high pressure by the booster 5, which is driven by the turbine 4.
- the first fraction of air is then introduced at the hot end of the exchanger 6 and completely cooled to an intermediate temperature. At this temperature, a fraction of the air continues to cool and is liquefied in passages 20 of the exchanger, then is expanded at low pressure in an expansion valve 21 and introduced at a level intermediate in column 9. The rest of the air is expanded to medium pressure in turbine 4 and then sent directly, via a line 22, to the base of column 8.
- the second fraction optionally precooled to -40 ° C by a refrigeration unit 6A indicated in phantom, is introduced under the first high pressure into the exchange line 6, cooled and liquefied until the cold end thereof in passages 20A, expanded in an expansion valve 21A and joined to the current coming from the expansion valve 21.
- the low-pressure nitrogen is heated in passages 28 of the exchanger 6 and then recovered via a pipe 29, while the residual gas, after heating in passages 30 of the exchanger, is used to regenerate an adsorption bottle, the bottle 2B in the example considered, before being evacuated via a pipe 31.
- part of the medium pressure liquid nitrogen is, after expansion in an expansion valve 32, stored in the tank 13, and that a production of liquid nitrogen and / or liquid oxygen is supplied via a pipe 33 (for nitrogen) and / or 34 (for oxygen).
- this air pressure is the pressure of condensation of the air by heat exchange with the oxygen being vaporized under the high pressure, i.e. - say the pressure for which the knee G of liquefaction of one of the two air fractions, on the heat exchange diagram (temperatures on the abscissa, quantities of heat exchanged on the ordinate) is located slightly to the right of the vertical bearing P vaporization of oxygen under high pressure ( Figure 2).
- the temperature difference at the hot end of the exchange line is adjusted by means of the turbine 4, the suction temperature of which is indicated in A.
- the diagram in Figure 2 corresponds to the following numerical values: first high pressure: 24.5 bars; high oxygen pressure: 10 bars; second high pressure: 31 bars; second fraction of air: 28% incoming flow; fraction liquefied in 20: very low; liquid production: 40% of the amount of oxygen separated.
- the diagram in Figure 3 corresponds to the following numerical values: first high pressure: 28.5 bars; purification temperature: + 12 ° C; second fraction of air: 11% of the incoming flow; second high pressure: 36.4 bars; fraction expanded in 4 to 5.7 bars: 77% of the incoming flow; liquefied fraction in 20: 12% of the incoming air flow; high oxygen pressure: 40 bars; liquid production: 35% of the amount of oxygen separated.
- the air from the turbine 4 is sent to a separator pot 35.
- the resulting liquid phase is sent directly to the column 8, while the gas phase is, after partial heating in the heat exchange line, expanded at low pressure in a second turbine 36 fitted with an appropriate brake 37, then blown into column 9.
- This variant allows either to produce impure oxygen under good energy conditions thanks to the increase in the production of liquid which results from the presence of the second turbine, namely to increase the production of liquid at the expense of the quantity of oxygen separated, or to produce only liquid oxygen.
- FIG. 6 illustrates another variant in which the first high pressure is that of the penultimate stage of the main compressor 1.
- the air is divided into two fractions as before.
- the first fraction is reintroduced at the suction of the last stage of the compressor 1, and comes out at a higher pressure.
- this air is boosted at the second high pressure at 5 and is then treated as explained above.
- the second fraction of air is directly introduced into the passages 20A of the heat exchange line.
- an air flow can be taken between the precooler 38 and the blower 5 and sent via a pipe 39 in other passages 20B of the heat exchange line, therefore at an intermediate pressure between the first and second high pressures.
- the installation can produce, in addition to the low pressure nitrogen gas coming directly from the head of the column 9 and the high pressure oxygen gas, nitrogen gas under pressure, obtained by vaporization in the heat exchange line of a flow of liquid nitrogen taken from the pipe 33.
- This nitrogen vaporization can in particular be carried out by condensation of the air contained in the passages 20, 20A or 20B.
- the installation can produce gaseous oxygen and / or nitrogen gas under at least two different pressures, as explained in the aforementioned FR-A-2 674 011.
- a small part of the air from the blower 5 can be again pressurized by a second blower (not shown), for example coupled to the turbine 36 of Figure 5, before being cooled and liquefied in the line heat exchange, following the teaching of the request FR 91 15 935.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9301622A FR2701553B1 (fr) | 1993-02-12 | 1993-02-12 | Procédé et installation de production d'oxygène sous pression. |
FR9301622 | 1993-02-12 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0611218A1 true EP0611218A1 (de) | 1994-08-17 |
EP0611218B1 EP0611218B1 (de) | 1998-11-04 |
EP0611218B2 EP0611218B2 (de) | 2002-08-07 |
Family
ID=9444023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94400300A Expired - Lifetime EP0611218B2 (de) | 1993-02-12 | 1994-02-11 | Verfahren und Anlage zur Herstellung von Drucksauerstoff |
Country Status (10)
Country | Link |
---|---|
US (1) | US5426947A (de) |
EP (1) | EP0611218B2 (de) |
JP (1) | JPH06241650A (de) |
CN (1) | CN1101924C (de) |
AU (1) | AU660385B2 (de) |
CA (1) | CA2115399C (de) |
DE (1) | DE69414282T3 (de) |
ES (1) | ES2124856T5 (de) |
FR (1) | FR2701553B1 (de) |
ZA (1) | ZA94968B (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2828273A1 (fr) * | 2001-07-31 | 2003-02-07 | Air Liquide | Procede d'alimentation en air epure d'une unite de distillation d'air cryogenique et installation de mise en oeuvre de ce procede |
FR2928446A1 (fr) * | 2008-03-10 | 2009-09-11 | Air Liquide | Procede de modification d'un appareil de separation d'air par distillation cryogenique |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19815885A1 (de) * | 1998-04-08 | 1999-10-14 | Linde Ag | Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt bei der Tieftemperaturzerlegung von Luft |
FR2782544B1 (fr) * | 1998-08-19 | 2005-07-08 | Air Liquide | Pompe pour un liquide cryogenique ainsi que groupe de pompage et colonne de distillation equipes d'une telle pompe |
US7437890B2 (en) * | 2006-01-12 | 2008-10-21 | Praxair Technology, Inc. | Cryogenic air separation system with multi-pressure air liquefaction |
US7487648B2 (en) * | 2006-03-10 | 2009-02-10 | Praxair Technology, Inc. | Cryogenic air separation method with temperature controlled condensed feed air |
DE102009048456A1 (de) * | 2009-09-21 | 2011-03-31 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft |
DE102012017488A1 (de) | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0504029A1 (de) * | 1991-03-11 | 1992-09-16 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Verfahren zur Herstellung von gasförmigem Sauerstoff unter Druck |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2461906A1 (fr) * | 1979-07-20 | 1981-02-06 | Air Liquide | Procede et installation cryogeniques de separation d'air avec production d'oxygene sous haute pression |
JPS62102074A (ja) * | 1985-10-30 | 1987-05-12 | 株式会社日立製作所 | ガス分離方法及び装置 |
FR2652409A1 (fr) † | 1989-09-25 | 1991-03-29 | Air Liquide | Procede de production frigorifique, cycle frigorifique correspondant et leur application a la distillation d'air. |
US5148680A (en) † | 1990-06-27 | 1992-09-22 | Union Carbide Industrial Gases Technology Corporation | Cryogenic air separation system with dual product side condenser |
FR2674011B1 (fr) * | 1991-03-11 | 1996-12-20 | Maurice Grenier | Procede et installation de production d'oxygene gazeux sous pression. |
FR2695714B1 (fr) † | 1992-09-16 | 1994-10-28 | Maurice Grenier | Installation de traitement cryogénique, notamment de distillation d'air. |
-
1993
- 1993-02-12 FR FR9301622A patent/FR2701553B1/fr not_active Expired - Fee Related
-
1994
- 1994-01-27 US US08/186,844 patent/US5426947A/en not_active Expired - Lifetime
- 1994-02-07 JP JP6013677A patent/JPH06241650A/ja active Pending
- 1994-02-08 CN CN94101375A patent/CN1101924C/zh not_active Expired - Fee Related
- 1994-02-10 CA CA002115399A patent/CA2115399C/fr not_active Expired - Fee Related
- 1994-02-11 DE DE69414282T patent/DE69414282T3/de not_active Expired - Fee Related
- 1994-02-11 AU AU55060/94A patent/AU660385B2/en not_active Ceased
- 1994-02-11 EP EP94400300A patent/EP0611218B2/de not_active Expired - Lifetime
- 1994-02-11 ES ES94400300T patent/ES2124856T5/es not_active Expired - Lifetime
- 1994-02-11 ZA ZA94968A patent/ZA94968B/xx unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0504029A1 (de) * | 1991-03-11 | 1992-09-16 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Verfahren zur Herstellung von gasförmigem Sauerstoff unter Druck |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2828273A1 (fr) * | 2001-07-31 | 2003-02-07 | Air Liquide | Procede d'alimentation en air epure d'une unite de distillation d'air cryogenique et installation de mise en oeuvre de ce procede |
FR2928446A1 (fr) * | 2008-03-10 | 2009-09-11 | Air Liquide | Procede de modification d'un appareil de separation d'air par distillation cryogenique |
Also Published As
Publication number | Publication date |
---|---|
ZA94968B (en) | 1994-08-24 |
CN1101924C (zh) | 2003-02-19 |
EP0611218B1 (de) | 1998-11-04 |
AU660385B2 (en) | 1995-06-22 |
CA2115399A1 (fr) | 1994-08-13 |
DE69414282T2 (de) | 1999-06-17 |
CN1100514A (zh) | 1995-03-22 |
ES2124856T3 (es) | 1999-02-16 |
AU5506094A (en) | 1994-08-18 |
JPH06241650A (ja) | 1994-09-02 |
FR2701553A1 (fr) | 1994-08-19 |
FR2701553B1 (fr) | 1995-04-28 |
DE69414282T3 (de) | 2003-03-20 |
EP0611218B2 (de) | 2002-08-07 |
CA2115399C (fr) | 2005-04-26 |
DE69414282D1 (de) | 1998-12-10 |
ES2124856T5 (es) | 2003-03-01 |
US5426947A (en) | 1995-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0504029B1 (de) | Verfahren zur Herstellung von gasförmigem Sauerstoff unter Druck | |
EP0576314B1 (de) | Verfahren und Apparat zur Herstelling von gasförmigem Sauerstoff unter Druck | |
EP0689019B1 (de) | Verfahren und Einrichtung zur Herstellung von gasförmigem Drucksauerstoff | |
EP0628778B2 (de) | Verfahren und Hochdruckgasversorgungseinheit für eine ein Luftbestandteil verbrauchende Anlage | |
EP0420725B1 (de) | Kühlverfahren, der angewandte Kühlkreislauf und seine Anwendung in der Lufttrennung | |
EP0547946B1 (de) | Verfahren und Apparat zur Herstellung unreinen Sauerstoffs | |
FR2757282A1 (fr) | Procede et installation de fourniture d'un debit variable d'un gaz de l'air | |
WO2007068858A2 (fr) | Procédé de séparation d'air par distillation cryogénique | |
EP0605262B1 (de) | Druckgassauerstoffherstellungsverfahren und Apparat | |
EP0618415B1 (de) | Verfahren und Vorrichtung zur Herstellung von gasförmigem Sauerstoff und/oder gasförmigem Stickstoff unter Druck durch Zerlegung von Luft | |
EP0789208A1 (de) | Verfahren und Einrichtung zur Herstellung von gasförmigem Sauerstoff unter hohe Druck | |
EP0694746B1 (de) | Verfahren zur Herstellung von Druckgas mit variabelen Mengen | |
EP0611218B1 (de) | Verfahren und Anlage zur Herstellung von Drucksauerstoff | |
EP0641983B1 (de) | Verfahren und Einrichtung zur Herstellung von gasförmigem Sauerstoff und/oder Stickstoff unter Druck | |
FR2751737A1 (fr) | Procede et installation de production d'un gaz de l'air a debit variable | |
CA2146831A1 (fr) | Procede et installation pour la production de l'oxygene par distillation de l'air | |
EP0612967B1 (de) | Verfahren zur Herstellung von Sauerstoff und/oder Stickstoff unter Druck | |
EP0641982A1 (de) | Verfahren und Einrichtung zur Herstellung von wenigstens einem Gas aus Druckluft | |
CA2109148A1 (fr) | Procede et installation de production d'azote et d'oxygene | |
FR2674011A1 (fr) | Procede et installation de production d'oxygene gazeux sous pression. | |
FR2685460A1 (fr) | Procede et installation de production d'oxygene gazeux sous pression par distillation d'air. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940216 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL SE |
|
17Q | First examination report despatched |
Effective date: 19960118 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 69414282 Country of ref document: DE Date of ref document: 19981210 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19981209 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2124856 Country of ref document: ES Kind code of ref document: T3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: LINDE AKTIENGESELLSCHAFT Effective date: 19990803 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: LINDE AKTIENGESELLSCHAFT |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR |
|
27A | Patent maintained in amended form |
Effective date: 20020807 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): BE DE ES FR GB IT NL SE |
|
NLR2 | Nl: decision of opposition | ||
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Date of ref document: 20021106 Kind code of ref document: T5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080212 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080122 Year of fee payment: 15 Ref country code: GB Payment date: 20080118 Year of fee payment: 15 Ref country code: DE Payment date: 20080118 Year of fee payment: 15 Ref country code: SE Payment date: 20080121 Year of fee payment: 15 Ref country code: NL Payment date: 20080118 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080114 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20080208 Year of fee payment: 15 |
|
BERE | Be: lapsed |
Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION Effective date: 20090228 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090211 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090212 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090302 |