EP0608212A1 - Procede de traitement des infections virales - Google Patents
Procede de traitement des infections viralesInfo
- Publication number
- EP0608212A1 EP0608212A1 EP91915297A EP91915297A EP0608212A1 EP 0608212 A1 EP0608212 A1 EP 0608212A1 EP 91915297 A EP91915297 A EP 91915297A EP 91915297 A EP91915297 A EP 91915297A EP 0608212 A1 EP0608212 A1 EP 0608212A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tnf
- ligand
- residues
- binds
- binding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 208000036142 Viral infection Diseases 0.000 title claims abstract description 27
- 230000009385 viral infection Effects 0.000 title claims abstract description 26
- 239000003446 ligand Substances 0.000 claims abstract description 126
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 claims abstract description 78
- 241000124008 Mammalia Species 0.000 claims abstract description 25
- 238000011282 treatment Methods 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 206010028980 Neoplasm Diseases 0.000 claims description 72
- 230000027455 binding Effects 0.000 claims description 70
- 230000000694 effects Effects 0.000 claims description 58
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 52
- 102000005962 receptors Human genes 0.000 claims description 39
- 108020003175 receptors Proteins 0.000 claims description 39
- 102000057041 human TNF Human genes 0.000 claims description 35
- 230000006698 induction Effects 0.000 claims description 32
- 210000002889 endothelial cell Anatomy 0.000 claims description 18
- 150000001413 amino acids Chemical class 0.000 claims description 15
- 230000000840 anti-viral effect Effects 0.000 claims description 15
- 102000008070 Interferon-gamma Human genes 0.000 claims description 13
- 108010074328 Interferon-gamma Proteins 0.000 claims description 13
- 241001465754 Metazoa Species 0.000 claims description 13
- 230000003511 endothelial effect Effects 0.000 claims description 13
- 229940044627 gamma-interferon Drugs 0.000 claims description 13
- 231100000135 cytotoxicity Toxicity 0.000 claims description 12
- 230000003013 cytotoxicity Effects 0.000 claims description 12
- 102000009123 Fibrin Human genes 0.000 claims description 10
- 108010073385 Fibrin Proteins 0.000 claims description 10
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 claims description 10
- 229950003499 fibrin Drugs 0.000 claims description 10
- 230000002947 procoagulating effect Effects 0.000 claims description 10
- 230000008021 deposition Effects 0.000 claims description 9
- 239000012634 fragment Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000003814 drug Substances 0.000 claims description 7
- 238000011260 co-administration Methods 0.000 claims description 5
- 108010002350 Interleukin-2 Proteins 0.000 claims description 3
- 108010003723 Single-Domain Antibodies Proteins 0.000 claims description 3
- 229960004150 aciclovir Drugs 0.000 claims description 3
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 claims description 3
- 239000003112 inhibitor Substances 0.000 claims description 3
- 101800000194 Growth hormone-binding protein Proteins 0.000 claims description 2
- 102400001066 Growth hormone-binding protein Human genes 0.000 claims description 2
- 239000003443 antiviral agent Substances 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 3
- 230000000259 anti-tumor effect Effects 0.000 abstract description 6
- 230000004071 biological effect Effects 0.000 abstract description 4
- 206010054094 Tumour necrosis Diseases 0.000 abstract 1
- 102000009270 Tumour necrosis factor alpha Human genes 0.000 description 264
- 108050000101 Tumour necrosis factor alpha Proteins 0.000 description 264
- 210000004027 cell Anatomy 0.000 description 49
- 241000699670 Mus sp. Species 0.000 description 23
- 241000700605 Viruses Species 0.000 description 13
- 238000003556 assay Methods 0.000 description 13
- 102000004196 processed proteins & peptides Human genes 0.000 description 12
- 238000001727 in vivo Methods 0.000 description 11
- 210000004881 tumor cell Anatomy 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 10
- 238000010790 dilution Methods 0.000 description 9
- 239000012895 dilution Substances 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 108010044091 Globulins Proteins 0.000 description 8
- 102000006395 Globulins Human genes 0.000 description 8
- 235000001014 amino acid Nutrition 0.000 description 8
- 208000015181 infectious disease Diseases 0.000 description 8
- 230000031915 positive regulation of coagulation Effects 0.000 description 8
- 230000001404 mediated effect Effects 0.000 description 7
- 210000001672 ovary Anatomy 0.000 description 7
- 206010003445 Ascites Diseases 0.000 description 6
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 6
- 230000002788 anti-peptide Effects 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 201000001441 melanoma Diseases 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 239000012981 Hank's balanced salt solution Substances 0.000 description 5
- 241001494479 Pecora Species 0.000 description 5
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 5
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 206010040070 Septic Shock Diseases 0.000 description 4
- 206010044248 Toxic shock syndrome Diseases 0.000 description 4
- 231100000650 Toxic shock syndrome Toxicity 0.000 description 4
- 206010046865 Vaccinia virus infection Diseases 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 210000004408 hybridoma Anatomy 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 101150030901 mab-21 gene Proteins 0.000 description 4
- 238000011275 oncology therapy Methods 0.000 description 4
- 239000003805 procoagulant Substances 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 208000007089 vaccinia Diseases 0.000 description 4
- 208000030507 AIDS Diseases 0.000 description 3
- 206010005003 Bladder cancer Diseases 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 201000009030 Carcinoma Diseases 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 102000008946 Fibrinogen Human genes 0.000 description 3
- 108010049003 Fibrinogen Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 102000004142 Trypsin Human genes 0.000 description 3
- 108090000631 Trypsin Proteins 0.000 description 3
- 201000001531 bladder carcinoma Diseases 0.000 description 3
- 108010006025 bovine growth hormone Proteins 0.000 description 3
- 201000008275 breast carcinoma Diseases 0.000 description 3
- 244000309466 calf Species 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000035602 clotting Effects 0.000 description 3
- 229940012952 fibrinogen Drugs 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 229940092253 ovalbumin Drugs 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 238000003127 radioimmunoassay Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- 239000012588 trypsin Substances 0.000 description 3
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 3
- DHBXNPKRAUYBTH-UHFFFAOYSA-N 1,1-ethanedithiol Chemical compound CC(S)S DHBXNPKRAUYBTH-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 2
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 201000008808 Fibrosarcoma Diseases 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- AZLASBBHHSLQDB-GUBZILKMSA-N Leu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CC(C)C AZLASBBHHSLQDB-GUBZILKMSA-N 0.000 description 2
- 108010058846 Ovalbumin Proteins 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 210000002403 aortic endothelial cell Anatomy 0.000 description 2
- 239000003114 blood coagulation factor Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- -1 dounorubicin Chemical compound 0.000 description 2
- 108010076046 endothelial cell procoagulant activity Proteins 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000003054 hormonal effect Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 210000003501 vero cell Anatomy 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- VUCNQOPCYRJCGQ-UHFFFAOYSA-N 2-[4-(hydroxymethyl)phenoxy]acetic acid Chemical compound OCC1=CC=C(OCC(O)=O)C=C1 VUCNQOPCYRJCGQ-UHFFFAOYSA-N 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 102000011767 Acute-Phase Proteins Human genes 0.000 description 1
- 108010062271 Acute-Phase Proteins Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 206010006895 Cachexia Diseases 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010063094 Cerebral malaria Diseases 0.000 description 1
- 241000867607 Chlorocebus sabaeus Species 0.000 description 1
- 101800004419 Cleaved form Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 206010019851 Hepatotoxicity Diseases 0.000 description 1
- 101000764535 Homo sapiens Lymphotoxin-alpha Proteins 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 108010013563 Lipoprotein Lipase Proteins 0.000 description 1
- 102100022119 Lipoprotein lipase Human genes 0.000 description 1
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 1
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 1
- 206010027260 Meningitis viral Diseases 0.000 description 1
- 101000648740 Mus musculus Tumor necrosis factor Proteins 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 241001467552 Mycobacterium bovis BCG Species 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102000007568 Proto-Oncogene Proteins c-fos Human genes 0.000 description 1
- 108010071563 Proto-Oncogene Proteins c-fos Proteins 0.000 description 1
- 206010062237 Renal impairment Diseases 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229960000190 bacillus calmette–guérin vaccine Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000013553 cell monolayer Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 208000009190 disseminated intravascular coagulation Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 108091007231 endothelial receptors Proteins 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 230000007686 hepatotoxicity Effects 0.000 description 1
- 229940106780 human fibrinogen Drugs 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 101150091368 mab-20 gene Proteins 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- IOPLHGOSNCJOOO-UHFFFAOYSA-N methyl 3,4-diaminobenzoate Chemical compound COC(=O)C1=CC=C(N)C(N)=C1 IOPLHGOSNCJOOO-UHFFFAOYSA-N 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- 230000002071 myeloproliferative effect Effects 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000002997 osteoclast Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 150000002960 penicillins Chemical class 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 201000001514 prostate carcinoma Diseases 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 206010038464 renal hypertension Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 208000013223 septicemia Diseases 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- ZERULLAPCVRMCO-UHFFFAOYSA-N sulfure de di n-propyle Natural products CCCSCCC ZERULLAPCVRMCO-UHFFFAOYSA-N 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000011870 unpaired t-test Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- JXLYSJRDGCGARV-CFWMRBGOSA-N vinblastine Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-CFWMRBGOSA-N 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 201000010044 viral meningitis Diseases 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/241—Tumor Necrosis Factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/525—Tumour necrosis factor [TNF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to a method of treating viral infection in a mammal comprising administering to the mammal an anti-TNF ligand either alone or in combination with tumour necrosis factor alpha (TNF) .
- the ligand is characterised in that the binding of the ligand to the TNF is such that the biological activity of TNF is modified.
- the invention also relates to a composition for treating viral infection.
- Tumor necrosis factor alpha is a product of activated macrophages first observed in the serum of experimental animals presensitized with Bacillus Calmette-Guerin or Corynebacterium parvum and challenged with endotoxin (LPS) . Following the systematic administration of TNF hae orrhagic necrosis was observed in some transplantable tumours of mice while in vitro TNF caused cytolytic or cytostatic effects on tumour cell lines. In addition to its host-protective effect, TNF has been implicated as the causative agent of pathological changes in septicemia, cachexia and cerebral malaria. Passive immunization of mice with a polyclonal rabbit serum against TNF has been shown to protect mice against the lethal effects of LPS endotoxin, the initiating agent of toxic shock, when administered prior to infection.
- TNF has been cloned allowing the usefulness of this monokine as a potential cancer therapy agent to be assessed. While TNF infusion into cancer patients in stage 1 clinical trials has resulted in tumour regression, side-effects such as thro bocytopaenia, lymphocytopaenia, hepatotoxicity, renal impairment and hypertension have also been reported. These quite significant side-effects associated with the clinical use of TNF are predictable in view of the many known effects of TNF, some of which are listed in Table 1. TABLE 1 BIOLOGICAL ACTIVITIES OF TNF -ANTI-T ⁇ MOUR -ANTI-VIRAL -ANTI-PARASITE
- tumour cells pyrogenie activity angiogenic activity inhibition of lipoprotein lipase activation of neutrophils osteoclast activation induction of endothelial, monocyte and tumour cell procoagulant activity induction of surface antigens on endothelial cells induction of IL-6 induction of c-myc and c-fos induction of EGF receptor induction of IL-1 induction of TNF synthesis induction of GM-CSF synthesis increased prostaglandin and collagenase synthesis induction of acute phase protein C3
- TNF activation which occurs as a consequence of TNF activation of endothelium and also peripheral blood monocytes.
- Disseminated intravascular coagulation is associated with toxic shock and many cancers including gastro-intestinal cancer, cancer of the pancreas, prostate, lung, breast and ovary, melanoma, acute leukaemia, myeloma, myeloproliferative syndrome and myeloblastic leukaemia.
- Clearly modifications of TNF activity such that tumour regression activity remains intact but other undesirable effects such as activation of c agulation are removed or masked would lead to a more advantageous cancer therapy. Complete abrogation of TNF activity is sought for successful treatment of toxic shock.
- the present inventors have produced panels of monoclonal antibodies active against human TNF and have characterised them with respect to their effects on the anti-tumour effect of TNF (both in vitro and in vivo) , TNF receptor binding, activation of coagulation (both in vitro and in vivo) and defined their topographic specificities.
- This approach has led the inventors to show that different topographic regions of TNF alpha are associated with different activities.
- This work is described in detail in a co-pending patent application filed under the Patent Cooperation Treaty in the Australian Receiving Office on 7 August 1990 and disclosure of this application is incorporated herein by reference.
- the present inventors have made the surprising finding that the administration of TNF in combination with a specific anti-TNF ligand provides an effective anti-viral treatment.
- the administration of the specific anti-TNF ligand alone will provide an effective anti-viral therapy as the ligand will bind to endogenous TNF, thereby providing the same effect as if the anti-TNF ligand was administered in combination with TNF.
- This administration of the anti-TNF ligand alone may be the preferred method of therapy in disease states in which the endogenous levels of TNF are elevated.
- the present invention consists in a method of treating viral infection in a mammal comprising administering to the mammal an anti-TNF ligand either alone or in combination with TNF, the ligand being characterised in that when it binds to TNF the induction of endothelial procoagulant activity of the TNF is inhibited and the anti-viral activity of the TNF is unaffected or enhanced.
- the ligand is further characterised in that when it binds to TNF the binding of TNF to receptors on endothelial cells is inhibited; the induction of tumour fibrin deposition and tumour regression activities for the TNF are enhanced; the cytotoxicity is unaffected and the tumour receptor binding activities of the TNF are unaffected or enhanced.
- the ligand is characterised in that the epitope of the TNF defined by the topographic region of residues 1 to 18 is substantially prevented from binding to naturally occurring biologically active ligands.
- the ligand binds to TNF such that the epitope of the TNF defined by the topographic regions of residues 1 - 30, 117 - 128 and 141 - 153 and more preferably in the topographic regions of residues 1 - 26, 117 - 128 and 141-153 .' substantially prevented from binding to naturally occurring biologically active ligands.
- sequence regions are topographically represented in Figure 26.
- the present invention consists in a method of treating viral infection in a mammal comprising administering to the animal an anti-TNF ligand either alone or in combination with TNF, the ligand being characterised in that it binds to residues 1 to 18 of human TNF.
- the present invention consists in a method of treating viral infection in a mammal comprising administering to the mammal an anti-TNF ligand either alone or in combination with TNF, the ligand being characterised in that it binds to human TNF in the topographic regions of residues 1 - 30, 117 - 128 and 141-153.
- the ligand binds to human TNF in the topographic regions of residues 1 - 26, 117 - 128 and 141-153. Such sequence regions are topographically represented in Figure 26.
- the ligand is an antibody raised against a peptide having an amino acid sequence substantially corresponding to amino acids 1 to 18 of human TNF (Peptide 301).
- the ligand is monoclonal antibody designated MAb 32.
- MAb 32 A sample of the hybridoma producing MAb 32 was deposited with the European Collection of Animal Cell Cultures (ECACC), Vaccine Research and Production Laboratory, Public Health Laboratory Service, Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 OJG, United Kingdom on 3 August 1989 and was accorded accession number 89080302.
- the method of treatment includes the co-administration of another anti-viral agent, such as, IL-2, AZT or acyclovir.
- another anti-viral agent such as, IL-2, AZT or acyclovir.
- the present inventors have also found that there is a synergistic effect in treatment of viral infection between gamma interferon and TNF to which the ligand of the present is bound. This synergistic effect can be obtained either by the administration of the anti-TNF ligand alone by making use of endogenous TNF and endogenous interferon. As would be clear to a person skilled in the art this same effect may be obtained in the following ways:- 1. Administration of anti-TNF ligand bound to TNF (making use of endogenous interferon);
- the method of treatment includes the co-administration of gamma interferon with the anti-TNF ligand either alone or in combination with TNF.
- the present invention consists in a composition for use in treating viral infection the composition comprising gamma interferon and an anti-TNF ligand either alone or bound to TNF, the ligand being characterised in that when it binds to TNF the induction of endothelial procoagulant activity of the TNF is inhibited and the anti-viral activity of the TNF is unaffected or enhanced.
- the ligand is further characterised in that when it binds to TNF the binding of TNF to receptors on endothelial cells is inhibited; the induction of tumour fibrin deposition and tumour regression activities for the TNF are enhanced; the cytotoxicity is unaffected and the tumour receptor binding activities of the TNF are unaffected or enhanced.
- the ligand is characterised in that the epitope of the TNF defined by the topographic region of residues 1 to 18 is substantially prevented from binding to naturally occurring biologically active ligands.
- the ligand binds to TNF such that the epitope of the TNF defined by the topographic regions of residues 1 - 30, 117 - 128 and 141 - 153 and more preferably in the topographic regions of residues 1 - 26, 117 - 128 and 141-153 is substantially prevented from binding to naturally occurring biologically active ligands.
- sequence regions are topographically represented in Figure 26.
- the present invention consists in a composition for use in treating viral infection in a mammal the composition comprising gamma interferon and an anti-TNF ligand either alone or bound to TNF, the ligand being characterised in that it binds to residues 1 - 18 of human TNF.
- the present invention consists in a composition for use in treating viral infection in a mammal comprising gamma interferon and an anti-TNF ligand either alone or bound to TNF, the ligand being characterised in that it binds to human TNF in the topographic regions of residues 1 - 30, 117 - 128 and 141-153.
- the ligand binds to human TNF in the topographic regions of residues 1 - 26, 117 - 128 and 141-153. Such sequence regions are topographically represented in Figure 26.
- the ligand is an antibody raised against a peptide having an amino acid sequence substantially corresponding to amino acids 1 to 18 of human TNF (Peptide 301) .
- the ligand is monoclonal antibody designated MAb 32.
- the present invention consists in the use of an anti-TNF ligand either alone or in combination with TNF in the production of a medicament for the treatment of viral infection in a mammal, the ligand being characterised in that when it binds to TNF the induction of endothelial procoagulant activity of the TNF is inhibited and the anti-viral activity of the TNF is unaffected or enhanced.
- the ligand is further characterised in that when it binds to TNF the binding of TNF to receptors on endothelial cells is inhibited; the induction of tumour fibrin deposition and tumour regression activities for the TNF are enhanced; the cytotoxicity is unaffected and the tumour receptor binding activities of the TNF are unaffected or enhanced.
- the ligand is characterised in that the epitope of the TNF defined by the topographic region of residues 1 to 18 is substantially prevented from binding to naturally occurring biologically active ligands.
- the ligand binds to TNF such that the epitope of the TNF defined by the topographic regions of residues 1 - 30, 117 - 128 and 141 - 153 and more preferably in the topographic regions of residues 1 - 26, 117 - 128 and 141-153 is substantially prevented from binding to naturally occurring biologically active ligands.
- sequence regions are topographically represented in Figure 26.
- the present invention consists in the use of an anti-TNF ligand either alone or in combination with TNF in the production of a medicament for the treatment of viral infection in a mammal, the anti-TNF ligand being characterised in that it binds to residues 1 - 18 of human TNF.
- the present invention consists in the use of an anti-TNF ligand either alone or in combination with TNF in the production of a medicament for the treatment of viral infection in a mammal, the ligand being characterised in that it binds to human TNF in the topographic regions of residues 1 - 30, 117 - 128 and 141 - 153.
- the ligand binds to human TNF in the topographic regions of residues 1 - 26, 117 - 128 and 141-153. Such sequence regions are topographically represented in Figure 26.
- the ligand is an antibody raised against a peptide having an amino acid sequence substantially corresponding to amino acids 1 to 18 of human TNF (Peptide 301).
- the ligand is monoclonal antibody designated MAb 32.
- the ligand is selected from the group consisting of antibodies, F(ab) fragments, restructured antibodies (CDR grafted humanised antibodies), single domain antibodies (dABs), single chain antibodies, anti-idiotypic antibodies, serum binding proteins, receptors and natural inhibitors.
- the ligand may also be a protein or peptide which has been synthesised and which is analogous to one of the foregoing fragments. However, it is presently preferred that the ligand is a monoclonal or polyclonal antibody or F(ab) fragment thereof.
- TNF TNF Regression
- Endothelial Procoagulant "Induction of Tumour Fibrin Deposition”, “Cytotoxicity” and “Receptor Binding” are to be determined by the methods described below.
- single domain antibodies as used herein is used to denote those antibody fragments such as described in Ward et al (Nature, Vol. 341, 1989, 544 - 546) as suggested by these authors.
- Fig. 1 shows the results of a titration assay with MAb 32 against TNF
- Fig. 2 shows the effect of anti-TNF monoclonal antibodies 1 and 32 on TNF cytotoxicity in WEHI-164 cells;
- Fig. 3 shows the effect of anti-TNF MAbs on induction of endothelial cell procoagulant activity by TNF;
- Fig. 4 is a schematic representation of epitopes on TNF;
- Fig. 5 shows binding of radio labelled TNF to receptors on bovine aortic endothelial cells
- Fig. 6 shows receptor binding studies of TNF complexed with MAb 32 (— — ) , control antibody (. and MAb 47 ( ⁇ fl
- Fig. 7 shows receptor binding studies of TNF co plexed with MAb 32 (- _. ), control antibody (— Eh- ) and MAb 47 (— ⁇ —) on melanoma cell line IGR3;
- Fig. 8 shows receptor binding studies of TNF complexed with MAb 32 (— —), control antibody (— Q—) and MAb 47 (— ⁇ —) on bladder carcinoma cell line 5637;
- Fig. 9 shows receptor binding studies of TNF complexed with MAb 32 ( - ) , control antibody (—Q—) and MAb 47 (— f —) on breast carcinoma cell line MCF7;
- Fig. 10 shows receptor binding studies of TNF complexed with MAb 32 (— — ⁇ ) .
- Fig. 11 shows the effect on TNF-mediated tumour regression in vivo by MAb 32 ( gg ) control MAb ( ⁇ g ) and MAb 47 (*);
- Fig. 12 shows the effect on TNF-mediated tumour regression in vivo by control MAb, MAb 32 and univalent FAb' fragments of MAb 32;
- Fig. 13 shows the effect on TNF induced tumour regression by control MAb ( flf ) , MAb 32 ( Qg . ) and peptide 301 antiserum ( £y ) ;
- Fig. 14 shows MAb 32 reactivity with overlapping peptides of 10 AA length
- Fig. 15 shows a schematic three dimensional representation of the TNF molecule
- Fig. 16 shows topographically the region of residues 1 - 26, 117 - 128 and 141 - 153;
- Fig. 17 shows the virus levels in ovaries following treatment with TNF alone and with 200 ⁇ l TN -MAb 32; O 2 ⁇ g TNF; f 2 / jg TNF + Ab; ⁇ 4 ⁇ g TNF; ⁇ 4 ⁇ g TNF + Ab;
- Fig. 18 shows the virus levels in lungs following administration of TNF alone and 200 ⁇ l TNF-MAb 32; D 2 ⁇ g TNF; M 2 ⁇ g TNF + Ab; ⁇ 4 ⁇ g TNF; 4 ⁇ g TNF + Ab; Fig. 19 shows virus levels in spleens following administration of TNF alone and 200 ⁇ l TNF-MAb 32; O 2 ⁇ g TNF; _f 2 ⁇ g TNF + Ab; 2 4 ⁇ g TNF; gg 4 ⁇ g TNF + Ab; Fig.
- Fig. 21 shows in vitro anti-HSV-1 induction in L929 cells treated with TNF and MAb 32;
- Fig. 22 shows HSV-1 titration in the ovaries of mice treated twenty-four hours before infection with various TNF concentrations with or without Ab301; CD TNF alone; ⁇ 2 TNF plus 1/50 Ab 301; and
- Fig. 23 shows the binding of I-TNF to L929 cells either alone or in the presence of MAb 32 or Ab 301;
- TNF alone O TNF plus MAb 32; — ⁇ — TNF plus AB 301. Animals and Tumour Cell Lines
- mice were immunised with 10 ug human recombinant TNF intra-peritoneally in Freund's complete adjuvant. One month later 10 ug TNF in Freund's incomplete adjuvant was administered. Six weeks later and four days prior to fusion selected mice were boosted with 10 ug TNF in PBS. Spleen cells from immune mice were fused with the myeloma Sp2/0 according to the procedure of Rathjen and Underwood (1986, Mol. Immunol. 2 441). Cell lines found to secrete anti-TNF antibodies by radioimmunoassay were subcloned by limiting dilution on a feeder layer of mouse peritoneal irtacrophages. Antibody subclasses were determined by ELISA (Misotest, Commonwealth Serum Laboratories). Radioimmunoassay
- TNF was iodinated using lac operoxidase according to standard procedures. Culture supernatants from hybridomas (50 ul) were incubated with 1251 TNF (20,000 cpm in 50 ul) overnight at 4°C before the addition of 100 ul Sac-Cel (donkey anti-mouse/rat immunoglobulins coated cellulose, Wellcome Diagnostics) and incubated for a further 20 minutes at room temperature (20 C) . Following this incubation 1 ml of PBS was added and the tubes centrifuged at 2,500 rpm for 5 minutes. The supernatant was decanted and the pellet counted for bound radioactivity. Antibody-Antibody Competition Assays
- the comparative specificites of the monoclonal antibodies were determined in competition assays using either immobilized antigen (LACT) or antibody (PACT) (Aston and Ivanyi, 1985, Pharmac. Therapeut. 22, 403) PACT
- tumour regression activity was assessed in three tumour models: the subcutaneous tumours WEHI-164 and Meth A sarcoma and the ascitic Meth A tumour.
- Subcutaneous tumours were induced by the injection of approximately 5 x
- tumours between 10 - 15 mm approximately 14 days later.
- Mice were injected intra-peritoneally with human recombinant TNF (10 micrograms) plus monoclonal antibody (200 microlitres ascites globulin) for four consecutive days.
- Control groups received injections of PBS alone or TNF plus monoclonal antibody against bovine growth hormone.
- tumour size was measured with calipers in the case of solid tumours or tumour-bearing animals weighed in the case of ascites mice. These measurements were taken daily throughout the course of the experiment. Radio-Receptor Assays
- WEHI-164 cells grown to confluency were scrape harvested and washed once with 1% BSA in Hank's balanced salt solution (HBSS, Gibco) .
- 100 ul of unlabelled TNF (1-10,000 ng/tube) or monoclonal antibody (10 fold dilutions commencing 1 in 10 to 1 in 100,000 of ascitic globulin) was added to 50ul 1251 TNF (50,000 cpm).
- WEHI cells were then added (200 microlitres containing 2 x 10 cells) . This mixture was incubated in a shaking water bath at 37°C for 3 hours. At the completion of this incubation 1 ml of HBSS was added and the cells spun at 16,000 rpm for 30 seconds. The supernatant was discarded and bound 1251 TNF in the cell pellet counted. All dilutions were prepared in HBSS containing 1% BSA. Procoagulant Induction by TNF on Endothelial Cells
- Bovine aortic endothelial cells (passage 10) were grown in RPMI-1640 containing 10% foetal calf serum (FCS), penicillin, streptomycin, and 2-mercaptoethanol at 37°C in 5% C0 2 .
- FCS foetal calf serum
- penicillin penicillin
- streptomycin 2-mercaptoethanol
- the cells were trypsinised and plated into 24-well Costar trays according to the protocol of Bevilacqua et al. f 1986 (PNAS £1, 4533).
- TNF (0-500 units/culture) and monoclonal antibody (1 in 250 dilution of ascitic globulin) was added after washing of the confluent cell monolayer with HBSS. After 4 hours the cells were scrape harvested, frozen and sonicated.
- Total cellular procoagulant activity was determined by the recalcification time of normal donor platelet-poor plasma performed at 37 C, 100 microlitres of citrated platelet-poor plasma was added to 100 ul of cell lysate and 100 ul of calcium chloride (30mM) and the time taken for clot formation recorded.
- tumour cell culture supernatant was added to endothelial cells treated with TNF and/or monoclonal antibody (final concentration of 1 in 2) .
- MAbs 1, 47 and 54 which have been shown in competition binding studies to share an epitope on TNF, can be seen to have highly desirable characteristics in treatment of toxic shock and other conditions of bacterial, viral and parasitic infection where TNF levels are high requiring complete neutralisation of TNF.
- Other monoclonal antibodies such as MAb 32 are more appropriate as agents for coadministration with TNF during cancer therapy since they do not inhibit tumour regression but do inhibit activation of coagulation. This form of therapy is particularly indicated in conjunction with cytotoxic drugs used in cancer therapy which may potentiate activation of coagulation by TNF (e.g.
- MAb 32 (Fig. 1) is an IgG2b,K antibody with an
- MAb 32 does not inhibit TNF cytotoxicity in vitro as determined in the WEHI-164 assay.
- Monoclonal antibody 32 variably enhances TNF-induced tumour regression activity against WEHI-164 fibrosarcoma tumours implanted subcutaneously into BALB/c mice at a TNF dose of lOug/day (see Fig. 11). This feature is not common to all monoclonal antibodies directed against TNF but resides within the binding site specificity of MAb 32 (Fig. 4) which may allow greater receptor mediated uptake of TNF into tumour cells (see Table 3).
- Enhancement of TNF activity by MAb 32 at lower doses of TNF is such that at least tenfold less TNF is required to achieve the same degree of tumour regression (see Fig. 11.
- the results for day 1, 2.5ug and lug TNF and day 2, 5ug, 2.5ug and lug are statistically significant in a t-test at p ( .01 level. This level of enhancement also increases the survival rate of recipients since the lower dose of TNF used is not toxic.
- Fig. 12 shows that univalent Fab fragments of MAb 32 also cause enhancement of TNF-induced tumour regression in the same manner as whole MAb 32 (see below).
- MAb 32 inhibits the expression of clotting factors on endothelial cells normally induced by incubation of the cultured cells with TNF (see Fig. 3). This response may be mediated by a previously unidentified TNF receptor which is distinct to the receptor found on other cells.
- MAb 32 enhances the in vivo activation of coagulation within the tumour bed as shown by the incorporation of radiolabelled fibrinogen. This may be due to activation of monocytes/macrophage procoagulant and may provide further insight into the mechanism of TNF-induced tumour regression.
- the BAE cells were incubated for one hour in the presence of either cold TNF (0 to lOOng) or MAb (ascites globulins diluted 1/100 to 1/100,000) and iodinated TNF (50,000 cpm) . At the end of this time the medium was withdrawn and the cells washed before being lysed with IM sodium hydroxide. The cell lysate was then counted for bound radioactive TNF. Specific binding of labelled TNF to the cells was then determined.
- results obtained in the clotting assay using BAE cells cultured in the presence of TNF and anti-TNF MAb correlate with the results obtained in the BAE radioreceptor assay i.e. MAbs which inhibit the induction of clotting factors on the surface of endothelial cells (as shown by the increase in clotting time compared to TNF alone) also inhibit the binding of TNF to its receptor. This is exemplified by MAbs 32 and 47.
- MAb 32 which does not inhibit TNF binding to WEHI-164 cells, does inhibit binding of TNF to endothelial cells. This result provides support for the hypothesis that distinct functional sites exist on the TNF molecule and that these sites interact with distinct receptor subpopulations on different cell types. Thus ligands which bind to defined regions of TNF are able to modify the biological effects of TNF by limiting its binding to particular receptor subtypes. As shown in Figure 5 MAb 47 is a particularly potent inhibitor of TNF interaction with endothelial cells, the percentage specific binding at a dilution of 1/100 to 1/10,000 being effectively zero. RECEPTOR BINDING STUDIES OF HUMAN TNF COMPLEXED WITH MAB 32 ON HUMAN CARCINOMA CELL LINES IN VITRO
- MAb 32 has been shown to enhance the anti-tumour activity of human TNF.
- the mechanisms behind the enhancement may include restriction of TNF binding to particular (tumour) receptor subtypes but not others (endothelial) with subsequent decrease in TNF toxicity to non-tumour cells. This mechanism does not require enhanced uptake of TNF by tumour cells in in vitro assays.
- MAb 32 also potentiates the binding of human TNF directly to TNF receptors on certain human carcinoma cell lines.
- the following human carcinoma cell lines have been assayed for enhanced receptor-mediated uptake of TNF in the presence of MAb 32: BIO, CaCo, HT 29, SKC01 (all colon carcinomas), 5637 (Bladder carcinoma), MM418E (melanoma), IGR3 (melanoma), MCF 7 (breast carcinoma).
- the cells were propogated in either RPMI-1640 (MM418E) DMEM (CaCo and IGR 3) or Iscoves modified DMEM (BIO, HT 29, SK01, S637, MCF 7) supplemented with 10% foetal calf serum, penecillin/streptomycin and L-glutamine.
- Receptor assays were performed as previously described for endothelial cells except that the incubation time with iodinated TNF was extended to 3 hours for all but the BIO cells for which the radiolabel was incubated for 1 hour.
- MAb32 did not affect TNF-receptor interaction in any of the other cell lines as shown by B 10 (Fig. 10)
- MAb 47 which has been shown to inhibit TNF binding to WEHI-164 cells and endothelial cells, and which also inhibits TNF-mediated tumour regression was found to markedly inhibit TNF binding to all the cell lines tested (Figs. 6-10).
- Receptor binding analyses have indicated a second mechanism whereby MAb 32 may potentiate the anti-tumour activity of TNF.
- This second pathway for enhancement of TNF results from increased uptake of TNF by tumour all receptors in the presence of MAb 32.
- MAB 32 OR UNIVALENT FAB' FRAGMENTS OF MAB 32
- Fig. 12 The results using the univalent FAb' fragments of MAb 32 are shown in Fig. 12. Tumour size was determined daily during the course of the experiment. The results show the mean +/- SD% change in tumour area at the completion of treatment (day 2). Differences between the control, TNF and MAb 32-TNF treated groups are statistically significant in a T-test at the p ( .01 level.
- Fig. 13 shows the percent change in tumour area in tumour-bearing mice treated for three days with TNF plus control MAb (antibody against bovine growth hormone), TNF plus MAb 32 or TNF plus antiserum (globulin fraction) against peptide 301.
- control group is significantly different from both of the test groups (MAb 32, antiserum 301) while the MAb 32 and peptide antiserum 301 groups are not significantly different from each other, (control vs MAb 32, p ( .002; control vs antipeptide 301, p ( .025).
- antisera raised using a peptide which comprises part of the MAb 32 specificity also causes TNF enhancement of tumour regression.
- the peptides were tested for reactivity with the MAbs by ELISA.
- MAbs which had TNF reactivity absorbed from them by prior incubation with whole TNF were also tested for reactivity with the peptides and acted as a negative control.
- Longer peptides of TNF were synthesized as described below. These peptides were used to raise antisera in sheep using the following protocol.
- Peptide 304 H-Leu-Phe-Lys-Gly-Gln-Gly-Cys-Pro-Ser-Thr-His-Val-Leu-Leu-
- Peptide 309 H-His-Val-Leu-Leu-Thr-His-Thr-Ile-Ser-Arg-Ile-Ala-Val-Ser-
- PepSyn KA is a polydimethylacrylamide gel on Kieselguhr support with 4-hydroxymethylphenoxy- acetic acid as the functionalised linker (Atherton et al., 1975, J.Am.Chem. Soc. JLZ, 6584-6585).
- the carboxy terminal amino acid was attached to the solid support by a DCC/DMAP-mediated symmetrical-anhydride esterification.
- Peptide 301, 302, 305 are cleaved form the resin with 95% TFA and 5% thioanisole (1.5 h) and purified on reverse phase C4 column, (Buffer A - 0.1% aqueous TFA, Buffer B - 80% ACN 20% A) .
- Peptide 303, 304 are cleaved from the resin with 95% TFA and 5% phenol (5-6 h) and purified on reverse phase C4 column. (Buffers as above).
- Peptide 306, 308 are cleaved from the resin with 95% TFA and 5% water (1.5 h) and purified on reverse phase C4 column. (Buffers as above) .
- Peptide 309 Peptide was cleaved from the resin with 95% TFA and 5% thioanisole and purified on reverse phase C4 column. (Buffers as above) .
- Peptide 307 Peptide was cleaved from the resin with a mixture of 93% TFA, 3.1% Anisole, 2.97% Ethylmethylsulfide and 0.95% Ethanedithiol (3 h) and purified on reverse phase C4 column. (Buffers as above) .
- Typical results of MAb ELISA using the 7 and 10 mers are shown in Fig. 21. Together with the results of PACT assays using the sheep anti-peptide sera (shown in Table 6) the following regions of TNF contain the binding sites of the anti-TNF MAbs.
- MAbs in group I MAbs 1, 21, 47, 54, 37, 32 and 25
- MAbs in group II of the schematic diagram MAbs 11, 12, 53 and 42
- MAbs which inhibit the induction of endothelial cell procoagulant activity (MAbs 1, 32, 42, 47, 54 and 53) all bind in the region of residues 108-128 which again contains a loop structure in the 3-D model and may indicate that this region interacts with TNF receptors which are found on endothelial cells but not tumour cells.
- MAb 32 which potentiates the in vivo tumour regression and anti-viral activity of TNF is the only antibody which binds all the loop regions associated with residues 1-26, 117-128, and 141-153 and hence binding of these regions is crucial for enhanced TNF bioactivity with concommittant reduction of toxicity for normal cells.
- MAb 1, 47 and 54 have the same effect on the bioactivity of TNF.
- a ligand which binds to TNF predominately in the regions of residues 22-40 and 69-97 will have the same effect on bioactivity of TNF as MAb 12.
- a ligand which binds to TNF predominately in the regions of residues 1-30, 117-128, and 141-153 would be expected to have the same effect on the bioactivity of TNF as MAb 32 and a ligand which binds to TNF predominately in the regions of residues 22-40, 49-97, 110-127 and 136-153 would be expected to have the same effect on the bioactivity of TNF as MAb 42.
- a ligand which binds to TNF predominately in the regions of residues 22-31 and 146-157 would be expected to have the same effect on the bioactivity of TNF as MAb 37 and a ligand which binds to TNF predominately in the regions of residues 22-40, 69-97, 105-128 and 135-155 would be e: ectt i to have the same effect on the bioactivity of TNF as MAb 53.
- the bioactivity of TNF can be altered by the binding of a ligand to the TNF, and that the effect on the bioactivity is a function of the specificity of the ligand.
- the binding of MAb 32 to TNF in the regions of residues 1-26, 117-128 and 141-153 results in the induction of endothelial procoagulant activity of the TNF and binding of TNF to receptors on endothelial cells being inhibited; the induction of tumour fibrin deposition and tumour regression activities of the TNF being enhanced; the cytotoxicity being unaffected and the tumour receptor binding activities of the TNF being unaffected or enhanced.
- this effect on the bioactivity of the TNF may be due to the prevention of the binding of the epitope of the TNF recognised by MAb 32 to naturally occurring biologically active ligands. Accordingly, it is believed that a similar effect to that produced by MAb 32 could also be produced by a ligand which binds to a region of TNF in a manner such that the epitope recognised by MAb 32 is prevented from binding to naturally occurring biologically active ligands. This prevention of binding may be due to steric hindrance or other mechanisms.
- TNF has been shown to exert an anti-viral effect both in vitro (Mestan et al Nature 323, 816-819, 1986; Wong and Goeddel Nature 323, 819-822, 1986) and in vivo (Doherty et al J.Immunol. 142, 376-380, 1989).
- the present inventors investigated the effect of TNF-MAb 32 complexes on the anti-viral effect of TNF in vaccinia infected mice.
- mice Twenty-four hours prior to infection of CBA-H mice with vaccinia (10 PFU W-HA-TK, Ramshaw et al Nature 329, 44-46, 1987) the mice were treated with either TNF alone (recombinant human TNF) or TNF and MAb 32 (200 ul ascites globulin) which had been mixed twenty minutes prior to inoculation.
- Virus titres in ovaries, lung and spleen samples which had been homogenised and treated with trypsin (1 mg/ml) were determined four days later using the 143B indicator cell line.
- Mice which were treated with TNF-MAb 32 showed reduced virus levels in ovaries (Fig. 17), lungs (Fig. 35), and spleen (Fig. 19) compared to mice treated with TNF alone.
- mice were treated 24 hours before infection with 107 pfu Herpes Simplex Virus 1 (HSV-1) (ip) with the relevant TNF +/- Ab 301 administrations.
- HSV-1 Herpes Simplex Virus 1
- the antibody was diluted 1/50 before mixing with 6.0 micrograms of TNF, and the mixture then left for an hour at room temperature. From this stock TNF+Ab 301 the various concentration sof TNF in complex with the Ab was removed and diluted in PBS (i.e., 0.5-2.0 micrograms).
- PBS i.e., 0.5-2.0 micrograms
- the mice were left for three days post infection after which the animals were sacrificed and the ovaries aseptically removed. These organs were then homogenised in PBS and 100 ⁇ l treated with 0.1% trypsin for 30 minutes. Trypsinisation was stopped by the addition of FCS.
- L929 cells were seeded at a concentration of 500 000 cells/well (Linbro 24 well plate) in the presence of TNF alone (10-400 ng) or in complex with Mab 32 (complex procedure described above) . These cultures were then left for 24 hours after which they were infected with HSV-1 (0.1-2.0 MOI). 100 ⁇ l of virus-containing PBS was left to absorb on the cells for 1 hour at 370C, then the excess virus was removed and the cells overlaid with F15 +5% FCS. These cultures were then left for 48 hours. After this period the cells were frozen and thawed x2 and the supernatents serially diluted (trypsin treatment not necessary) and absorbed and grown on Vero cells as described above. The results are shown in Fig. 21.
- the administration of TNF in combination with the anti-TNF ligand MAb 32 results in a decrease in the number of virus particles recoverable from the infected animal.
- the enhanced anti-viral effect provided by the administration of TNF in combination with an anti-TNF ligand is a result of the ligand increasing the amount of TNF available by either preventing the binding of the TNF to endothelial receptors or by directly increasing the binding of TNF to receptors on virus infected cells (Fig. 23).
- the method of the present invention would be particularly applicable to the treatment of viral infections which are not confined to the infection of endothelial surfaces.
- the method of the present invention is applicable in the treatment of infection with the following viruses, hepatitis, AIDS, herpes, viral meningitis, green monkey virus and vaccinia.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Oncology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Communicable Diseases (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Procédé de traitement d'une infection virale chez un mammifère. Le procédé consiste à administrer au mammifère un ligand anti-facteur alpha de nécrose tumorale (TNF), le ligand étant seul ou associé au TNF. Le ligand anti-TNF est caractérisé en ce que, lorsqu'il se lie au TNF, l'activité biologique de celui-ci se modifie. On a également prévu une composition destinée au traitement des infections virales chez un mammifère.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU1976/90 | 1990-08-27 | ||
AUPK197690 | 1990-08-27 | ||
PCT/AU1991/000400 WO1992003145A1 (fr) | 1990-08-27 | 1991-08-27 | Procede de traitement des infections virales |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0608212A4 EP0608212A4 (fr) | 1993-10-20 |
EP0608212A1 true EP0608212A1 (fr) | 1994-08-03 |
Family
ID=3774922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91915297A Ceased EP0608212A1 (fr) | 1990-08-27 | 1991-08-27 | Procede de traitement des infections virales |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0608212A1 (fr) |
JP (1) | JPH06500323A (fr) |
CA (1) | CA2090401A1 (fr) |
WO (1) | WO1992003145A1 (fr) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6375928B1 (en) * | 1990-03-12 | 2002-04-23 | Peptech Limited | Neutrophil stimulating peptides |
US5587457A (en) * | 1990-03-12 | 1996-12-24 | Peptide Technology Limited | Neutrophil stimulating peptides |
IT1254315B (it) * | 1992-03-27 | 1995-09-14 | Mini Ricerca Scient Tecnolog | Anticorpi monoclonali anti-idiotipici diretti contro anticorpi anti-tnf. |
ATE172880T1 (de) * | 1992-08-28 | 1998-11-15 | Bayer Ag | Verwendung von monoklonalen anti-tnf-antikörpern für die behandlung von bakteriellen meningitiden |
US6090382A (en) | 1996-02-09 | 2000-07-18 | Basf Aktiengesellschaft | Human antibodies that bind human TNFα |
CA2868614A1 (fr) | 2001-06-08 | 2002-12-08 | Abbott Laboratories (Bermuda) Ltd. | Methodes pour administrer des anticorps anti-tnf.alpha. |
US20030206898A1 (en) | 2002-04-26 | 2003-11-06 | Steven Fischkoff | Use of anti-TNFalpha antibodies and another drug |
US20040033228A1 (en) | 2002-08-16 | 2004-02-19 | Hans-Juergen Krause | Formulation of human antibodies for treating TNF-alpha associated disorders |
MY150740A (en) | 2002-10-24 | 2014-02-28 | Abbvie Biotechnology Ltd | Low dose methods for treating disorders in which tnf? activity is detrimental |
AU2003298816C1 (en) | 2002-12-02 | 2010-12-16 | Amgen Fremont, Inc. | Antibodies directed to Tumor Necrosis Factor and uses thereof |
HUE026131T2 (en) | 2008-12-29 | 2016-05-30 | Trevena Inc | Beta-arresin effector and preparations and methods for their use |
WO2013116312A1 (fr) | 2012-01-31 | 2013-08-08 | Trevena, Inc. | Effecteurs de la ss-arrestine et compositions et procédés d'utilisation de ceux-ci |
WO2015120316A1 (fr) | 2014-02-07 | 2015-08-13 | Trevena, Inc. | Formes cristallines et amorphes d'un effecteur bêta-arrestine |
CN106456698B (zh) | 2014-05-19 | 2022-05-17 | 特维娜有限公司 | β-抑制蛋白效应物的合成 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03503840A (ja) * | 1988-01-15 | 1991-08-29 | セントコアー,インコーポレーテッド | 異種連結抗体およびその治療的使用 |
WO1990001950A1 (fr) * | 1988-08-19 | 1990-03-08 | Celltech Limited | Produits pharmaceutiques pour therapie anti-neoplastique |
GB8905400D0 (en) * | 1989-03-09 | 1989-04-19 | Jonker Margreet | Medicaments |
GB8921123D0 (en) * | 1989-09-19 | 1989-11-08 | Millar Ann B | Treatment of ards |
-
1991
- 1991-08-27 JP JP3514178A patent/JPH06500323A/ja active Pending
- 1991-08-27 WO PCT/AU1991/000400 patent/WO1992003145A1/fr not_active Application Discontinuation
- 1991-08-27 EP EP91915297A patent/EP0608212A1/fr not_active Ceased
- 1991-08-27 CA CA002090401A patent/CA2090401A1/fr not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO9203145A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1992003145A1 (fr) | 1992-03-05 |
CA2090401A1 (fr) | 1992-02-28 |
EP0608212A4 (fr) | 1993-10-20 |
JPH06500323A (ja) | 1994-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU640400B2 (en) | Tumour necrosis factor binding ligands | |
US6593458B1 (en) | Tumor necrosis factor peptide binding antibodies | |
US6451983B2 (en) | Tumor necrosis factor antibodies | |
US7544782B2 (en) | Tumour necrosis factor binding ligands | |
EP0608212A1 (fr) | Procede de traitement des infections virales | |
AU654501B2 (en) | Method of treating viral infection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930325 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE DK FR GB IT LI SE |
|
17Q | First examination report despatched |
Effective date: 19960111 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19970726 |