EP0603602B1 - Method and apparatus for jet milling in a fluidised bed - Google Patents

Method and apparatus for jet milling in a fluidised bed Download PDF

Info

Publication number
EP0603602B1
EP0603602B1 EP93119416A EP93119416A EP0603602B1 EP 0603602 B1 EP0603602 B1 EP 0603602B1 EP 93119416 A EP93119416 A EP 93119416A EP 93119416 A EP93119416 A EP 93119416A EP 0603602 B1 EP0603602 B1 EP 0603602B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
jet
section
cross
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93119416A
Other languages
German (de)
French (fr)
Other versions
EP0603602A1 (en
Inventor
Stefano Dipl.-Ing. Zampini (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Alpine AG
Original Assignee
Hosokawa Alpine AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Alpine AG filed Critical Hosokawa Alpine AG
Publication of EP0603602A1 publication Critical patent/EP0603602A1/en
Application granted granted Critical
Publication of EP0603602B1 publication Critical patent/EP0603602B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills

Definitions

  • the invention relates to the process of so-called fluidized bed jet milling, in which a gas or steam jet emerging from a nozzle is introduced at high speed into a fluidized bed made of granular material.
  • the particles in the vicinity of the jet are accelerated to such a high speed that they burst upon impact with resting or flying particles.
  • Such a method which is particularly suitable for fine grinding, is e.g. already known from DE-PS 598 421.
  • a disadvantage of the known method is that the kinetic energy introduced by the jet is only partially used for comminution.
  • the jet enters the material bed 3 with a uniform velocity distribution 2 over the outlet cross section 1. Because of the negative pressure in the jet compared to the material bed, particles 4 are immediately sucked into the jet and accelerated from the material bed. This is made clear by the increasing distance between two particles 4. As could be determined, such an exchange of impulses only takes place in the outer edge region of the beam, for example between lines 5 and 6, which are to be thought of as surface lines of the edge region.
  • the jet speed also decreases significantly as the jet progresses, as can be seen from the speed distributions 2a, 2b and 2c in the beam cross sections 1a, 1b and 1c.
  • the core area 7 of the beam remains practically free of regrind, so that the kinetic beam energy remains largely unused in this area and this results in an unsatisfactory efficiency in the comminution.
  • the invention is therefore based on the object of increasing the loading of the gas or steam jets used for grinding in the fluidized bed with the material to be comminuted, so as to improve it To achieve utilization of the kinetic energy introduced with the rays.
  • a possibility is to be created to bring the regrind into the core area of the beams in order to be able to optimally use the kinetic energy available here.
  • the solution to the problem is that in the case of a high-speed gas or steam jet introduced for impact crushing in a fluidized mill bed, the size of the jet pulse is changed locally while maintaining the size of the outlet cross section of the known nozzle, so that zones with high and low jet pulses are formed. and that they are arranged such that the size of the jet pulse in the peripheral region of the outlet cross section changes at least twice between a minimum and a maximum value and in the core region of the cross section is equal to or less than the minimum values.
  • FIG. 2 schematically shows a perspective representation of the flow conditions at the outlet cross section 10 and in the beam cross section 11c, in which a normal speed distribution has already been established as in the beam cross section 1c of FIG. 1.
  • the suction effect to the core area is optimal.
  • FIG. 3 shows the flow conditions as they occur in the plane 13, which is placed in the central nozzle axis 9 and in the middle between two outlet openings 8, which are shown in FIG. 3.
  • 8 radially directed flow channels are formed directly at the outlet cross section 10 between two outlet openings, which flow channels extend in the jet direction up to the jet cross section 11 (with speed distribution 12), in which the individual jet areas begin to overlap.
  • 3 shows the speed distributions 12a, 12b and 12c in the beam cross sections 11a, 11b and 11c.
  • the arrows 14 in FIG. 2 indicate the transverse flow which forms as a result of the flow channels described above and which transports the particles 4 to the central nozzle axis 9.
  • Comparative grinding on a fluidized bed counter jet mill which was initially equipped with normal and then with nozzle elements designed according to the invention, has shown that with otherwise the same operating parameters and approximately the same specific energy requirement (in kWh / t), the mill equipped according to the invention with the same grinding fineness more than that double throughput compared to the normally equipped mill could be achieved, ie the grinding efficiency could be improved by a factor of almost 2.5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)
  • Crushing And Grinding (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

2.1 The invention has the object of increasing the loading, with the material to be comminuted, of the gas or steam jets used for milling in a fluidised bed consisting of granular material, in order thus to obtain a better utilisation of the energy of the jets. 2.2 This is achieved in that, when the jet emerges from a nozzle, in the peripheral region of the nozzle cross-section, the size of the jet impulse changes at least twice between a minimum and a maximum value and, in the core region of the nozzle cross-section, it is equal to or smaller than the minimum values of the peripheral region. 2.3 In the regions having a low jet impulse directly after emergence of the jet from the nozzle, a negative pressure gradient forms, in this arrangement, from the environment to the core region of the jet, so that flow channels result transversely to the flow direction of the jet, through which flow channels the particles of ground material are sucked in as far as the centre of the jet and are accelerated here, in the further course of the jet, to the impact speed necessary for their comminution. <IMAGE>

Description

Die Erfindung bezieht sich auf das Verfahren der sog. Fließbett-Strahlmahlung, bei dem ein aus einer Düse austretender Gas- oder Dampfstrahl hoher Geschwindigkeit in ein fluidisiertes Bett aus körnigem Material eingeleitet wird. Die Partikel in der Umgebung des Strahls werden dabei auf eine so hohe Geschwindigkeit beschleunigt, daß sie beim Aufprallen auf ruhende oder entgegenfliegende Partikel zerbersten. Ein solches, insbesondere für die Feinzerkleinerung geeignetes Verfahren ist z.B. schon durch die DE-PS 598 421 bekannt geworden.The invention relates to the process of so-called fluidized bed jet milling, in which a gas or steam jet emerging from a nozzle is introduced at high speed into a fluidized bed made of granular material. The particles in the vicinity of the jet are accelerated to such a high speed that they burst upon impact with resting or flying particles. Such a method, which is particularly suitable for fine grinding, is e.g. already known from DE-PS 598 421.

Nachteilig bei dem bekannten Verfahren ist jedoch, daß die durch den Strahl eingebrachte kinetische Energie nur zum Teil für die Zerkleinerung genutzt wird. Wie in Fig. 1 schematisch dargestellt ist, tritt der Strahl mit über den Austrittsquerschnitt 1 gleichmäßiger Geschwindigkeitsverteilung 2 in das Gutbett 3 ein. Wegen des Unterdrucks im Strahl gegenüber dem Gutbett werden sofort Partikel 4 aus dem Gutbett in den Strahl eingesaugt und beschleunigt. Dies ist durch den zunehmenden Abstand zwischen zwei Partikeln 4 deutlich gemacht. Wie festgestellt werden konnte, erfolgt ein solcher Impulsaustausch jedoch nur in dem äußeren Randbereich des Strahls, etwa zwischen den Linien 5 und 6, die als Mantellinien des Randbereichs zu denken sind. Hier nimmt auch die Strahlgeschwindigkeit beim Fortschreiten des Strahls deutlich ab, wie aus den Geschwindigkeitsverteilungen 2a, 2b und 2c in den Strahlquerschnitten 1a, 1b und 1c zu erkennen ist. Der Kernbereich 7 des Strahls bleibt praktisch frei von Mahlgut, so daß die kinetische Strahlenergie in diesem Bereich weitgehend ungenutzt bleibt und daraus ein unbefriedigender Wirkungsgrad bei der Zerkleinerung resultiert.A disadvantage of the known method, however, is that the kinetic energy introduced by the jet is only partially used for comminution. As is shown schematically in FIG. 1, the jet enters the material bed 3 with a uniform velocity distribution 2 over the outlet cross section 1. Because of the negative pressure in the jet compared to the material bed, particles 4 are immediately sucked into the jet and accelerated from the material bed. This is made clear by the increasing distance between two particles 4. As could be determined, such an exchange of impulses only takes place in the outer edge region of the beam, for example between lines 5 and 6, which are to be thought of as surface lines of the edge region. Here, the jet speed also decreases significantly as the jet progresses, as can be seen from the speed distributions 2a, 2b and 2c in the beam cross sections 1a, 1b and 1c. The core area 7 of the beam remains practically free of regrind, so that the kinetic beam energy remains largely unused in this area and this results in an unsatisfactory efficiency in the comminution.

Der Erfindung liegt daher die Aufgabe zugrunde, die Beladung der für die Mahlung im Fließbett eingesetzten Gas- oder Dampfstrahlen mit dem zu zerkleinernden Material zu erhöhen, um so eine bessere Nutzung der mit den Strahlen eingebrachten kinetischen Energie zu erreichen. Insbesondere soll eine Möglichkeit geschaffen werden, das Mahlgut in den Kernbereich der Strahlen zu bringen, um die hier zur Verfügung stehende kinetische Energie optimal nutzen zu können.The invention is therefore based on the object of increasing the loading of the gas or steam jets used for grinding in the fluidized bed with the material to be comminuted, so as to improve it To achieve utilization of the kinetic energy introduced with the rays. In particular, a possibility is to be created to bring the regrind into the core area of the beams in order to be able to optimally use the kinetic energy available here.

Es ist zwar schon in der DE-OS 20 40 519 vorgeschlagen worden, das Mahlgut mit mechanischen Fördermitteln von der Seite her in den Strahl zu drücken, dabei muß aber mit starkem Verschleiß an den Fördermitteln gerechnet werden. Um diesen Verschleiß zu verhindern, wurde als Lösung eine Anordnung aus der DE-OS-26 28 612 bekannt, wobei zusätzliche Fluidstrahlen als Fördermittel dienen, um das Mahlgut in den Strahl zu drücken. Beide Maßnahmen erfordern jedoch einen erheblichen apparativen und energetischen Aufwand. Die gleichen Nachteile weisen die bekannten Injektor-Strahlmühlen z.B. nach US-PS 1 935 344 oder US-PS 2 704 635 auf, bei denen das Mahlgut vor der Strahlausbildung in einer Beschleunigungsdüse mit dem Gas oder Dampf gemischt wird.It has already been proposed in DE-OS 20 40 519 to press the regrind into the jet from the side using mechanical conveying means, but heavy wear on the conveying means must be expected. In order to prevent this wear, an arrangement from DE-OS-26 28 612 was known as a solution, with additional fluid jets serving as conveying means to press the ground material into the jet. However, both measures require a considerable amount of equipment and energy. The known disadvantages of the known injector jet mills e.g. according to US Pat. No. 1,935,344 or US Pat. No. 2,704,635, in which the millbase is mixed with the gas or steam in an acceleration nozzle before the jet formation.

Die Lösung der Aufgabe besteht darin, daß bei einem zur Prallzerkleinerung in ein fluidisiertes Mahlgutbett eingeleiteten Gas- oder Dampfstrahl hoher Geschwindigkeit die Größe des Strahlimpulses unter Beibehaltung der Größe des Austrittsquerschnitts der bekannten Düse örtlich geändert wird, so daß Zonen mit hohem und niedrigem Strahlimpuls entstehen, und daß diese so angeordnet werden, daß die Größe des Strahlimpulses im Umfangsbereich des Austrittsquerschnitts mindestens zweimal zwischen einem Minimal- und einem Maximalwert wechselt und im Kernbereich des Querschnitts gleich den Minimalwerten oder kleiner als diese ist. In überraschender Weise hat sich gezeigt, daß damit in den Bereichen mit niedrigem Strahlimpuls unmittelbar nach Austritt des Strahls aus der Düse gewissermaßen Strömungskanäle quer zur Strömungsrichtung des Strahls geschaffen werden mit einem Druckgefälle von der Umgebung zum Kernbereich des Strahls, so daß hier die Partikel 4 des Mahlgutes bis zum Strahlzentrum eingesaugt werden. Hier werden sie dann auf die für ihre Zerkleinerung erforderliche Prallgeschwindigkeit beschleunigt, wenn sich im weiteren Verlauf des Strahls durch Mischvorgänge infolge Überschneidung der einzelnen Strahlbereiche eine Vergleichmäßigung des Strahlimpulses über den Strahlquerschnitt einstellt und sich eine Geschwindigkeitsverteilung über den Strahlquerschnitt wie bei dem einfachen Strahl (entsprechend Fig. 1) ergibt. Durch das Einsaugen von Mahlgut in den Kernbereich des Strahls wird eine deutlich höhere Gutmenge erfaßt als bei einem einfachen Strahl und die Gutpartikel werden auf eine höhere Geschwindigkeit beschleunigt.
Eine Möglichkeit der Realisierung besteht beispielsweise darin, daß noch innerhalb der Düse, also bevor der Strahl aus der Düse austritt, örtlich abgesaugt wird.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen beschrieben, wobei sich die Ansprüche 2 bis 4 auf die Größenverhältnisse von Strahlimpuls und Strahlzonen und Ansprüche 5 bis 8 auf die Strahlrichtung in den einzelnen Strahlzonen beziehen. Diese Maßnahmen dienen dazu, den Öffnungswinkel des Strahls zu beeinflussen bzw. den Strahlquerschnitt 11c mit der normalisierten Geschwindigkeitsverteilung in Strahlrichtung zu verschieben, um so eine Änderung der Strahlform zur Anpassung an die Mahlkammergröße bzw. die Mahlguteigenschaften zu erreichen.
Die technisch einfachste und bevorzugte Lösung stellt die Verwendung von gleichmäßig über den Austrittsquerschnitt verteilten Austrittsöffnungen dar. Als ausgeführte und erprobte Düse wird beispielsweise ein in eine Halterung einsetzbares Düsenelement mit vier Austrittsöffnungen 8 mit kreisförmigem Querschnitt verwendet, deren Mitten auf einem Kreis angeordnet sind, dessen Durchmesser etwa dem 2,5fachen Durchmesser einer Austrittsöffnung entspricht. Die aus jeder Öffnung austretende Strömung ist dabei auf einen gemeinsamen Punkt auf der zentralen Düsenachse 9 gerichtet. Fig. 2 zeigt schematisch in perspektivischer Darstellung die Strömungsverhältnisse am Austrittsquerschnitt 10 und im Strahlquerschnitt 11c, in dem sich bereits eine normale Geschwindigkeitsverteilung wie im Strahlquerschnitt 1c von Fig. 1 eingestellt hat. Die Saugwirkung zum Kernbereich ist hierbei optimal.
The solution to the problem is that in the case of a high-speed gas or steam jet introduced for impact crushing in a fluidized mill bed, the size of the jet pulse is changed locally while maintaining the size of the outlet cross section of the known nozzle, so that zones with high and low jet pulses are formed. and that they are arranged such that the size of the jet pulse in the peripheral region of the outlet cross section changes at least twice between a minimum and a maximum value and in the core region of the cross section is equal to or less than the minimum values. Surprisingly, it has been shown that flow channels transverse to the flow direction of the jet are created with a pressure gradient from the environment to the core area of the jet in the areas with low jet impulses immediately after the jet emerges from the nozzle, so that here the particles 4 of the Grist to be sucked up to the blasting center. Here they are then accelerated to the impact speed required for their comminution if, in the further course of the jet, there is an equalization as a result of mixing processes as a result of the individual jet areas overlapping of the beam pulse over the beam cross-section and there is a velocity distribution over the beam cross-section as in the case of the simple beam (corresponding to FIG. 1). By sucking in regrind into the core area of the jet, a significantly higher amount of material is detected than with a simple jet and the good particles are accelerated to a higher speed.
One possible implementation is, for example, that local suction is carried out inside the nozzle, ie before the jet emerges from the nozzle.
Advantageous embodiments of the invention are described in the subclaims, claims 2 to 4 relating to the size relationships of the beam pulse and beam zones and claims 5 to 8 relating to the beam direction in the individual beam zones. These measures serve to influence the opening angle of the beam or to shift the beam cross section 11c with the normalized speed distribution in the beam direction, in order to achieve a change in the beam shape to adapt to the size of the grinding chamber or the properties of the material to be ground.
The technically simplest and preferred solution is the use of outlet openings evenly distributed over the outlet cross section. For example, a nozzle element that can be inserted into a holder and has four outlet openings 8 with a circular cross section, the center of which is arranged on a circle whose diameter is arranged, is used as the tried and tested nozzle corresponds approximately to 2.5 times the diameter of an outlet opening. The flow emerging from each opening is directed to a common point on the central nozzle axis 9. FIG. 2 schematically shows a perspective representation of the flow conditions at the outlet cross section 10 and in the beam cross section 11c, in which a normal speed distribution has already been established as in the beam cross section 1c of FIG. 1. The suction effect to the core area is optimal.

Die Strömungsverhältnisse, wie sie sich in der Ebene 13 einstellen, die in die zentrale Düsenachse 9 und in die Mitte zwischen zwei Austrittsöffnungen 8 gelegt ist, sind in Fig. 3 dargestellt. Wie zu erkennen ist, bilden sich unmittelbar am Austrittsquerschnitt 10 zwischen je zwei Austrittsöffnungen 8 radial gerichtete Strömungskanäle aus, die in Strahlrichtung bis zu dem Strahlquerschnitt 11 (mit Geschwindigkeitsverteilung 12) reichen, in dem sich die einzelnen Strahlbereiche zu überschneiden beginnen. Den weiteren Strahlverlauf zeigen in Fig. 3 die Geschwindigkeitsverteilungen 12a, 12b und 12c in den Strahlquerschnitten 11a, 11b und 11c. Die Pfeile 14 in Fig. 2 deuten die sich infolge der vorstehend beschriebenen Strömungskanäle ausbildende Querströmung an, die die Partikel 4 bis zur zentralen Düsenachse 9 transportiert.The flow conditions as they occur in the plane 13, which is placed in the central nozzle axis 9 and in the middle between two outlet openings 8, are shown in FIG. 3. As can be seen, 8 radially directed flow channels are formed directly at the outlet cross section 10 between two outlet openings, which flow channels extend in the jet direction up to the jet cross section 11 (with speed distribution 12), in which the individual jet areas begin to overlap. 3 shows the speed distributions 12a, 12b and 12c in the beam cross sections 11a, 11b and 11c. The arrows 14 in FIG. 2 indicate the transverse flow which forms as a result of the flow channels described above and which transports the particles 4 to the central nozzle axis 9.

Vergleichsmahlungen auf einer Fließbett-Gegenstrahlmühle` die zuerst mit normalen und dann mit erfindungsgemäß ausgebildeten Düsenelementen ausgerüstet war, haben ergeben, daß bei sonst gleichen Betriebsparametern und etwa gleichem spezifischen Energiebedarf (in kWh/t) mit der erfindungsgemäß ausgerüsteten Mühle bei gleicher Mahlfeinheit mehr als der doppelte Durchsatz gegenüber der normal ausgerüsteten Mühle erzielt werden konnte, d.h. der Mahlwirkungsgrad konnte um einen Faktor von fast 2,5 verbessert werden.Comparative grinding on a fluidized bed counter jet mill, which was initially equipped with normal and then with nozzle elements designed according to the invention, has shown that with otherwise the same operating parameters and approximately the same specific energy requirement (in kWh / t), the mill equipped according to the invention with the same grinding fineness more than that double throughput compared to the normally equipped mill could be achieved, ie the grinding efficiency could be improved by a factor of almost 2.5.

Claims (11)

  1. Process designed for impact comminution by means of introducing at least one gas or steam jet exiting a nozzle at high speed into a fluidised bed of material, the cross-section of the jet having a core zone and a peripheral zone circumferential to the core zone characterized in that the level of jet momentum of the gas or steam jet upon exiting the nozzle changes in the peripheral zone of the nozzle cross-section at least twice between a minimum and maximum value and is the same or smaller than the minimum values of the peripheral zone in the core zone of the nozzle cross-section.
  2. Process according to Claim 1, characterized in that the level of jet momentum has the value zero at the points where the minimum values exist.
  3. Process according to Claim 1 or 2, characterized in that all sub-sections of the nozzle cross-section with mutual maximum and minimum jet momentum have more or less the same value upon exiting the nozzle.
  4. Process according to one of the Claims 1 - 3, characterized in that the transition from a minimum jet momentum to a maximum occurs discontinuously.
  5. Process according to one of the Claims 1 - 4, characterized in that the emission flow upon exiting the nozzle in every sub-section of the nozzle cross-section occurs parallel to the central nozzle axis (9).
  6. Process according to one of the Claims 1 - 4, characterized in that the emission flow upon exiting the nozzle in every sub-section of the nozzle cross-section is aimed away from the central nozzle axis (9).
  7. Process according to one of the Claims 1 - 4, characterized in that the emission flow upon exiting the nozzle in every sub-section of the nozzle cross-section points towards the central nozzle axis (9).
  8. Process according to Claim 7, characterized in that the emission flow upon exiting the nozzle from every sub-section of the nozzle cross-section is aimed at a common point on the central nozzle axis (9).
  9. Device to carry out the process according to one of the Claims 1 - 8, characterized by a nozzle element to be mounted in a holder to generate the jet, which has at least two emission points (8) of different form and size distributed uniformly across the cross-section of the nozzle element.
  10. Device according to Claim 9, characterized in that the emission points (8) are arranged within an area whose boundary represents a inflexion-point-free envelope curve which encloses the emission points (8).
  11. Device according to Claim 9 or 10, characterized in that the emission points (8) are designed with circular cross-sections.
EP93119416A 1992-12-22 1993-12-02 Method and apparatus for jet milling in a fluidised bed Expired - Lifetime EP0603602B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4243438 1992-12-22
DE4243438A DE4243438C2 (en) 1992-12-22 1992-12-22 Method and device for fluid bed jet grinding

Publications (2)

Publication Number Publication Date
EP0603602A1 EP0603602A1 (en) 1994-06-29
EP0603602B1 true EP0603602B1 (en) 1997-05-14

Family

ID=6476080

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93119416A Expired - Lifetime EP0603602B1 (en) 1992-12-22 1993-12-02 Method and apparatus for jet milling in a fluidised bed

Country Status (10)

Country Link
US (1) US5423490A (en)
EP (1) EP0603602B1 (en)
JP (1) JP3095937B2 (en)
KR (1) KR970001784B1 (en)
CN (1) CN1051254C (en)
AT (1) ATE152933T1 (en)
DE (2) DE4243438C2 (en)
ES (1) ES2104024T3 (en)
MY (1) MY112091A (en)
TW (1) TW246650B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513034A1 (en) * 1995-04-06 1996-10-10 Nied Roland Fluid bed jet milling device
DE19513035C2 (en) * 1995-04-06 1998-07-30 Nied Roland Fluid bed jet grinding
DE19728382C2 (en) * 1997-07-03 2003-03-13 Hosokawa Alpine Ag & Co Method and device for fluid bed jet grinding
US6038987A (en) * 1999-01-11 2000-03-21 Pittsburgh Mineral And Environmental Technology, Inc. Method and apparatus for reducing the carbon content of combustion ash and related products
CN1287023A (en) * 1999-09-08 2001-03-14 株式会社威士诺 Jet mill
DE10007794A1 (en) 2000-02-21 2001-06-28 Zimmer Ag Composition useful for making containers, films, membranes and fibers, comprises a biodegradable polymer and a marine plant or shell material
US6951312B2 (en) * 2002-07-23 2005-10-04 Xerox Corporation Particle entraining eductor-spike nozzle device for a fluidized bed jet mill
US6942170B2 (en) * 2002-07-23 2005-09-13 Xerox Corporation Plural odd number bell-like openings nozzle device for a fluidized bed jet mill
DE102005039118A1 (en) * 2005-08-18 2007-02-22 Wacker Chemie Ag Method and device for comminuting silicon
DE102006017472A1 (en) * 2006-04-13 2007-10-18 Nied, Roland, Dr. Ing. Method for producing finest particles by means of a jet mill
US8858699B2 (en) * 2006-07-13 2014-10-14 Unimin Corporation Ultra fine nepheline syenite powder and products for using same
US20080040980A1 (en) * 2006-07-13 2008-02-21 Unimin Corporation Method of processing nepheline syenite
US20080015104A1 (en) 2006-07-13 2008-01-17 Unimin Corporation Ultrafine nepheline syenite
ES2378898T3 (en) 2006-12-14 2012-04-18 Tronox Llc Enhanced jet nozzle for use in a jet mill micronizer
US7757976B2 (en) * 2007-02-07 2010-07-20 Unimin Corporation Method of processing nepheline syenite powder to produce an ultra-fine grain size product
US7959095B2 (en) * 2007-06-27 2011-06-14 E. I. Du Pont De Nemours And Company Center-feed nozzle in a contained cylindrical feed-inlet tube for improved fluid-energy mill grinding efficiency
JP5275345B2 (en) * 2007-07-09 2013-08-28 ユニミン コーポレーション Meteorite syenite powder with controlled particle size and its new production method
WO2009128857A1 (en) 2008-04-17 2009-10-22 Unimin Corporation Powder formed from mineral or rock material with controlled particle size distribution for thermal films
DE102014211037A1 (en) * 2014-06-10 2015-12-17 Wacker Chemie Ag Silicon seed particles for the production of polycrystalline silicon granules in a fluidized bed reactor
KR102149323B1 (en) * 2016-11-07 2020-08-31 와커 헤미 아게 How to pulverize solids containing silicon
CN108543605B (en) * 2018-04-28 2019-04-16 中国计量大学 The method of the lossless depolymerization of free shear turbulence array and fine grading LED fluorescent powder
DE102021002671A1 (en) 2021-05-21 2022-11-24 Hosokawa Alpine Aktiengesellschaft Process for determining the optimum nozzle spacing in jet mills and grinding processes for producing the finest particles

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1935344A (en) * 1931-06-16 1933-11-14 American Pulverizing Corp Camd Impact pulverizer
US1948609A (en) * 1932-01-18 1934-02-27 American Pulverizing Corp Method of pulverizing minerals and similar materials
DE598421C (en) * 1932-01-18 1934-06-13 Internat Pulverizing Corp Method and device for impact crushing
US2309036A (en) * 1940-09-12 1943-01-19 Beardsley & Piper Co Apparatus for conditioning molding sand
FR963005A (en) * 1947-03-11 1950-06-28
US2605144A (en) * 1950-08-25 1952-07-29 Gen Electric Nozzle
US2704635A (en) * 1951-06-02 1955-03-22 Conrad M Trost Pulverizing mill having opposed jets and circulatory classification
US2846150A (en) * 1955-09-29 1958-08-05 Texaco Development Corp Fluid energy grinding
CA919370A (en) * 1968-04-19 1973-01-23 Spray Steelmaking Limited Atomization of molten material with provision of clearing gas orifice
DE2040519C2 (en) * 1970-08-14 1984-04-12 Alpine Ag, 8900 Augsburg Fluidized bed jet mill
DE2628612A1 (en) * 1976-06-25 1977-12-29 Gvnii Zementnoj Promy Niizemen Nozzle for high energy gas blast - uses two orthogonally positioned jets to introduce blast material under pressure
SU1168288A1 (en) * 1982-08-19 1985-07-23 Министерство Мелиорации И Водного Хозяйства Северо-Осетинской Асср Apparatus for mincing filamentous algae
GB2145351A (en) * 1983-08-24 1985-03-27 Howden James & Co Ltd Pulverizer
US4638953A (en) * 1985-07-19 1987-01-27 Taylor David W Classifier for comminution of pulverulent material by fluid energy
US4905918A (en) * 1988-05-27 1990-03-06 Ergon, Inc. Particle pulverizer apparatus
JP3031923B2 (en) * 1989-07-07 2000-04-10 フロイント産業株式会社 Granulation coating apparatus and granulation coating method using the same

Also Published As

Publication number Publication date
TW246650B (en) 1995-05-01
KR970001784B1 (en) 1997-02-15
ES2104024T3 (en) 1997-10-01
ATE152933T1 (en) 1997-05-15
CN1051254C (en) 2000-04-12
DE4243438A1 (en) 1994-06-23
DE4243438C2 (en) 1996-06-05
MY112091A (en) 2001-04-30
DE59306446D1 (en) 1997-06-19
EP0603602A1 (en) 1994-06-29
JP3095937B2 (en) 2000-10-10
JPH0747298A (en) 1995-02-21
US5423490A (en) 1995-06-13
CN1091338A (en) 1994-08-31
KR940013611A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
EP0603602B1 (en) Method and apparatus for jet milling in a fluidised bed
DE69813201T2 (en) CONTROLLED SHREDDING OF SUBSTANCES IN A SPIRAL CHAMBER
DE2711515A1 (en) CLASSIFYING JET MILL
EP0736328B1 (en) Arrangement for a fluidized bed jet mill
EP1080786B1 (en) Method, device and system for fluidised-bed jet mill
EP0888818A1 (en) Method and device for fluidized-bed jet milling
DE3145209C2 (en)
DE2323442C3 (en) Disk mill
DE2404000A1 (en) IMPACT AREA FOR A SPRAY BLAST SYSTEM
EP0119399B1 (en) Impeller wheel for projecting abrasive blasts on work pieces to be treated
DE19513035C2 (en) Fluid bed jet grinding
DE1089522B (en) Method and device for the production of fiber material from stones, slag or glass
DE19943670A1 (en) Fluidized bed pulverizing process, involving applying centrifugal force to particles in region of at least one fluid jet
EP0601511B1 (en) Method and device for impact crushing of solid particles
DE4416034A1 (en) Sifting method for fine-grain material
EP0300402B1 (en) Production method for extremely small particles, and application of said method
EP3106228A1 (en) Device and grinding tool for grinding dispensed products
DE102019112791B3 (en) GRINDING DEVICE FOR ROUNDING PARTICLES
DE4431534A1 (en) Combined jet pulveriser and air classification mill
DE1159744B (en) Jet mill
DE2938501C2 (en) Device for separating fiber material from industrial waste water
DE102021002671A1 (en) Process for determining the optimum nozzle spacing in jet mills and grinding processes for producing the finest particles
DE567353C (en) Device for the finest wet size reduction
EP1955814A1 (en) Device for generating a solid body impulse spray for treating material
DE2750328C2 (en) Process for comminuting material and equipment for its realization

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL SE

17P Request for examination filed

Effective date: 19940719

17Q First examination report despatched

Effective date: 19960110

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19970514

REF Corresponds to:

Ref document number: 152933

Country of ref document: AT

Date of ref document: 19970515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & WANN PATENTANWALTSBUERO, INHABER KLAUS

REF Corresponds to:

Ref document number: 59306446

Country of ref document: DE

Date of ref document: 19970619

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970620

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2104024

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980330

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: HOSOKAWA ALPINE AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 73921

Country of ref document: IE

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: HOSOKAWA ALPINE AKTIENGESELLSCHAFT TRANSFER- HOSOKAWA ALPINE AKTIENGESELLSCHAFT & CO. OHG

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: HOSOKAWA ALPINE AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: HOSOKAWA ALPINE AKTIENGESELLSCHAFT

Free format text: HOSOKAWA ALPINE AKTIENGESELLSCHAFT & CO. OHG#PETER-DOERFLER-STRASSE 13-25#86199 AUGSBURG (DE) -TRANSFER TO- HOSOKAWA ALPINE AKTIENGESELLSCHAFT#PETER-DOERFLER-STRASSE 13-25#86199 AUGSBURG (DE)

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081031

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081216

Year of fee payment: 16

Ref country code: AT

Payment date: 20081219

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20081114

Year of fee payment: 16

Ref country code: SE

Payment date: 20081211

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081114

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081224

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

BERE Be: lapsed

Owner name: *HOSOKAWA ALPINE GESELLSCHAFT

Effective date: 20091231

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100701

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101215

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101218

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121217

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59306446

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59306446

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20131203