EP0597367A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
EP0597367A1
EP0597367A1 EP93117766A EP93117766A EP0597367A1 EP 0597367 A1 EP0597367 A1 EP 0597367A1 EP 93117766 A EP93117766 A EP 93117766A EP 93117766 A EP93117766 A EP 93117766A EP 0597367 A1 EP0597367 A1 EP 0597367A1
Authority
EP
European Patent Office
Prior art keywords
rotary
displacer
rotary compressor
stator
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93117766A
Other languages
German (de)
French (fr)
Inventor
Martin Dr.-Ing. Bareiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Licentia Patent Verwaltungs GmbH
Original Assignee
Licentia Patent Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Patent Verwaltungs GmbH filed Critical Licentia Patent Verwaltungs GmbH
Publication of EP0597367A1 publication Critical patent/EP0597367A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/004Gas cycle refrigeration machines using a compressor of the rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/005Gas cycle refrigeration machines using an expander of the rotary type

Definitions

  • the invention relates to a rotary compressor or displacer according to the preamble of claim 1 and its use as a gas refrigerator according to the Stirling or Vuilleumier principle.
  • Compressors or displacers of the aforementioned type mainly work on the rotary valve or vane principle.
  • the inlets and outlets are arranged stationary on the stator in such a way that a largely constant pressure or negative pressure is present on them.
  • the use for gas refrigeration machines is therefore only possible to a limited extent.
  • Piston pumps are predominantly used for regenerative gas refrigeration machines that work according to the Stirling or Giffort-McMahon principle.
  • FIGS. 1 and 2 The machine diagram of a gas refrigeration machine that works according to the Stirling principle is shown in FIGS. 1 and 2.
  • the displacer 2 separates the cylinder 6 into the cold room 7 and the warm room 8.
  • the components are connected to each other via a gas channel, which, like the work rooms, is filled with a gaseous medium, the so-called working gas.
  • compressor piston 1 and displacement piston 2 must be set in a coordinated movement, whereby harmonious movements are generally selected due to technical constraints and the phase shift in the movement sequences of the two pistons is a quarter of a cycle, as shown in FIG. 2 shows.
  • the time course of the compression space (curve 9), the cold space (curve 11) and the warm space (curve (10)) is shown here.
  • the pistons are mechanically driven via a relatively complex crank mechanism and a common drive shaft.
  • the present invention has for its object to provide a novel rotary compressor or displacer of the type mentioned, which allows to achieve improved pressure ratios with a simple design and which in particular enables use as a regenerative gas refrigerator.
  • the use of the rotary piston displacer or compressor according to the invention offers the advantage of a compact, low-vibration design.
  • the machine consists of a compressor 12, a warm displacer 13 and a cold displacer 14, all three components being designed as vane pumps or rotary vane pumps and usefully arranged on a common drive shaft.
  • FIG. 3 and the following description are based on an example of a two-cell construction, although a multi-cell construction is also possible and can also be useful.
  • the compression space 15 is connected to the line 18 via the flow channel 16.
  • the line 18 leads via the heat exchanger 19 and the flow channel 20 to the warm room 22.
  • a further connection leads via the heat exchanger 23, the regenerator 24, the heat exchanger 25 and the flow channel 26 to the cold room 27.
  • the flow channels 16, 20, 26 arranged in the respective rotors 17, 21, 28 are each guided to the outside in the hub area in such a way that a flow cross section which is independent of the angle of rotation is ensured.
  • a possible channel guide is shown in FIG. 4 exemplarily shown for the compressor 12.
  • gas refrigeration machines which operate according to the Vuilleumier principle (an extended Stirling principle) can also be implemented.
  • the machine diagram is shown in FIG. 5 shown.
  • 2 displacers 29 and 30 are used in the design according to the invention, which together with the heat exchangers 31 and 31a, the regenerators 32 and 32a and the heat exchangers 33 and 33a form a thermal compressor unit for generating a sinusoidal pressure curve and in the manner shown with that already from FIG. 3 known regenerator / displacement unit is connected.
  • the four displacers 29, 30, 13 and 14 are expediently arranged on a common drive shaft.
  • the separate heat exchangers 19, 19a, 23, 23a and 25, 25a in the machine according to FIG. 3 and the heat exchangers 31, 31 a and 33, 33 a in the machine according to FIG. 5 can be partially or completely dispensed with, which further reduces the mechanical expenditure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

A rotary compressor is described, which has been improved with regard to the pressure ratios and the rotor of which has additional overflow ducts and which is particularly suitable for use in gas refrigeration machines. <IMAGE>

Description

Die Erfindung betrifft einen Rotationskompressor oder -verdränger nach dem Oberbegriff des Patentanspruchs 1 sowie dessen Verwendung als Gaskältemaschine nach dem Stirling- oder Vuilleumierprinzip.The invention relates to a rotary compressor or displacer according to the preamble of claim 1 and its use as a gas refrigerator according to the Stirling or Vuilleumier principle.

Kompressoren oder Verdränger der vorgenannten Art arbeiten überwiegend nach dem Drehschieber oder Flügelzellenprinzip. Die Ein- bzw. Auslässe sind dabei am Stator ortsfest in der Weise angeordnet, daß an ihnen ein weitgehend konstanter Druck bzw. Unterdruck ansteht. Die Verwendung für Gaskältemaschinen ist daher nur bedingt möglich.Compressors or displacers of the aforementioned type mainly work on the rotary valve or vane principle. The inlets and outlets are arranged stationary on the stator in such a way that a largely constant pressure or negative pressure is present on them. The use for gas refrigeration machines is therefore only possible to a limited extent.

So werden für regenerative Gaskältemaschinen, die nach dem Stirling- oder Giffort-McMahon-Prinzip arbeiten, überwiegend Kolbenpumpen eingesetzt.Piston pumps are predominantly used for regenerative gas refrigeration machines that work according to the Stirling or Giffort-McMahon principle.

Der Einsatz solcher regenerativer Gaskältemaschinen ist bis heute auf den kryogenen Temperaturbereich (<-100°C) beschränkt, weil im Bereich der höheren Temperaturen (100°C - O°C) die Konkurrenzfähigkeit gegenüber dem in diesem Temperaturbereich verbreitet angewandten Kaltdampfprinzip in Frage gestellt wird. Als Begründung wird der vergleichsweise hohe maschinentechnische Aufwand regenerativer Gaskältemaschinen angeführt.The use of such regenerative gas refrigeration machines is still limited to the cryogenic temperature range (<-100 ° C) because in the higher temperature range (100 ° C - 0 ° C) the competitiveness against the cold steam principle widely used in this temperature range is questioned . The reason for this is the comparatively high mechanical engineering expenditure of regenerative gas refrigeration machines.

Das Maschinenschema einer Gaskältemaschine, die nach dem Stirling Prinzip arbeitet, ist in den Figuren 1 und 2 dargestellt.The machine diagram of a gas refrigeration machine that works according to the Stirling principle is shown in FIGS. 1 and 2.

Es besteht aus dem Kompressor 1, einem Verdrängerkolben 2, einem wärmeabgebenden Wärmetauschers 3, einem Regenerator 4 und einem wärmeaufnehmenden Wärmetauschers 5. Der Verdrängerkolben 2 trennt den Zylinder 6 in den Kaltraum 7 und den Warmraum 8. Entsprechend FIG. 1 stehen die Komponenten über einen Gaskanal miteinander in Verbindung, der, wie auch die Arbeitsräume, mit einem gasförmigen Medium, dem sogenannten Arbeitsgas gefüllt ist. Zur Realisierung des kälteerzeugenden Kreisprozesses müssen Kompressorkolben 1 und Verdrängerkolben 2 in einen koordinierte Bewegung versetzt werden, wobei aufgrund technischer Randbedingungen in der Regel harmonische Bewegungen gewählt werden und der Phasenversatz in den Bewegungsabläufen der beiden Kolben ein Viertel eines Zyklus beträgt, wie FIG. 2 zeigt. Hier ist der zeitliche Verlauf des Kompressionsraums (Kurve 9), des Kaltraums (Kurve 11) und des Warmraums (Kurve (10) dargestellt.It consists of the compressor 1, a displacer 2, a heat-dissipating heat exchanger 3, a regenerator 4 and a heat-absorbing heat exchanger 5. The displacer 2 separates the cylinder 6 into the cold room 7 and the warm room 8. According to FIG. 1, the components are connected to each other via a gas channel, which, like the work rooms, is filled with a gaseous medium, the so-called working gas. In order to implement the refrigeration cycle, compressor piston 1 and displacement piston 2 must be set in a coordinated movement, whereby harmonious movements are generally selected due to technical constraints and the phase shift in the movement sequences of the two pistons is a quarter of a cycle, as shown in FIG. 2 shows. The time course of the compression space (curve 9), the cold space (curve 11) and the warm space (curve (10)) is shown here.

Der mechanische Antrieb der Kolben erfolgt bei den herkömmlichen Bauarten über einen relativ aufwendigen Kurbelmechanismus und eine gemeinsame Antriebswelle.In conventional designs, the pistons are mechanically driven via a relatively complex crank mechanism and a common drive shaft.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde einen neuartigen Rotationskompressor oder -verdränger der eingangs genannten Art anzugeben, der bei einfacher Bauart verbesserte Druckverhältnisse zu erzielen gestattet und der insbesondere eine Verwendung als regenerative Gaskältemaschine ermöglicht.The present invention has for its object to provide a novel rotary compressor or displacer of the type mentioned, which allows to achieve improved pressure ratios with a simple design and which in particular enables use as a regenerative gas refrigerator.

Diese Aufgabe wird durch die im Kennzeichen des Patentanspruchs 1 angegebenen Merkmale gelöst.This object is achieved by the features specified in the characterizing part of patent claim 1.

Gegenüber den bekannten Bauarten von regenerativen Gaskältemaschinen bietet der Einsatz der erfindungsgemäßen Rotationskolbenverdränger bzw. -verdichter den Vorteil einer kompakten vibrationsarmen Bauweise.Compared to the known types of regenerative gas cooling machines, the use of the rotary piston displacer or compressor according to the invention offers the advantage of a compact, low-vibration design.

Ein weiterer und entscheidender Vorteil liegt im großen Oberflächen/Volumenverhältnis der Verdichter- bzw. Verdrängerräume. Es begünstigt, zusammen mit den intensiven Gasbewegungen in diesen Räumen, einen guten Wärmeaustausch mit der Statorwandung, so daß diese zusätzlich als Wärmetauscher dienen kann. Die für den Stirling-Prozeß idealen isothermen Zustandsänderungen können so eher angenähert werden.Another and decisive advantage lies in the large surface / volume ratio of the compressor or displacement rooms. Together with the intensive gas movements in these rooms, it favors a good heat exchange with the stator wall, so that it can also serve as a heat exchanger. The ideal isothermal changes in state for the Stirling process can thus be approximated.

Anhand der in den Figuren 3 bis 5 schematisch dargestellten Ausführungsbeispiele wird die Erfindung nachfolgend näher erläutert.The invention is explained in more detail below on the basis of the exemplary embodiments schematically illustrated in FIGS. 3 to 5.

Die Maschine besteht aus einem Kompressor 12, einem warmen Verdränger 13 und einem kalten Verdränger 14, wobei alle drei Komponenten als Flügelzellen- oder Drehschieberpumpen ausgeführt und sinnvollerweise auf einer gemeinsamen Antriebswelle angeordnet sind.The machine consists of a compressor 12, a warm displacer 13 and a cold displacer 14, all three components being designed as vane pumps or rotary vane pumps and usefully arranged on a common drive shaft.

Die Darstellung in FIG. 3 und die folgende Beschreibung legen exemplarisch eine zweizellige Bauweise zugrunde, obwohl auch eine mehrzellige Bauweise möglich ist und auch sinnvoll sein kann.The representation in FIG. 3 and the following description are based on an example of a two-cell construction, although a multi-cell construction is also possible and can also be useful.

Der Kompressionsraum 15 ist über den Strömungskanal 16 mit der Leitung 18 verbunden. Die Leitung 18 führt über den Wärmetauscher 19 und den Strömungskanal 20 zum Warmraum 22. Eine weitere Verbindung führt über den Wärmetauscher 23, den Regenerator 24, den Wärmetauscher 25 und den Strömungskanal 26 zum Kaltraum 27.The compression space 15 is connected to the line 18 via the flow channel 16. The line 18 leads via the heat exchanger 19 and the flow channel 20 to the warm room 22. A further connection leads via the heat exchanger 23, the regenerator 24, the heat exchanger 25 and the flow channel 26 to the cold room 27.

Die in den jeweiligen Rotoren 17, 21, 28 angeordneten Strömungskanäle 16, 20, 26 werden jeweils so im Nabenbereich nach außen geführt, daß ein vom Drehwinkel unabhängiger Strömungsquerschnitt sichergestellt ist. Eine mögliche Kanalführung ist in FIG. 4 exemplarisch für den Kompressor 12 dargestellt.The flow channels 16, 20, 26 arranged in the respective rotors 17, 21, 28 are each guided to the outside in the hub area in such a way that a flow cross section which is independent of the angle of rotation is ensured. A possible channel guide is shown in FIG. 4 exemplarily shown for the compressor 12.

Bei einer synchronen Umdrehung der Rotoren 17, 21 und 28 wird dem Kompressionsraum 15, dem Warmraum 22 und dem kaltraum 27 jeweils eine Änderung aufgezwungen, deren zeitliche Verläufe den Kurven 9, 10 und 11 in FIG. 2 entsprechen. Die richtige Phasenlage von Kurve 10 bzw. 11 zu Kurve 9 ergibt sich aus der um 90° bzw. 270° versetzten Drehwinkellage der beiden Verdrängerrotoren 21 bzw. 28.With a synchronous rotation of the rotors 17, 21 and 28, the compression space 15, the warm space 22 and the cold space 27 are each forced to change, the time profiles of which are shown in curves 9, 10 and 11 in FIG. 2 correspond. The correct phase position from curve 10 or 11 to curve 9 results from the rotational angle position of the two displacement rotors 21 or 28, which is offset by 90 ° or 270 °.

Es bietet sich vorteilhaft an, die jeweils zweiten Zellen des Kompressors 12 und der beiden Verdränger 13 und 14 für einen zweiten Gaskältemaschinenprozeß, der analog aber um 180° phasenversetzt abläuft, zu nutzen. Die dafür notwendige Erweiterung der Anlage ist in FIG. 3 gestrichelt dargestellt, wobei die Komponenten mit "a" gekennzeichnet sind.It is advantageous to use the second cells of the compressor 12 and the two displacers 13 and 14 for a second gas cooling scheme machine process, which runs analog but 180 ° out of phase. The necessary expansion of the system is shown in FIG. 3 shown in dashed lines, the components being marked with "a".

Mit dem erfindungsgemäßen Rotationskolbenprinzip können auch Gaskältemaschinen, die nach dem Vuilleumierprinzip (einem erweiteren Stirlingprinzip) arbeiten, realisiert werden. Das Maschinenschema ist in FIG. 5 dargestellt.With the rotary piston principle according to the invention, gas refrigeration machines which operate according to the Vuilleumier principle (an extended Stirling principle) can also be implemented. The machine diagram is shown in FIG. 5 shown.

Anstelle des Kompressors 12 in FIG. 3 werden 2 Verdränger 29 und 30 in der erfindungsgemäßen Bauart eingesetzt, die zusammen mit den Wärmetauschern 31 und 31a, den Regeneratoren 32 und 32a und den Wärmetauschern 33 und 33a eine thermische Kompressoreinheit zur Erzeugung eines sinoidalen Druckverlaufs bilden und in der dargestellten Weise mit der bereits aus FIG. 3 bekannten Regenerator/Verdrängereinheit in Verbindung steht.Instead of the compressor 12 in FIG. 3, 2 displacers 29 and 30 are used in the design according to the invention, which together with the heat exchangers 31 and 31a, the regenerators 32 and 32a and the heat exchangers 33 and 33a form a thermal compressor unit for generating a sinusoidal pressure curve and in the manner shown with that already from FIG. 3 known regenerator / displacement unit is connected.

Die vier Verdränger 29, 30, 13 und 14 werden auch in diesem Fall sinnvollerweise auf einer gemeinsamen Antriebswelle angeordnet.In this case too, the four displacers 29, 30, 13 and 14 are expediently arranged on a common drive shaft.

Wegen des bereits genannten großen Oberflächen/Volumenverhältnisses der Verdichter- bzw.-Verdrängerräume kann auf die separaten Wärmetauscher 19, 19a, 23, 23a und 25, 25a bei der Maschine gemäß FIG. 3 sowie die Wärmetauscher 31, 31 a und 33, 33a bei der Maschine gemäß FIG. 5 teilweise oder ganz verzichtet werden, was den maschinentechnischen Aufwand noch weiter reduziert.Because of the large surface / volume ratio of the compressor or displacement spaces already mentioned, the separate heat exchangers 19, 19a, 23, 23a and 25, 25a in the machine according to FIG. 3 and the heat exchangers 31, 31 a and 33, 33 a in the machine according to FIG. 5 can be partially or completely dispensed with, which further reduces the mechanical expenditure.

Durch die Anordnung der Warmräume 22, 22a und der Kalträume 27, 27a in jeweils eigenen, dem Temperaturniveau zugeordneten Verdrängern 13 und 14 werden Temperaturwechselverluste minimiert.By arranging the warm rooms 22, 22a and the cold rooms 27, 27a in their own displacers 13 and 14 assigned to the temperature level, temperature change losses are minimized.

Claims (6)

1. Rotationskompressor oder -verdränger mit einem Stator, der Arbeitsräume einschließt und Lager für eine Antriebswelle aufweist, auf der ein Rotor nach dem Drehschieber- oder Flügelprinzip befestigt ist, wobei der Rotor so ausgebildet ist, daß der Arbeitsraum in wenigstens zwei Zellen aufgeteilt ist, dadurch gekennzeichnet, daß die Zellen über jeweils einen im Rotor ortsfest angeordneten Strömungskanal, der im Lagerbereich nach außen geführt ist, mit einem am Stator ortsfest angeordneten Ein- bzw. Auslaß verbunden ist.1. Rotary compressor or displacer with a stator, which includes working spaces and has bearings for a drive shaft, on which a rotor is attached according to the rotary slide or vane principle, the rotor being designed such that the working space is divided into at least two cells, characterized in that the cells are each connected via a flow channel which is arranged in the rotor in a stationary manner and which is guided outwards in the storage area, to an inlet or outlet arranged in a stationary manner on the stator. 2. Rotationskompressor oder -verdränger nach Anspruch 1, dadurch gekennzeichnet, daß der Stator einen in dessen Wandung integrierten Warmetauscher aufweist und die den Arbeitsraum bildende Innenwandung des Stators gleichzeitig die innere Austauschfläche des Wärmetauschers darstellt.2. Rotary compressor or displacer according to claim 1, characterized in that the stator has a heat exchanger integrated in the wall thereof and the inner wall of the stator forming the working space simultaneously represents the inner exchange surface of the heat exchanger. 3. Verwendung eines Rotationskompressors oder -verdrängers nach Anspruch 1 oder Anspruch 2 als Gaskältemaschine nach dem Stirlingprinzip zur Erzeugung einer sinoidalen Veränderung von Kompressionsraum, Warmraum und Kaltraum.3. Use of a rotary compressor or displacer according to claim 1 or claim 2 as a gas refrigerator according to the Stirling principle for generating a sinoid change in the compression space, warm space and cold space. 4. Gaskältemaschine nach Anspruch 3, dadurch gekennzeichnet, daß wenigstens ein Rotationskompressor und ein Rotationsverdänger auf einer gemeinsamen Anstriebswelle angeordnet sind.4. Gas refrigeration machine according to claim 3, characterized in that at least one rotary compressor and a rotary extender are arranged on a common drive shaft. 5. Verwendung eines Rotationsverdrängers nach Anspruch 1 oder Anspruch 2 als Gaskältemaschine nach dem Vuilleumierprinzips zur Erzeugung einer sinoidalen Änderung des Systemdrucks, des Warmraums und des Kaltraums.5. Use of a rotary displacer according to claim 1 or claim 2 as a gas refrigerator according to the Vuilleumier principle for generating a sinoid change in the system pressure, the warm room and the cold room. 6. Gaskältemaschine nach Anspruch 5, dadurch gekennzeichnet, daß wenigstens zwei Rotationsverdränger auf einer gemeinsamen Antriebswelle angeordnet sind.6. Gas refrigerator according to claim 5, characterized in that at least two rotary displacers are arranged on a common drive shaft.
EP93117766A 1992-11-12 1993-11-03 Rotary compressor Withdrawn EP0597367A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4238166 1992-11-12
DE4238166A DE4238166A1 (en) 1992-11-12 1992-11-12 Rotary compressor or displacer

Publications (1)

Publication Number Publication Date
EP0597367A1 true EP0597367A1 (en) 1994-05-18

Family

ID=6472691

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93117766A Withdrawn EP0597367A1 (en) 1992-11-12 1993-11-03 Rotary compressor

Country Status (3)

Country Link
US (1) US5442923A (en)
EP (1) EP0597367A1 (en)
DE (1) DE4238166A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109040A (en) * 1999-04-12 2000-08-29 General Pneumatics Corporation Stirling cycle refrigerator or engine employing the rotary wankel mechanism
GB0125084D0 (en) * 2001-10-19 2001-12-12 Oxford Magnet Tech Rotary valve
US20040055322A1 (en) * 2002-09-19 2004-03-25 Sun Microsystems, Inc. Field replaceable packard refrigeration module with vapor chamber heat sink for cooling electronic components
US20040065111A1 (en) * 2002-10-08 2004-04-08 Sun Microsystems, Inc. Field replaceable packaged refrigeration module with thermosyphon for cooling electronic components
US20040079100A1 (en) * 2002-10-25 2004-04-29 Sun Microsystems, Inc. Field replaceable packaged refrigeration module with capillary pumped loop for cooling electronic components
US20040163403A1 (en) * 2003-02-21 2004-08-26 Sun Microsystems, Inc. Apparatus and method for cooling electronic systems
US7185492B2 (en) * 2005-01-14 2007-03-06 Dieter Robert L Stirling engine having slidable piston
US7677039B1 (en) 2005-12-20 2010-03-16 Fleck Technologies, Inc. Stirling engine and associated methods
US9267504B2 (en) 2010-08-30 2016-02-23 Hicor Technologies, Inc. Compressor with liquid injection cooling
US8794941B2 (en) 2010-08-30 2014-08-05 Oscomp Systems Inc. Compressor with liquid injection cooling
JP6418838B2 (en) * 2014-07-31 2018-11-07 エドワーズ株式会社 Dry pump and exhaust gas treatment method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1275507A (en) * 1917-01-29 1918-08-13 Rudolph Vuilleumier Method and apparatus for inducing heat changes.
GB559486A (en) * 1942-08-18 1944-02-22 Ludvig Christiansen Hotvedt Improvements in or relating to rotary pumps, compressors or motors
US2551623A (en) * 1944-04-29 1951-05-08 Howard V More Compressor
GB724540A (en) * 1952-07-26 1955-02-23 Theisen Alois Improvements in or relating to rotary engines or pumps
US3406634A (en) * 1967-05-29 1968-10-22 Ford Motor Co Air conditioner compressor
US3487424A (en) * 1967-05-05 1969-12-30 Alcatel Sa Refrigeration liquefaction device
US3537269A (en) * 1969-01-06 1970-11-03 Donald A Kelly Rotary stirling cycle refrigerating system
US3812682A (en) * 1969-08-15 1974-05-28 K Johnson Thermal refrigeration process and apparatus
WO1987003932A1 (en) * 1985-12-23 1987-07-02 Christian Schneider Installation for harnessing thermal energy
WO1993007425A1 (en) * 1991-10-07 1993-04-15 Fineblum Engineering Corp. Heat pump system and heat pump device using a constant flow reverse stirling cycle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1230153A (en) * 1967-08-25 1971-04-28
US3474641A (en) * 1968-01-18 1969-10-28 Gas Dev Corp Heat-actuated regenerative compressor system
US3488945A (en) * 1968-04-24 1970-01-13 Donald A Kelly Rotary stirling cycle engines
DE3245974A1 (en) * 1981-12-14 1983-06-23 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Vane cell pump
DE3333586A1 (en) * 1983-09-16 1985-04-11 Franz X. Prof. Dr.-Ing. 8000 München Eder Externally heated regenerative heat engine and machine
DE3602634A1 (en) * 1986-01-29 1987-07-30 Helmut Prof Dr Rer Nat Krauch Regenerative thermal engine
DE3909831A1 (en) * 1989-03-25 1990-09-27 Becker Kg Gebr Sliding-vane rotary pump designed for dry running, and method for manufacturing it
DE4129772A1 (en) * 1991-04-23 1992-10-29 Irm Antriebstech Gmbh Thermodynamic machine with external combustion - uses hollow cylindrical gas-filled spaced coupled via heat exchanger containing rotating displacement devices

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1275507A (en) * 1917-01-29 1918-08-13 Rudolph Vuilleumier Method and apparatus for inducing heat changes.
GB559486A (en) * 1942-08-18 1944-02-22 Ludvig Christiansen Hotvedt Improvements in or relating to rotary pumps, compressors or motors
US2551623A (en) * 1944-04-29 1951-05-08 Howard V More Compressor
GB724540A (en) * 1952-07-26 1955-02-23 Theisen Alois Improvements in or relating to rotary engines or pumps
US3487424A (en) * 1967-05-05 1969-12-30 Alcatel Sa Refrigeration liquefaction device
US3406634A (en) * 1967-05-29 1968-10-22 Ford Motor Co Air conditioner compressor
US3537269A (en) * 1969-01-06 1970-11-03 Donald A Kelly Rotary stirling cycle refrigerating system
US3812682A (en) * 1969-08-15 1974-05-28 K Johnson Thermal refrigeration process and apparatus
WO1987003932A1 (en) * 1985-12-23 1987-07-02 Christian Schneider Installation for harnessing thermal energy
WO1993007425A1 (en) * 1991-10-07 1993-04-15 Fineblum Engineering Corp. Heat pump system and heat pump device using a constant flow reverse stirling cycle

Also Published As

Publication number Publication date
US5442923A (en) 1995-08-22
DE4238166A1 (en) 1994-05-19

Similar Documents

Publication Publication Date Title
EP0597367A1 (en) Rotary compressor
WO2007019815A1 (en) 4-cycle stirling engine with two double piston units
DE2848245C2 (en) Refrigeration machine
DE112010004335T5 (en) Gamma-type free-piston Stirling engines configuration
DE3723950A1 (en) Regenerative heat engine with a hypocycloidal eccentric crank mechanism
DE102017116805A1 (en) TIEFTEMPERATUR EXPANDER WITH COLLAR FOR REDUCING NOISE AND VIBRATION PROPERTIES
DE4018943A1 (en) Piston engine for use in regenerative cycles - produces optimum time slope using rotating eccentric transmission
DE19814742C1 (en) Rotary heat engine
DE4022632C2 (en) Method for converting a heat output into a mechanical rotary movement and device for carrying out this method
EP0252137B1 (en) Installation for harnessing thermal energy
WO2000029793A1 (en) Piston compressor
DE19809847A1 (en) Stirling engine with rotary design
DE19837729A1 (en) Rotary piston machine working as pump, compressor, turbine or engine
DE19913154A1 (en) Wobble plate Stirling cooler with reduced size and weight and increased cooling performance
DE19912482B4 (en) scroll compressor
DE3709014A1 (en) Stirling engine with rotary piston situated in a gas-tight inner chamber of a housing
DE3834071A1 (en) Heat engine on the Stirling principle or the Ericsen principle
DE4213369A1 (en) Heat power machine with external combustion - uses rotating compressor in each of two hollow cylindrical sections fillable with gaseous medium
DE69816446T2 (en) THERMAL MACHINE
DE102010013620B4 (en) Hot gas engine with rotating segmented pistons
DE4410886A1 (en) Multi-stage rotary pump
DE3327483A1 (en) Regenerative heat engine
DE19928202A1 (en) Stirling or Vuilleurnier machine has subsystems mutually phase shifted by 180 degrees, connected via counterflow heat transformer; heat is taken up by one as heat is output by the other
DE4320356A1 (en) Displacement-type Stirling heat engine
DE2928316A1 (en) Hot air engine for small power applications - has open air cycle to give high performance at moderate temperature ranges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19940616

17Q First examination report despatched

Effective date: 19950922

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19960403